using System;
using System.Diagnostics;
using Org.BouncyCastle.Crypto.Utilities;
using Org.BouncyCastle.Security;
using Org.BouncyCastle.Utilities;
namespace Org.BouncyCastle.Math.Raw
{
///
/// Modular inversion as implemented in this class is based on the paper "Fast constant-time gcd computation and
/// modular inversion" by Daniel J. Bernstein and Bo-Yin Yang.
///
///
/// In some cases (when it is faster) we use the "half delta" variant of safegcd based on
/// hddivsteps.
///
internal static class Mod
{
private const int M30 = 0x3FFFFFFF;
private const ulong M32UL = 0xFFFFFFFFUL;
private static readonly int MaxStackAlloc = Platform.Is64BitProcess ? 4096 : 1024;
#if NETCOREAPP2_1_OR_GREATER || NETSTANDARD2_1_OR_GREATER
public static void CheckedModOddInverse(ReadOnlySpan m, ReadOnlySpan x, Span z)
#else
public static void CheckedModOddInverse(uint[] m, uint[] x, uint[] z)
#endif
{
if (0 == ModOddInverse(m, x, z))
throw new ArithmeticException("Inverse does not exist.");
}
#if NETCOREAPP2_1_OR_GREATER || NETSTANDARD2_1_OR_GREATER
public static void CheckedModOddInverseVar(ReadOnlySpan m, ReadOnlySpan x, Span z)
#else
public static void CheckedModOddInverseVar(uint[] m, uint[] x, uint[] z)
#endif
{
if (!ModOddInverseVar(m, x, z))
throw new ArithmeticException("Inverse does not exist.");
}
public static uint Inverse32(uint d)
{
Debug.Assert((d & 1U) == 1U);
//int x = d + (((d + 1) & 4) << 1); // d.x == 1 mod 2**4
uint x = d; // d.x == 1 mod 2**3
x *= 2 - d * x; // d.x == 1 mod 2**6
x *= 2 - d * x; // d.x == 1 mod 2**12
x *= 2 - d * x; // d.x == 1 mod 2**24
x *= 2 - d * x; // d.x == 1 mod 2**48
Debug.Assert(d * x == 1U);
return x;
}
public static ulong Inverse64(ulong d)
{
Debug.Assert((d & 1UL) == 1UL);
//ulong x = d + (((d + 1) & 4) << 1); // d.x == 1 mod 2**4
ulong x = d; // d.x == 1 mod 2**3
x *= 2 - d * x; // d.x == 1 mod 2**6
x *= 2 - d * x; // d.x == 1 mod 2**12
x *= 2 - d * x; // d.x == 1 mod 2**24
x *= 2 - d * x; // d.x == 1 mod 2**48
x *= 2 - d * x; // d.x == 1 mod 2**96
Debug.Assert(d * x == 1UL);
return x;
}
#if NETCOREAPP2_1_OR_GREATER || NETSTANDARD2_1_OR_GREATER
public static uint ModOddInverse(ReadOnlySpan m, ReadOnlySpan x, Span z)
#else
public static uint ModOddInverse(uint[] m, uint[] x, uint[] z)
#endif
{
int len32 = m.Length;
Debug.Assert(len32 > 0);
Debug.Assert((m[0] & 1) != 0);
Debug.Assert(m[len32 - 1] != 0);
int bits = (len32 << 5) - Integers.NumberOfLeadingZeros((int)m[len32 - 1]);
int len30 = (bits + 29) / 30;
#if NETCOREAPP2_1_OR_GREATER || NETSTANDARD2_1_OR_GREATER
int allocSize = len30 * 5;
Span alloc = (allocSize * Integers.NumBytes <= MaxStackAlloc)
? stackalloc int[allocSize]
: new int[allocSize];
Span t = stackalloc int[4];
Span D = alloc[..len30]; alloc = alloc[len30..];
Span E = alloc[..len30]; alloc = alloc[len30..];
Span F = alloc[..len30]; alloc = alloc[len30..];
Span G = alloc[..len30]; alloc = alloc[len30..];
Span M = alloc[..len30];
#else
int[] t = new int[4];
int[] D = new int[len30];
int[] E = new int[len30];
int[] F = new int[len30];
int[] G = new int[len30];
int[] M = new int[len30];
#endif
E[0] = 1;
Encode30(bits, x, G);
Encode30(bits, m, M);
#if NETCOREAPP2_1_OR_GREATER || NETSTANDARD2_1_OR_GREATER
M.CopyTo(F);
#else
Array.Copy(M, 0, F, 0, len30);
#endif
// We use the "half delta" variant here, with theta == delta - 1/2
int theta = 0;
int m0Inv32 = (int)Inverse32((uint)M[0]);
int maxDivsteps = GetMaximumHDDivsteps(bits);
for (int divSteps = 0; divSteps < maxDivsteps; divSteps += 30)
{
theta = HDDivsteps30(theta, F[0], G[0], t);
UpdateDE30(len30, D, E, t, m0Inv32, M);
UpdateFG30(len30, F, G, t);
}
int signF = F[len30 - 1] >> 31;
CNegate30(len30, signF, F);
CNormalize30(len30, signF, D, M);
Decode30(bits, D, z);
Debug.Assert(0 != Nat.LessThan(m.Length, z, m));
return (uint)(EqualTo(len30, F, 1) & EqualTo(len30, G, 0));
}
#if NETCOREAPP2_1_OR_GREATER || NETSTANDARD2_1_OR_GREATER
public static bool ModOddInverseVar(ReadOnlySpan m, ReadOnlySpan x, Span z)
#else
public static bool ModOddInverseVar(uint[] m, uint[] x, uint[] z)
#endif
{
int len32 = m.Length;
Debug.Assert(len32 > 0);
Debug.Assert((m[0] & 1) != 0);
Debug.Assert(m[len32 - 1] != 0);
int bits = (len32 << 5) - Integers.NumberOfLeadingZeros((int)m[len32 - 1]);
int len30 = (bits + 29) / 30;
int clz = bits - Nat.GetBitLength(len32, x);
Debug.Assert(clz >= 0);
#if NETCOREAPP2_1_OR_GREATER || NETSTANDARD2_1_OR_GREATER
int allocSize = len30 * 5;
Span alloc = (allocSize * Integers.NumBytes <= MaxStackAlloc)
? stackalloc int[allocSize]
: new int[allocSize];
Span t = stackalloc int[4];
Span D = alloc[..len30]; alloc = alloc[len30..];
Span E = alloc[..len30]; alloc = alloc[len30..];
Span F = alloc[..len30]; alloc = alloc[len30..];
Span G = alloc[..len30]; alloc = alloc[len30..];
Span M = alloc[..len30];
#else
int[] t = new int[4];
int[] D = new int[len30];
int[] E = new int[len30];
int[] F = new int[len30];
int[] G = new int[len30];
int[] M = new int[len30];
#endif
E[0] = 1;
Encode30(bits, x, G);
Encode30(bits, m, M);
#if NETCOREAPP2_1_OR_GREATER || NETSTANDARD2_1_OR_GREATER
M.CopyTo(F);
#else
Array.Copy(M, 0, F, 0, len30);
#endif
// We use the original safegcd here, with eta == 1 - delta
// For shorter x, configure as if low zeros of x had been shifted away by divsteps
int eta = -clz;
int lenDE = len30, lenFG = len30;
int m0Inv32 = (int)Inverse32((uint)M[0]);
int maxDivsteps = GetMaximumDivsteps(bits);
int divsteps = clz;
while (!EqualToVar(lenFG, G, 0))
{
if (divsteps >= maxDivsteps)
return false;
divsteps += 30;
eta = Divsteps30Var(eta, F[0], G[0], t);
UpdateDE30(lenDE, D, E, t, m0Inv32, M);
UpdateFG30(lenFG, F, G, t);
lenFG = TrimFG30Var(lenFG, F, G);
}
int signF = F[lenFG - 1] >> 31;
/*
* D is in the range (-2.M, M). First, conditionally add M if D is negative, to bring it
* into the range (-M, M). Then normalize by conditionally negating (according to signF)
* and/or then adding M, to bring it into the range [0, M).
*/
int signD = D[lenDE - 1] >> 31;
if (signD < 0)
{
signD = Add30(lenDE, D, M);
}
if (signF < 0)
{
signD = Negate30(lenDE, D);
signF = Negate30(lenFG, F);
}
Debug.Assert(0 == signF);
if (!EqualToVar(lenFG, F, 1))
return false;
if (signD < 0)
{
signD = Add30(lenDE, D, M);
}
Debug.Assert(0 == signD);
Decode30(bits, D, z);
Debug.Assert(!Nat.Gte(m.Length, z, m));
return true;
}
#if NETCOREAPP2_1_OR_GREATER || NETSTANDARD2_1_OR_GREATER
public static uint ModOddIsCoprime(ReadOnlySpan m, ReadOnlySpan x)
#else
public static uint ModOddIsCoprime(uint[] m, uint[] x)
#endif
{
int len32 = m.Length;
Debug.Assert(len32 > 0);
Debug.Assert((m[0] & 1) != 0);
Debug.Assert(m[len32 - 1] != 0);
int bits = (len32 << 5) - Integers.NumberOfLeadingZeros((int)m[len32 - 1]);
int len30 = (bits + 29) / 30;
#if NETCOREAPP2_1_OR_GREATER || NETSTANDARD2_1_OR_GREATER
int allocSize = len30 * 3;
Span alloc = (allocSize * Integers.NumBytes <= MaxStackAlloc)
? stackalloc int[allocSize]
: new int[allocSize];
Span t = stackalloc int[4];
Span F = alloc[..len30]; alloc = alloc[len30..];
Span G = alloc[..len30]; alloc = alloc[len30..];
Span M = alloc[..len30];
#else
int[] t = new int[4];
int[] F = new int[len30];
int[] G = new int[len30];
int[] M = new int[len30];
#endif
Encode30(bits, x, G);
Encode30(bits, m, M);
#if NETCOREAPP2_1_OR_GREATER || NETSTANDARD2_1_OR_GREATER
M.CopyTo(F);
#else
Array.Copy(M, 0, F, 0, len30);
#endif
// We use the "half delta" variant here, with theta == delta - 1/2
int theta = 0;
int maxDivsteps = GetMaximumHDDivsteps(bits);
for (int divSteps = 0; divSteps < maxDivsteps; divSteps += 30)
{
theta = HDDivsteps30(theta, F[0], G[0], t);
UpdateFG30(len30, F, G, t);
}
int signF = F[len30 - 1] >> 31;
CNegate30(len30, signF, F);
return (uint)(EqualTo(len30, F, 1) & EqualTo(len30, G, 0));
}
#if NETCOREAPP2_1_OR_GREATER || NETSTANDARD2_1_OR_GREATER
public static bool ModOddIsCoprimeVar(ReadOnlySpan m, ReadOnlySpan x)
#else
public static bool ModOddIsCoprimeVar(uint[] m, uint[] x)
#endif
{
int len32 = m.Length;
Debug.Assert(len32 > 0);
Debug.Assert((m[0] & 1) != 0);
Debug.Assert(m[len32 - 1] != 0);
int bits = (len32 << 5) - Integers.NumberOfLeadingZeros((int)m[len32 - 1]);
int len30 = (bits + 29) / 30;
int clz = bits - Nat.GetBitLength(len32, x);
Debug.Assert(clz >= 0);
#if NETCOREAPP2_1_OR_GREATER || NETSTANDARD2_1_OR_GREATER
int allocSize = len30 * 3;
Span alloc = (allocSize * Integers.NumBytes <= MaxStackAlloc)
? stackalloc int[allocSize]
: new int[allocSize];
Span t = stackalloc int[4];
Span F = alloc[..len30]; alloc = alloc[len30..];
Span G = alloc[..len30]; alloc = alloc[len30..];
Span M = alloc[..len30];
#else
int[] t = new int[4];
int[] F = new int[len30];
int[] G = new int[len30];
int[] M = new int[len30];
#endif
Encode30(bits, x, G);
Encode30(bits, m, M);
#if NETCOREAPP2_1_OR_GREATER || NETSTANDARD2_1_OR_GREATER
M.CopyTo(F);
#else
Array.Copy(M, 0, F, 0, len30);
#endif
// We use the original safegcd here, with eta == 1 - delta
// For shorter x, configure as if low zeros of x had been shifted away by divsteps
int eta = -clz;
int lenFG = len30;
int maxDivsteps = GetMaximumDivsteps(bits);
int divsteps = clz;
while (!EqualToVar(lenFG, G, 0))
{
if (divsteps >= maxDivsteps)
return false;
divsteps += 30;
eta = Divsteps30Var(eta, F[0], G[0], t);
UpdateFG30(lenFG, F, G, t);
lenFG = TrimFG30Var(lenFG, F, G);
}
int signF = F[lenFG - 1] >> 31;
if (signF < 0)
{
signF = Negate30(lenFG, F);
}
Debug.Assert(0 == signF);
return EqualToVar(lenFG, F, 1);
}
public static uint[] Random(SecureRandom random, uint[] p)
{
int len = p.Length;
uint[] s = Nat.Create(len);
uint m = p[len - 1];
m |= m >> 1;
m |= m >> 2;
m |= m >> 4;
m |= m >> 8;
m |= m >> 16;
byte[] bytes = new byte[len << 2];
do
{
random.NextBytes(bytes);
Pack.BE_To_UInt32(bytes, 0, s);
s[len - 1] &= m;
}
while (Nat.Gte(len, s, p));
return s;
}
#if NETCOREAPP2_1_OR_GREATER || NETSTANDARD2_1_OR_GREATER
public static void Random(SecureRandom random, ReadOnlySpan p, Span z)
{
int len = p.Length;
if (z.Length < len)
throw new ArgumentException("insufficient space", nameof(z));
var s = z[..len];
uint m = p[len - 1];
m |= m >> 1;
m |= m >> 2;
m |= m >> 4;
m |= m >> 8;
m |= m >> 16;
int allocSize = len * Integers.NumBytes;
Span bytes = allocSize <= MaxStackAlloc
? stackalloc byte[allocSize]
: new byte[allocSize];
do
{
random.NextBytes(bytes);
Pack.BE_To_UInt32(bytes, s);
s[len - 1] &= m;
}
while (Nat.Gte(len, s, p));
}
#endif
#if NETCOREAPP2_1_OR_GREATER || NETSTANDARD2_1_OR_GREATER
private static int Add30(int len30, Span D, ReadOnlySpan M)
#else
private static int Add30(int len30, int[] D, int[] M)
#endif
{
Debug.Assert(len30 > 0);
Debug.Assert(D.Length >= len30);
Debug.Assert(M.Length >= len30);
int c = 0, last = len30 - 1;
for (int i = 0; i < last; ++i)
{
c += D[i] + M[i];
D[i] = c & M30; c >>= 30;
}
c += D[last] + M[last];
D[last] = c; c >>= 30;
return c;
}
#if NETCOREAPP2_1_OR_GREATER || NETSTANDARD2_1_OR_GREATER
private static void CNegate30(int len30, int cond, Span D)
#else
private static void CNegate30(int len30, int cond, int[] D)
#endif
{
Debug.Assert(len30 > 0);
Debug.Assert(D.Length >= len30);
int c = 0, last = len30 - 1;
for (int i = 0; i < last; ++i)
{
c += (D[i] ^ cond) - cond;
D[i] = c & M30; c >>= 30;
}
c += (D[last] ^ cond) - cond;
D[last] = c;
}
#if NETCOREAPP2_1_OR_GREATER || NETSTANDARD2_1_OR_GREATER
private static void CNormalize30(int len30, int condNegate, Span D, ReadOnlySpan M)
#else
private static void CNormalize30(int len30, int condNegate, int[] D, int[] M)
#endif
{
Debug.Assert(len30 > 0);
Debug.Assert(D.Length >= len30);
Debug.Assert(M.Length >= len30);
/*
* D is in the range (-2.M, M). First, conditionally add M if D is negative, to bring it
* into the range (-M, M). Then normalize by conditionally negating (according to signF)
* and/or then adding M, to bring it into the range [0, M).
*/
int last = len30 - 1;
{
int c = 0, condAdd = D[last] >> 31;
for (int i = 0; i < last; ++i)
{
int di = D[i] + (M[i] & condAdd);
di = (di ^ condNegate) - condNegate;
c += di; D[i] = c & M30; c >>= 30;
}
{
int di = D[last] + (M[last] & condAdd);
di = (di ^ condNegate) - condNegate;
c += di; D[last] = c;
}
}
{
int c = 0, condAdd = D[last] >> 31;
for (int i = 0; i < last; ++i)
{
int di = D[i] + (M[i] & condAdd);
c += di; D[i] = c & M30; c >>= 30;
}
{
int di = D[last] + (M[last] & condAdd);
c += di; D[last] = c;
}
Debug.Assert(c >> 30 == 0);
}
}
#if NETCOREAPP2_1_OR_GREATER || NETSTANDARD2_1_OR_GREATER
private static void Decode30(int bits, ReadOnlySpan x, Span z)
#else
private static void Decode30(int bits, int[] x, uint[] z)
#endif
{
Debug.Assert(bits > 0);
int avail = 0;
ulong data = 0UL;
int xOff = 0, zOff = 0;
while (bits > 0)
{
while (avail < System.Math.Min(32, bits))
{
data |= (ulong)x[xOff++] << avail;
avail += 30;
}
z[zOff++] = (uint)data; data >>= 32;
avail -= 32;
bits -= 32;
}
}
#if NETCOREAPP2_1_OR_GREATER || NETSTANDARD2_1_OR_GREATER
private static int Divsteps30Var(int eta, int f0, int g0, Span t)
#else
private static int Divsteps30Var(int eta, int f0, int g0, int[] t)
#endif
{
int u = 1, v = 0, q = 0, r = 1;
int f = f0, g = g0, m, w, x, y, z;
int i = 30, limit, zeros;
for (;;)
{
// Use a sentinel bit to count zeros only up to i.
zeros = Integers.NumberOfTrailingZeros(g | (-1 << i));
g >>= zeros;
u <<= zeros;
v <<= zeros;
eta -= zeros;
i -= zeros;
if (i <= 0)
break;
Debug.Assert((f & 1) == 1);
Debug.Assert((g & 1) == 1);
Debug.Assert((u * f0 + v * g0) == f << (30 - i));
Debug.Assert((q * f0 + r * g0) == g << (30 - i));
if (eta <= 0)
{
eta = 2 - eta;
x = f; f = g; g = -x;
y = u; u = q; q = -y;
z = v; v = r; r = -z;
// Handle up to 6 divsteps at once, subject to eta and i.
limit = eta > i ? i : eta;
m = (int)((uint.MaxValue >> (32 - limit)) & 63U);
w = (f * g * (f * f - 2)) & m;
}
else
{
// Handle up to 4 divsteps at once, subject to eta and i.
limit = eta > i ? i : eta;
m = (int)((uint.MaxValue >> (32 - limit)) & 15U);
w = f + (((f + 1) & 4) << 1);
w = (w * -g) & m;
}
g += f * w;
q += u * w;
r += v * w;
Debug.Assert((g & m) == 0);
}
t[0] = u;
t[1] = v;
t[2] = q;
t[3] = r;
return eta;
}
#if NETCOREAPP2_1_OR_GREATER || NETSTANDARD2_1_OR_GREATER
private static void Encode30(int bits, ReadOnlySpan x, Span z)
#else
private static void Encode30(int bits, uint[] x, int[] z)
#endif
{
Debug.Assert(bits > 0);
int avail = 0;
ulong data = 0UL;
int xOff = 0, zOff = 0;
while (bits > 0)
{
if (avail < System.Math.Min(30, bits))
{
data |= (x[xOff++] & M32UL) << avail;
avail += 32;
}
z[zOff++] = (int)data & M30; data >>= 30;
avail -= 30;
bits -= 30;
}
}
#if NETCOREAPP2_1_OR_GREATER || NETSTANDARD2_1_OR_GREATER
private static int EqualTo(int len, ReadOnlySpan x, int y)
#else
private static int EqualTo(int len, int[] x, int y)
#endif
{
int d = x[0] ^ y;
for (int i = 1; i < len; ++i)
{
d |= x[i];
}
d = (int)((uint)d >> 1) | (d & 1);
return (d - 1) >> 31;
}
#if NETCOREAPP2_1_OR_GREATER || NETSTANDARD2_1_OR_GREATER
private static bool EqualToVar(int len, ReadOnlySpan x, int y)
#else
private static bool EqualToVar(int len, int[] x, int y)
#endif
{
int d = x[0] ^ y;
if (d != 0)
return false;
for (int i = 1; i < len; ++i)
{
d |= x[i];
}
return d == 0;
}
private static int GetMaximumDivsteps(int bits)
{
//return (49 * bits + (bits < 46 ? 80 : 47)) / 17;
return (int)((188898L * bits + (bits < 46 ? 308405 : 181188)) >> 16);
}
private static int GetMaximumHDDivsteps(int bits)
{
//return (int)((45907L * bits + 30179) / 19929);
return (int)((150964L * bits + 99243) >> 16);
}
#if NETCOREAPP2_1_OR_GREATER || NETSTANDARD2_1_OR_GREATER
private static int HDDivsteps30(int theta, int f0, int g0, Span t)
#else
private static int HDDivsteps30(int theta, int f0, int g0, int[] t)
#endif
{
int u = 1 << 30, v = 0, q = 0, r = 1 << 30;
int f = f0, g = g0;
for (int i = 0; i < 30; ++i)
{
Debug.Assert((f & 1) == 1);
Debug.Assert(((u >> (30 - i)) * f0 + (v >> (30 - i)) * g0) == f << i);
Debug.Assert(((q >> (30 - i)) * f0 + (r >> (30 - i)) * g0) == g << i);
int c1 = theta >> 31;
int c2 = -(g & 1);
int x = f ^ c1;
int y = u ^ c1;
int z = v ^ c1;
g -= x & c2;
q -= y & c2;
r -= z & c2;
int c3 = c2 & ~c1;
theta = (theta ^ c3) + 1;
f += g & c3;
u += q & c3;
v += r & c3;
g >>= 1;
q >>= 1;
r >>= 1;
}
t[0] = u;
t[1] = v;
t[2] = q;
t[3] = r;
return theta;
}
#if NETCOREAPP2_1_OR_GREATER || NETSTANDARD2_1_OR_GREATER
private static int Negate30(int len30, Span D)
#else
private static int Negate30(int len30, int[] D)
#endif
{
Debug.Assert(len30 > 0);
Debug.Assert(D.Length >= len30);
int c = 0, last = len30 - 1;
for (int i = 0; i < last; ++i)
{
c -= D[i];
D[i] = c & M30; c >>= 30;
}
c -= D[last];
D[last] = c; c >>= 30;
return c;
}
#if NETCOREAPP2_1_OR_GREATER || NETSTANDARD2_1_OR_GREATER
private static int TrimFG30Var(int len30, Span F, Span G)
#else
private static int TrimFG30Var(int len30, int[] F, int[] G)
#endif
{
Debug.Assert(len30 > 0);
Debug.Assert(F.Length >= len30);
Debug.Assert(G.Length >= len30);
int fn = F[len30 - 1];
int gn = G[len30 - 1];
int cond = (len30 - 2) >> 31;
cond |= fn ^ (fn >> 31);
cond |= gn ^ (gn >> 31);
if (cond == 0)
{
F[len30 - 2] |= fn << 30;
G[len30 - 2] |= gn << 30;
--len30;
}
return len30;
}
#if NETCOREAPP2_1_OR_GREATER || NETSTANDARD2_1_OR_GREATER
private static void UpdateDE30(int len30, Span D, Span E, ReadOnlySpan t, int m0Inv32,
ReadOnlySpan M)
#else
private static void UpdateDE30(int len30, int[] D, int[] E, int[] t, int m0Inv32, int[] M)
#endif
{
Debug.Assert(len30 > 0);
Debug.Assert(D.Length >= len30);
Debug.Assert(E.Length >= len30);
Debug.Assert(M.Length >= len30);
Debug.Assert(m0Inv32 * M[0] == 1);
int u = t[0], v = t[1], q = t[2], r = t[3];
int di, ei, i, md, me, mi, sd, se;
long cd, ce;
/*
* We accept D (E) in the range (-2.M, M) and conceptually add the modulus to the input
* value if it is initially negative. Instead of adding it explicitly, we add u and/or v (q
* and/or r) to md (me).
*/
sd = D[len30 - 1] >> 31;
se = E[len30 - 1] >> 31;
md = (u & sd) + (v & se);
me = (q & sd) + (r & se);
mi = M[0];
di = D[0];
ei = E[0];
cd = (long)u * di + (long)v * ei;
ce = (long)q * di + (long)r * ei;
/*
* Subtract from md/me an extra term in the range [0, 2^30) such that the low 30 bits of the
* intermediate D/E values will be 0, allowing clean division by 2^30. The final D/E are
* thus in the range (-2.M, M), consistent with the input constraint.
*/
md -= (m0Inv32 * (int)cd + md) & M30;
me -= (m0Inv32 * (int)ce + me) & M30;
cd += (long)mi * md;
ce += (long)mi * me;
Debug.Assert(((int)cd & M30) == 0);
Debug.Assert(((int)ce & M30) == 0);
cd >>= 30;
ce >>= 30;
for (i = 1; i < len30; ++i)
{
mi = M[i];
di = D[i];
ei = E[i];
cd += (long)u * di + (long)v * ei + (long)mi * md;
ce += (long)q * di + (long)r * ei + (long)mi * me;
D[i - 1] = (int)cd & M30; cd >>= 30;
E[i - 1] = (int)ce & M30; ce >>= 30;
}
D[len30 - 1] = (int)cd;
E[len30 - 1] = (int)ce;
}
#if NETCOREAPP2_1_OR_GREATER || NETSTANDARD2_1_OR_GREATER
private static void UpdateFG30(int len30, Span F, Span G, ReadOnlySpan t)
#else
private static void UpdateFG30(int len30, int[] F, int[] G, int[] t)
#endif
{
Debug.Assert(len30 > 0);
Debug.Assert(F.Length >= len30);
Debug.Assert(G.Length >= len30);
int u = t[0], v = t[1], q = t[2], r = t[3];
int fi, gi, i;
long cf, cg;
fi = F[0];
gi = G[0];
cf = (long)u * fi + (long)v * gi;
cg = (long)q * fi + (long)r * gi;
Debug.Assert(((int)cf & M30) == 0);
Debug.Assert(((int)cg & M30) == 0);
cf >>= 30;
cg >>= 30;
for (i = 1; i < len30; ++i)
{
fi = F[i];
gi = G[i];
cf += (long)u * fi + (long)v * gi;
cg += (long)q * fi + (long)r * gi;
F[i - 1] = (int)cf & M30; cf >>= 30;
G[i - 1] = (int)cg & M30; cg >>= 30;
}
F[len30 - 1] = (int)cf;
G[len30 - 1] = (int)cg;
}
}
}