using System;
using System.Diagnostics;
using Org.BouncyCastle.Crypto;
using Org.BouncyCastle.Crypto.Digests;
using Org.BouncyCastle.Math.Raw;
using Org.BouncyCastle.Security;
using Org.BouncyCastle.Utilities;
namespace Org.BouncyCastle.Math.EC.Rfc8032
{
using F = Rfc7748.X25519Field;
///
/// A low-level implementation of the Ed25519, Ed25519ctx, and Ed25519ph instantiations of the Edwards-Curve Digital
/// Signature Algorithm specified in RFC 8032.
///
///
/// The implementation strategy is mostly drawn from
/// Mike Hamburg, "Fast and compact elliptic-curve cryptography", notably the "signed multi-comb" algorithm (for
/// scalar multiplication by a fixed point), the "half Niels coordinates" (for precomputed points), and the
/// "extensible coordinates" (for accumulators). Standard
/// extended coordinates are used during
/// precomputations, needing only a single extra point addition formula.
///
public static class Ed25519
{
// -x^2 + y^2 == 1 + 0x52036CEE2B6FFE738CC740797779E89800700A4D4141D8AB75EB4DCA135978A3 * x^2 * y^2
public enum Algorithm
{
Ed25519 = 0,
Ed25519ctx = 1,
Ed25519ph = 2,
}
private const long M08L = 0x000000FFL;
private const long M28L = 0x0FFFFFFFL;
private const long M32L = 0xFFFFFFFFL;
private const int CoordUints = 8;
private const int PointBytes = CoordUints * 4;
private const int ScalarUints = 8;
private const int ScalarBytes = ScalarUints * 4;
public static readonly int PrehashSize = 64;
public static readonly int PublicKeySize = PointBytes;
public static readonly int SecretKeySize = 32;
public static readonly int SignatureSize = PointBytes + ScalarBytes;
// "SigEd25519 no Ed25519 collisions"
private static readonly byte[] Dom2Prefix = new byte[]{ 0x53, 0x69, 0x67, 0x45, 0x64, 0x32, 0x35, 0x35, 0x31,
0x39, 0x20, 0x6e, 0x6f, 0x20, 0x45, 0x64, 0x32, 0x35, 0x35, 0x31, 0x39, 0x20, 0x63, 0x6f, 0x6c, 0x6c, 0x69,
0x73, 0x69, 0x6f, 0x6e, 0x73 };
private static readonly uint[] P = { 0xFFFFFFEDU, 0xFFFFFFFFU, 0xFFFFFFFFU, 0xFFFFFFFFU, 0xFFFFFFFFU,
0xFFFFFFFFU, 0xFFFFFFFFU, 0x7FFFFFFFU };
private static readonly uint[] L = { 0x5CF5D3EDU, 0x5812631AU, 0xA2F79CD6U, 0x14DEF9DEU, 0x00000000U,
0x00000000U, 0x00000000U, 0x10000000U };
private const int L0 = -0x030A2C13; // L0:26/--
private const int L1 = 0x012631A6; // L1:24/22
private const int L2 = 0x079CD658; // L2:27/--
private const int L3 = -0x006215D1; // L3:23/--
private const int L4 = 0x000014DF; // L4:12/11
private static readonly int[] B_x = { 0x0325D51A, 0x018B5823, 0x007B2C95, 0x0304A92D, 0x00D2598E, 0x01D6DC5C,
0x01388C7F, 0x013FEC0A, 0x029E6B72, 0x0042D26D };
private static readonly int[] B_y = { 0x02666658, 0x01999999, 0x00666666, 0x03333333, 0x00CCCCCC, 0x02666666,
0x01999999, 0x00666666, 0x03333333, 0x00CCCCCC, };
// Note that d == -121665/121666
private static readonly int[] C_d = { 0x035978A3, 0x02D37284, 0x018AB75E, 0x026A0A0E, 0x0000E014, 0x0379E898,
0x01D01E5D, 0x01E738CC, 0x03715B7F, 0x00A406D9 };
private static readonly int[] C_d2 = { 0x02B2F159, 0x01A6E509, 0x01156EBD, 0x00D4141D, 0x0001C029, 0x02F3D130,
0x03A03CBB, 0x01CE7198, 0x02E2B6FF, 0x00480DB3 };
private static readonly int[] C_d4 = { 0x0165E2B2, 0x034DCA13, 0x002ADD7A, 0x01A8283B, 0x00038052, 0x01E7A260,
0x03407977, 0x019CE331, 0x01C56DFF, 0x00901B67 };
private const int WnafWidth = 5;
private const int WnafWidthBase = 7;
// ScalarMultBase is hard-coded for these values of blocks, teeth, spacing so they can't be freely changed
private const int PrecompBlocks = 8;
private const int PrecompTeeth = 4;
private const int PrecompSpacing = 8;
//private const int PrecompRange = PrecompBlocks * PrecompTeeth * PrecompSpacing; // range == 256
private const int PrecompPoints = 1 << (PrecompTeeth - 1);
private const int PrecompMask = PrecompPoints - 1;
private static readonly object PrecompLock = new object();
private static PointPrecomp[] PrecompBaseWnaf = null;
private static int[] PrecompBaseComb = null;
private struct PointAccum
{
internal int[] x, y, z, u, v;
}
private struct PointAffine
{
internal int[] x, y;
}
private struct PointExtended
{
internal int[] x, y, z, t;
}
private struct PointPrecomp
{
internal int[] ymx_h; // (y - x)/2
internal int[] ypx_h; // (y + x)/2
internal int[] xyd; // x.y.d
}
private struct PointPrecompZ
{
internal int[] ymx_h; // (y - x)/2
internal int[] ypx_h; // (y + x)/2
internal int[] xyd; // x.y.d
internal int[] z;
}
// Temp space to avoid allocations in point formulae.
private struct PointTemp
{
internal int[] r0, r1;
}
private static byte[] CalculateS(byte[] r, byte[] k, byte[] s)
{
uint[] t = new uint[ScalarUints * 2]; DecodeScalar(r, 0, t);
uint[] u = new uint[ScalarUints]; DecodeScalar(k, 0, u);
uint[] v = new uint[ScalarUints]; DecodeScalar(s, 0, v);
Nat256.MulAddTo(u, v, t);
byte[] result = new byte[ScalarBytes * 2];
for (int i = 0; i < t.Length; ++i)
{
Encode32(t[i], result, i * 4);
}
return ReduceScalar(result);
}
private static bool CheckContextVar(byte[] ctx, byte phflag)
{
return ctx == null && phflag == 0x00
|| ctx != null && ctx.Length < 256;
}
private static int CheckPoint(int[] x, int[] y)
{
int[] t = F.Create();
int[] u = F.Create();
int[] v = F.Create();
F.Sqr(x, u);
F.Sqr(y, v);
F.Mul(u, v, t);
F.Sub(v, u, v);
F.Mul(t, C_d, t);
F.AddOne(t);
F.Sub(t, v, t);
F.Normalize(t);
return F.IsZero(t);
}
private static int CheckPoint(int[] x, int[] y, int[] z)
{
int[] t = F.Create();
int[] u = F.Create();
int[] v = F.Create();
int[] w = F.Create();
F.Sqr(x, u);
F.Sqr(y, v);
F.Sqr(z, w);
F.Mul(u, v, t);
F.Sub(v, u, v);
F.Mul(v, w, v);
F.Sqr(w, w);
F.Mul(t, C_d, t);
F.Add(t, w, t);
F.Sub(t, v, t);
F.Normalize(t);
return F.IsZero(t);
}
private static bool CheckPointVar(byte[] p)
{
uint[] t = new uint[CoordUints];
Decode32(p, 0, t, 0, CoordUints);
t[CoordUints - 1] &= 0x7FFFFFFFU;
return !Nat256.Gte(t, P);
}
private static bool CheckScalarVar(byte[] s, uint[] n)
{
DecodeScalar(s, 0, n);
return !Nat256.Gte(n, L);
}
private static byte[] Copy(byte[] buf, int off, int len)
{
byte[] result = new byte[len];
Array.Copy(buf, off, result, 0, len);
return result;
}
private static IDigest CreateDigest()
{
return new Sha512Digest();
}
public static IDigest CreatePrehash()
{
return CreateDigest();
}
private static uint Decode24(byte[] bs, int off)
{
uint n = bs[off];
n |= (uint)bs[++off] << 8;
n |= (uint)bs[++off] << 16;
return n;
}
private static uint Decode32(byte[] bs, int off)
{
uint n = bs[off];
n |= (uint)bs[++off] << 8;
n |= (uint)bs[++off] << 16;
n |= (uint)bs[++off] << 24;
return n;
}
#if NETCOREAPP2_1_OR_GREATER || NETSTANDARD2_1_OR_GREATER
private static uint Decode32(ReadOnlySpan bs)
{
uint n = bs[0];
n |= (uint)bs[1] << 8;
n |= (uint)bs[2] << 16;
n |= (uint)bs[3] << 24;
return n;
}
#endif
private static void Decode32(byte[] bs, int bsOff, uint[] n, int nOff, int nLen)
{
for (int i = 0; i < nLen; ++i)
{
n[nOff + i] = Decode32(bs, bsOff + i * 4);
}
}
#if NETCOREAPP2_1_OR_GREATER || NETSTANDARD2_1_OR_GREATER
private static void Decode32(ReadOnlySpan bs, Span n)
{
for (int i = 0; i < n.Length; ++i)
{
n[i] = Decode32(bs[(i * 4)..]);
}
}
#endif
private static bool DecodePointVar(byte[] p, int pOff, bool negate, ref PointAffine r)
{
byte[] py = Copy(p, pOff, PointBytes);
if (!CheckPointVar(py))
return false;
int x_0 = (py[PointBytes - 1] & 0x80) >> 7;
py[PointBytes - 1] &= 0x7F;
F.Decode(py, 0, r.y);
int[] u = F.Create();
int[] v = F.Create();
F.Sqr(r.y, u);
F.Mul(C_d, u, v);
F.SubOne(u);
F.AddOne(v);
if (!F.SqrtRatioVar(u, v, r.x))
return false;
F.Normalize(r.x);
if (x_0 == 1 && F.IsZeroVar(r.x))
return false;
if (negate ^ (x_0 != (r.x[0] & 1)))
{
F.Negate(r.x, r.x);
}
return true;
}
private static void DecodeScalar(byte[] k, int kOff, uint[] n)
{
Decode32(k, kOff, n, 0, ScalarUints);
}
#if NETCOREAPP2_1_OR_GREATER || NETSTANDARD2_1_OR_GREATER
private static void DecodeScalar(ReadOnlySpan k, Span n)
{
Decode32(k, n[..ScalarUints]);
}
#endif
private static void Dom2(IDigest d, byte phflag, byte[] ctx)
{
if (ctx != null)
{
int n = Dom2Prefix.Length;
byte[] t = new byte[n + 2 + ctx.Length];
Dom2Prefix.CopyTo(t, 0);
t[n] = phflag;
t[n + 1] = (byte)ctx.Length;
ctx.CopyTo(t, n + 2);
d.BlockUpdate(t, 0, t.Length);
}
}
private static void Encode24(uint n, byte[] bs, int off)
{
bs[off] = (byte)(n);
bs[++off] = (byte)(n >> 8);
bs[++off] = (byte)(n >> 16);
}
private static void Encode32(uint n, byte[] bs, int off)
{
bs[off] = (byte)(n);
bs[++off] = (byte)(n >> 8);
bs[++off] = (byte)(n >> 16);
bs[++off] = (byte)(n >> 24);
}
private static void Encode56(ulong n, byte[] bs, int off)
{
Encode32((uint)n, bs, off);
Encode24((uint)(n >> 32), bs, off + 4);
}
private static int EncodePoint(ref PointAccum p, byte[] r, int rOff)
{
#if NETCOREAPP2_1_OR_GREATER || NETSTANDARD2_1_OR_GREATER
return EncodePoint(ref p, r.AsSpan(rOff));
#else
int[] x = F.Create();
int[] y = F.Create();
F.Inv(p.z, y);
F.Mul(p.x, y, x);
F.Mul(p.y, y, y);
F.Normalize(x);
F.Normalize(y);
int result = CheckPoint(x, y);
F.Encode(y, r, rOff);
r[rOff + PointBytes - 1] |= (byte)((x[0] & 1) << 7);
return result;
#endif
}
#if NETCOREAPP2_1_OR_GREATER || NETSTANDARD2_1_OR_GREATER
private static int EncodePoint(ref PointAccum p, Span r)
{
int[] x = F.Create();
int[] y = F.Create();
F.Inv(p.z, y);
F.Mul(p.x, y, x);
F.Mul(p.y, y, y);
F.Normalize(x);
F.Normalize(y);
int result = CheckPoint(x, y);
F.Encode(y, r);
r[PointBytes - 1] |= (byte)((x[0] & 1) << 7);
return result;
}
#endif
public static void GeneratePrivateKey(SecureRandom random, byte[] k)
{
if (k.Length != SecretKeySize)
throw new ArgumentException(nameof(k));
random.NextBytes(k);
}
#if NETCOREAPP2_1_OR_GREATER || NETSTANDARD2_1_OR_GREATER
public static void GeneratePrivateKey(SecureRandom random, Span k)
{
if (k.Length != SecretKeySize)
throw new ArgumentException(nameof(k));
random.NextBytes(k);
}
#endif
public static void GeneratePublicKey(byte[] sk, int skOff, byte[] pk, int pkOff)
{
#if NETCOREAPP2_1_OR_GREATER || NETSTANDARD2_1_OR_GREATER
GeneratePublicKey(sk.AsSpan(skOff), pk.AsSpan(pkOff));
#else
IDigest d = CreateDigest();
byte[] h = new byte[d.GetDigestSize()];
d.BlockUpdate(sk, skOff, SecretKeySize);
d.DoFinal(h, 0);
byte[] s = new byte[ScalarBytes];
PruneScalar(h, 0, s);
ScalarMultBaseEncoded(s, pk, pkOff);
#endif
}
#if NETCOREAPP2_1_OR_GREATER || NETSTANDARD2_1_OR_GREATER
public static void GeneratePublicKey(ReadOnlySpan sk, Span pk)
{
IDigest d = CreateDigest();
Span h = stackalloc byte[d.GetDigestSize()];
d.BlockUpdate(sk[..SecretKeySize]);
d.DoFinal(h);
Span s = stackalloc byte[ScalarBytes];
PruneScalar(h, s);
ScalarMultBaseEncoded(s, pk);
}
#endif
#if NETCOREAPP2_1_OR_GREATER || NETSTANDARD2_1_OR_GREATER
private static uint GetWindow4(ReadOnlySpan x, int n)
#else
private static uint GetWindow4(uint[] x, int n)
#endif
{
int w = (int)((uint)n >> 3), b = (n & 7) << 2;
return (x[w] >> b) & 15U;
}
private static sbyte[] GetWnafVar(uint[] n, int width)
{
Debug.Assert(n[ScalarUints - 1] <= L[ScalarUints - 1]);
Debug.Assert(2 <= width && width <= 8);
uint[] t = new uint[ScalarUints * 2];
{
uint c = 0;
int tPos = t.Length, i = ScalarUints;
while (--i >= 0)
{
uint next = n[i];
t[--tPos] = (next >> 16) | (c << 16);
t[--tPos] = c = next;
}
}
sbyte[] ws = new sbyte[253];
int lead = 32 - width;
uint carry = 0U;
int j = 0;
for (int i = 0; i < t.Length; ++i, j -= 16)
{
uint word = t[i];
while (j < 16)
{
uint word16 = word >> j;
uint bit = word16 & 1U;
if (bit == carry)
{
++j;
continue;
}
uint digit = (word16 | 1U) << lead;
carry = digit >> 31;
ws[(i << 4) + j] = (sbyte)((int)digit >> lead);
j += width;
}
}
Debug.Assert(carry == 0);
return ws;
}
private static void ImplSign(IDigest d, byte[] h, byte[] s, byte[] pk, int pkOff, byte[] ctx, byte phflag,
byte[] m, int mOff, int mLen, byte[] sig, int sigOff)
{
Dom2(d, phflag, ctx);
d.BlockUpdate(h, ScalarBytes, ScalarBytes);
d.BlockUpdate(m, mOff, mLen);
d.DoFinal(h, 0);
byte[] r = ReduceScalar(h);
byte[] R = new byte[PointBytes];
ScalarMultBaseEncoded(r, R, 0);
Dom2(d, phflag, ctx);
d.BlockUpdate(R, 0, PointBytes);
d.BlockUpdate(pk, pkOff, PointBytes);
d.BlockUpdate(m, mOff, mLen);
d.DoFinal(h, 0);
byte[] k = ReduceScalar(h);
byte[] S = CalculateS(r, k, s);
Array.Copy(R, 0, sig, sigOff, PointBytes);
Array.Copy(S, 0, sig, sigOff + PointBytes, ScalarBytes);
}
private static void ImplSign(byte[] sk, int skOff, byte[] ctx, byte phflag, byte[] m, int mOff, int mLen,
byte[] sig, int sigOff)
{
if (!CheckContextVar(ctx, phflag))
throw new ArgumentException("ctx");
IDigest d = CreateDigest();
byte[] h = new byte[d.GetDigestSize()];
d.BlockUpdate(sk, skOff, SecretKeySize);
d.DoFinal(h, 0);
byte[] s = new byte[ScalarBytes];
PruneScalar(h, 0, s);
byte[] pk = new byte[PointBytes];
ScalarMultBaseEncoded(s, pk, 0);
ImplSign(d, h, s, pk, 0, ctx, phflag, m, mOff, mLen, sig, sigOff);
}
private static void ImplSign(byte[] sk, int skOff, byte[] pk, int pkOff, byte[] ctx, byte phflag, byte[] m,
int mOff, int mLen, byte[] sig, int sigOff)
{
if (!CheckContextVar(ctx, phflag))
throw new ArgumentException("ctx");
IDigest d = CreateDigest();
byte[] h = new byte[d.GetDigestSize()];
d.BlockUpdate(sk, skOff, SecretKeySize);
d.DoFinal(h, 0);
byte[] s = new byte[ScalarBytes];
PruneScalar(h, 0, s);
ImplSign(d, h, s, pk, pkOff, ctx, phflag, m, mOff, mLen, sig, sigOff);
}
private static bool ImplVerify(byte[] sig, int sigOff, byte[] pk, int pkOff, byte[] ctx, byte phflag, byte[] m,
int mOff, int mLen)
{
if (!CheckContextVar(ctx, phflag))
throw new ArgumentException("ctx");
byte[] R = Copy(sig, sigOff, PointBytes);
byte[] S = Copy(sig, sigOff + PointBytes, ScalarBytes);
if (!CheckPointVar(R))
return false;
uint[] nS = new uint[ScalarUints];
if (!CheckScalarVar(S, nS))
return false;
Init(out PointAffine pA);
if (!DecodePointVar(pk, pkOff, true, ref pA))
return false;
IDigest d = CreateDigest();
byte[] h = new byte[d.GetDigestSize()];
Dom2(d, phflag, ctx);
d.BlockUpdate(R, 0, PointBytes);
d.BlockUpdate(pk, pkOff, PointBytes);
d.BlockUpdate(m, mOff, mLen);
d.DoFinal(h, 0);
byte[] k = ReduceScalar(h);
uint[] nA = new uint[ScalarUints];
DecodeScalar(k, 0, nA);
Init(out PointAccum pR);
ScalarMultStrausVar(nS, nA, ref pA, ref pR);
byte[] check = new byte[PointBytes];
return 0 != EncodePoint(ref pR, check, 0) && Arrays.AreEqual(check, R);
}
private static void Init(out PointAccum r)
{
r.x = F.Create();
r.y = F.Create();
r.z = F.Create();
r.u = F.Create();
r.v = F.Create();
}
private static void Init(out PointAffine r)
{
r.x = F.Create();
r.y = F.Create();
}
private static void Init(out PointExtended r)
{
r.x = F.Create();
r.y = F.Create();
r.z = F.Create();
r.t = F.Create();
}
private static void Init(out PointPrecomp r)
{
r.ymx_h = F.Create();
r.ypx_h = F.Create();
r.xyd = F.Create();
}
private static void Init(out PointPrecompZ r)
{
r.ymx_h = F.Create();
r.ypx_h = F.Create();
r.xyd = F.Create();
r.z = F.Create();
}
private static void Init(out PointTemp r)
{
r.r0 = F.Create();
r.r1 = F.Create();
}
private static void InvertDoubleZs(PointExtended[] points)
{
int count = points.Length;
int[] cs = F.CreateTable(count);
int[] u = F.Create();
F.Copy(points[0].z, 0, u, 0);
F.Copy(u, 0, cs, 0);
int i = 0;
while (++i < count)
{
F.Mul(u, points[i].z, u);
F.Copy(u, 0, cs, i * F.Size);
}
F.Add(u, u, u);
F.InvVar(u, u);
--i;
int[] t = F.Create();
while (i > 0)
{
int j = i--;
F.Copy(cs, i * F.Size, t, 0);
F.Mul(t, u, t);
F.Mul(u, points[j].z, u);
F.Copy(t, 0, points[j].z, 0);
}
F.Copy(u, 0, points[0].z, 0);
}
private static bool IsNeutralElementVar(int[] x, int[] y)
{
return F.IsZeroVar(x) && F.IsOneVar(y);
}
private static bool IsNeutralElementVar(int[] x, int[] y, int[] z)
{
return F.IsZeroVar(x) && F.AreEqualVar(y, z);
}
private static void PointAdd(ref PointExtended p, ref PointExtended q, ref PointExtended r, ref PointTemp t)
{
// p may ref the same point as r (or q), but q may not ref the same point as r.
Debug.Assert(q.x != r.x & q.y != r.y && q.z != r.z && q.t != r.t);
int[] a = r.x;
int[] b = r.y;
int[] c = t.r0;
int[] d = t.r1;
int[] e = a;
int[] f = c;
int[] g = d;
int[] h = b;
F.Apm(p.y, p.x, b, a);
F.Apm(q.y, q.x, d, c);
F.Mul(a, c, a);
F.Mul(b, d, b);
F.Mul(p.t, q.t, c);
F.Mul(c, C_d2, c);
F.Add(p.z, p.z, d);
F.Mul(d, q.z, d);
F.Apm(b, a, h, e);
F.Apm(d, c, g, f);
F.Mul(e, h, r.t);
F.Mul(f, g, r.z);
F.Mul(e, f, r.x);
F.Mul(h, g, r.y);
}
private static void PointAdd(ref PointPrecomp p, ref PointAccum r, ref PointTemp t)
{
int[] a = r.x;
int[] b = r.y;
int[] c = t.r0;
int[] e = r.u;
int[] f = a;
int[] g = b;
int[] h = r.v;
F.Apm(r.y, r.x, b, a);
F.Mul(a, p.ymx_h, a);
F.Mul(b, p.ypx_h, b);
F.Mul(r.u, r.v, c);
F.Mul(c, p.xyd, c);
F.Apm(b, a, h, e);
F.Apm(r.z, c, g, f);
F.Mul(f, g, r.z);
F.Mul(f, e, r.x);
F.Mul(g, h, r.y);
}
private static void PointAdd(ref PointPrecompZ p, ref PointAccum r, ref PointTemp t)
{
int[] a = r.x;
int[] b = r.y;
int[] c = t.r0;
int[] d = r.z;
int[] e = r.u;
int[] f = a;
int[] g = b;
int[] h = r.v;
F.Apm(r.y, r.x, b, a);
F.Mul(a, p.ymx_h, a);
F.Mul(b, p.ypx_h, b);
F.Mul(r.u, r.v, c);
F.Mul(c, p.xyd, c);
F.Mul(r.z, p.z, d);
F.Apm(b, a, h, e);
F.Apm(d, c, g, f);
F.Mul(f, g, r.z);
F.Mul(f, e, r.x);
F.Mul(g, h, r.y);
}
private static void PointAddVar(bool negate, ref PointPrecomp p, ref PointAccum r, ref PointTemp t)
{
int[] a = r.x;
int[] b = r.y;
int[] c = t.r0;
int[] e = r.u;
int[] f = a;
int[] g = b;
int[] h = r.v;
int[] na, nb;
if (negate)
{
na = b; nb = a;
}
else
{
na = a; nb = b;
}
int[] nf = na, ng = nb;
F.Apm(r.y, r.x, b, a);
F.Mul(na, p.ymx_h, na);
F.Mul(nb, p.ypx_h, nb);
F.Mul(r.u, r.v, c);
F.Mul(c, p.xyd, c);
F.Apm(b, a, h, e);
F.Apm(r.z, c, ng, nf);
F.Mul(f, g, r.z);
F.Mul(f, e, r.x);
F.Mul(g, h, r.y);
}
private static void PointAddVar(bool negate, ref PointPrecompZ p, ref PointAccum r, ref PointTemp t)
{
int[] a = r.x;
int[] b = r.y;
int[] c = t.r0;
int[] d = r.z;
int[] e = r.u;
int[] f = a;
int[] g = b;
int[] h = r.v;
int[] na, nb;
if (negate)
{
na = b; nb = a;
}
else
{
na = a; nb = b;
}
int[] nf = na, ng = nb;
F.Apm(r.y, r.x, b, a);
F.Mul(na, p.ymx_h, na);
F.Mul(nb, p.ypx_h, nb);
F.Mul(r.u, r.v, c);
F.Mul(c, p.xyd, c);
F.Mul(r.z, p.z, d);
F.Apm(b, a, h, e);
F.Apm(d, c, ng, nf);
F.Mul(f, g, r.z);
F.Mul(f, e, r.x);
F.Mul(g, h, r.y);
}
private static void PointCopy(ref PointAccum p, ref PointExtended r)
{
F.Copy(p.x, 0, r.x, 0);
F.Copy(p.y, 0, r.y, 0);
F.Copy(p.z, 0, r.z, 0);
F.Mul(p.u, p.v, r.t);
}
private static void PointCopy(ref PointAffine p, ref PointExtended r)
{
F.Copy(p.x, 0, r.x, 0);
F.Copy(p.y, 0, r.y, 0);
F.One(r.z);
F.Mul(p.x, p.y, r.t);
}
private static void PointCopy(ref PointExtended p, ref PointPrecompZ r)
{
// To avoid halving x and y, we double t and z instead.
F.Apm(p.y, p.x, r.ypx_h, r.ymx_h);
F.Mul(p.t, C_d2, r.xyd);
F.Add(p.z, p.z, r.z);
}
private static void PointDouble(ref PointAccum r)
{
int[] a = r.x;
int[] b = r.y;
int[] c = r.z;
int[] e = r.u;
int[] f = a;
int[] g = b;
int[] h = r.v;
F.Add(r.x, r.y, e);
F.Sqr(r.x, a);
F.Sqr(r.y, b);
F.Sqr(r.z, c);
F.Add(c, c, c);
F.Apm(a, b, h, g);
F.Sqr(e, e);
F.Sub(h, e, e);
F.Add(c, g, f);
F.Carry(f); // Probably unnecessary, but keep until better bounds analysis available
F.Mul(f, g, r.z);
F.Mul(f, e, r.x);
F.Mul(g, h, r.y);
}
private static void PointLookup(int block, int index, ref PointPrecomp p)
{
Debug.Assert(0 <= block && block < PrecompBlocks);
Debug.Assert(0 <= index && index < PrecompPoints);
int off = block * PrecompPoints * 3 * F.Size;
for (int i = 0; i < PrecompPoints; ++i)
{
int cond = ((i ^ index) - 1) >> 31;
F.CMov(cond, PrecompBaseComb, off, p.ymx_h, 0); off += F.Size;
F.CMov(cond, PrecompBaseComb, off, p.ypx_h, 0); off += F.Size;
F.CMov(cond, PrecompBaseComb, off, p.xyd , 0); off += F.Size;
}
}
#if NETCOREAPP2_1_OR_GREATER || NETSTANDARD2_1_OR_GREATER
private static void PointLookupZ(ReadOnlySpan x, int n, ReadOnlySpan table, ref PointPrecompZ r)
{
// TODO This method is currently hard-coded to 4-bit windows and 8 precomputed points
uint w = GetWindow4(x, n);
int sign = (int)(w >> (4 - 1)) ^ 1;
int abs = ((int)w ^ -sign) & 7;
Debug.Assert(sign == 0 || sign == 1);
Debug.Assert(0 <= abs && abs < 8);
for (int i = 0; i < 8; ++i)
{
int cond = ((i ^ abs) - 1) >> 31;
F.CMov(cond, table, r.ymx_h); table = table[F.Size..];
F.CMov(cond, table, r.ypx_h); table = table[F.Size..];
F.CMov(cond, table, r.xyd); table = table[F.Size..];
F.CMov(cond, table, r.z); table = table[F.Size..];
}
F.CSwap(sign, r.ymx_h, r.ypx_h);
F.CNegate(sign, r.xyd);
}
#else
private static void PointLookupZ(uint[] x, int n, int[] table, ref PointPrecompZ r)
{
// TODO This method is currently hard-coded to 4-bit windows and 8 precomputed points
uint w = GetWindow4(x, n);
int sign = (int)(w >> (4 - 1)) ^ 1;
int abs = ((int)w ^ -sign) & 7;
Debug.Assert(sign == 0 || sign == 1);
Debug.Assert(0 <= abs && abs < 8);
for (int i = 0, off = 0; i < 8; ++i)
{
int cond = ((i ^ abs) - 1) >> 31;
F.CMov(cond, table, off, r.ymx_h, 0); off += F.Size;
F.CMov(cond, table, off, r.ypx_h, 0); off += F.Size;
F.CMov(cond, table, off, r.xyd , 0); off += F.Size;
F.CMov(cond, table, off, r.z , 0); off += F.Size;
}
F.CSwap(sign, r.ymx_h, r.ypx_h);
F.CNegate(sign, r.xyd);
}
#endif
private static void PointPrecompute(ref PointAffine p, PointExtended[] points, int count, ref PointTemp t)
{
Debug.Assert(count > 0);
Init(out points[0]);
PointCopy(ref p, ref points[0]);
Init(out PointExtended d);
PointAdd(ref points[0], ref points[0], ref d, ref t);
for (int i = 1; i < count; ++i)
{
Init(out points[i]);
PointAdd(ref points[i - 1], ref d, ref points[i], ref t);
}
}
private static int[] PointPrecomputeZ(ref PointAffine p, int count, ref PointTemp t)
{
Debug.Assert(count > 0);
Init(out PointExtended q);
PointCopy(ref p, ref q);
Init(out PointExtended d);
PointAdd(ref q, ref q, ref d, ref t);
Init(out PointPrecompZ r);
int[] table = F.CreateTable(count * 4);
int off = 0;
int i = 0;
for (;;)
{
PointCopy(ref q, ref r);
F.Copy(r.ymx_h, 0, table, off); off += F.Size;
F.Copy(r.ypx_h, 0, table, off); off += F.Size;
F.Copy(r.xyd , 0, table, off); off += F.Size;
F.Copy(r.z , 0, table, off); off += F.Size;
if (++i == count)
break;
PointAdd(ref q, ref d, ref q, ref t);
}
return table;
}
private static void PointPrecomputeZ(ref PointAffine p, PointPrecompZ[] points, int count, ref PointTemp t)
{
Debug.Assert(count > 0);
Init(out PointExtended q);
PointCopy(ref p, ref q);
Init(out PointExtended d);
PointAdd(ref q, ref q, ref d, ref t);
int i = 0;
for (;;)
{
ref PointPrecompZ r = ref points[i];
Init(out r);
PointCopy(ref q, ref r);
if (++i == count)
break;
PointAdd(ref q, ref d, ref q, ref t);
}
}
private static void PointSetNeutral(ref PointAccum p)
{
F.Zero(p.x);
F.One(p.y);
F.One(p.z);
F.Zero(p.u);
F.One(p.v);
}
public static void Precompute()
{
lock (PrecompLock)
{
if (PrecompBaseWnaf != null && PrecompBaseComb != null)
return;
int wnafPoints = 1 << (WnafWidthBase - 2);
int combPoints = PrecompBlocks * PrecompPoints;
int totalPoints = wnafPoints + combPoints;
PointExtended[] points = new PointExtended[totalPoints];
Init(out PointTemp t);
Init(out PointAffine b);
F.Copy(B_x, 0, b.x, 0);
F.Copy(B_y, 0, b.y, 0);
PointPrecompute(ref b, points, wnafPoints, ref t);
Init(out PointAccum p);
F.Copy(B_x, 0, p.x, 0);
F.Copy(B_y, 0, p.y, 0);
F.One(p.z);
F.Copy(B_x, 0, p.u, 0);
F.Copy(B_y, 0, p.v, 0);
int pointsIndex = wnafPoints;
PointExtended[] toothPowers = new PointExtended[PrecompTeeth];
for (int tooth = 0; tooth < PrecompTeeth; ++tooth)
{
Init(out toothPowers[tooth]);
}
Init(out PointExtended u);
for (int block = 0; block < PrecompBlocks; ++block)
{
ref PointExtended sum = ref points[pointsIndex++];
Init(out sum);
for (int tooth = 0; tooth < PrecompTeeth; ++tooth)
{
if (tooth == 0)
{
PointCopy(ref p, ref sum);
}
else
{
PointCopy(ref p, ref u);
PointAdd(ref sum, ref u, ref sum, ref t);
}
PointDouble(ref p);
PointCopy(ref p, ref toothPowers[tooth]);
if (block + tooth != PrecompBlocks + PrecompTeeth - 2)
{
for (int spacing = 1; spacing < PrecompSpacing; ++spacing)
{
PointDouble(ref p);
}
}
}
F.Negate(sum.x, sum.x);
F.Negate(sum.t, sum.t);
for (int tooth = 0; tooth < (PrecompTeeth - 1); ++tooth)
{
int size = 1 << tooth;
for (int j = 0; j < size; ++j, ++pointsIndex)
{
Init(out points[pointsIndex]);
PointAdd(ref points[pointsIndex - size], ref toothPowers[tooth], ref points[pointsIndex],
ref t);
}
}
}
Debug.Assert(pointsIndex == totalPoints);
// Set each z coordinate to 1/(2.z) to avoid calculating halves of x, y in the following code
InvertDoubleZs(points);
PrecompBaseWnaf = new PointPrecomp[wnafPoints];
for (int i = 0; i < wnafPoints; ++i)
{
ref PointExtended q = ref points[i];
ref PointPrecomp r = ref PrecompBaseWnaf[i];
Init(out r);
// Calculate x/2 and y/2 (because the z value holds half the inverse; see above).
F.Mul(q.x, q.z, q.x);
F.Mul(q.y, q.z, q.y);
// y/2 +/- x/2
F.Apm(q.y, q.x, r.ypx_h, r.ymx_h);
// x/2 * y/2 * (4.d) == x.y.d
F.Mul(q.x, q.y, r.xyd);
F.Mul(r.xyd, C_d4, r.xyd);
F.Normalize(r.ymx_h);
F.Normalize(r.ypx_h);
F.Normalize(r.xyd);
}
PrecompBaseComb = F.CreateTable(combPoints * 3);
Init(out PointPrecomp s);
int off = 0;
for (int i = wnafPoints; i < totalPoints; ++i)
{
ref PointExtended q = ref points[i];
// Calculate x/2 and y/2 (because the z value holds half the inverse; see above).
F.Mul(q.x, q.z, q.x);
F.Mul(q.y, q.z, q.y);
// y/2 +/- x/2
F.Apm(q.y, q.x, s.ypx_h, s.ymx_h);
// x/2 * y/2 * (4.d) == x.y.d
F.Mul(q.x, q.y, s.xyd);
F.Mul(s.xyd, C_d4, s.xyd);
F.Normalize(s.ymx_h);
F.Normalize(s.ypx_h);
F.Normalize(s.xyd);
F.Copy(s.ymx_h, 0, PrecompBaseComb, off); off += F.Size;
F.Copy(s.ypx_h, 0, PrecompBaseComb, off); off += F.Size;
F.Copy(s.xyd , 0, PrecompBaseComb, off); off += F.Size;
}
Debug.Assert(off == PrecompBaseComb.Length);
}
}
private static void PruneScalar(byte[] n, int nOff, byte[] r)
{
Array.Copy(n, nOff, r, 0, ScalarBytes);
r[0] &= 0xF8;
r[ScalarBytes - 1] &= 0x7F;
r[ScalarBytes - 1] |= 0x40;
}
#if NETCOREAPP2_1_OR_GREATER || NETSTANDARD2_1_OR_GREATER
private static void PruneScalar(ReadOnlySpan n, Span r)
{
n[..ScalarBytes].CopyTo(r);
r[0] &= 0xF8;
r[ScalarBytes - 1] &= 0x7F;
r[ScalarBytes - 1] |= 0x40;
}
#endif
private static byte[] ReduceScalar(byte[] n)
{
long x00 = Decode32(n, 0) & M32L; // x00:32/--
long x01 = (Decode24(n, 4) << 4) & M32L; // x01:28/--
long x02 = Decode32(n, 7) & M32L; // x02:32/--
long x03 = (Decode24(n, 11) << 4) & M32L; // x03:28/--
long x04 = Decode32(n, 14) & M32L; // x04:32/--
long x05 = (Decode24(n, 18) << 4) & M32L; // x05:28/--
long x06 = Decode32(n, 21) & M32L; // x06:32/--
long x07 = (Decode24(n, 25) << 4) & M32L; // x07:28/--
long x08 = Decode32(n, 28) & M32L; // x08:32/--
long x09 = (Decode24(n, 32) << 4) & M32L; // x09:28/--
long x10 = Decode32(n, 35) & M32L; // x10:32/--
long x11 = (Decode24(n, 39) << 4) & M32L; // x11:28/--
long x12 = Decode32(n, 42) & M32L; // x12:32/--
long x13 = (Decode24(n, 46) << 4) & M32L; // x13:28/--
long x14 = Decode32(n, 49) & M32L; // x14:32/--
long x15 = (Decode24(n, 53) << 4) & M32L; // x15:28/--
long x16 = Decode32(n, 56) & M32L; // x16:32/--
long x17 = (Decode24(n, 60) << 4) & M32L; // x17:28/--
long x18 = n[63] & M08L; // x18:08/--
long t;
//x18 += (x17 >> 28); x17 &= M28L;
x09 -= x18 * L0; // x09:34/28
x10 -= x18 * L1; // x10:33/30
x11 -= x18 * L2; // x11:35/28
x12 -= x18 * L3; // x12:32/31
x13 -= x18 * L4; // x13:28/21
x17 += (x16 >> 28); x16 &= M28L; // x17:28/--, x16:28/--
x08 -= x17 * L0; // x08:54/32
x09 -= x17 * L1; // x09:52/51
x10 -= x17 * L2; // x10:55/34
x11 -= x17 * L3; // x11:51/36
x12 -= x17 * L4; // x12:41/--
//x16 += (x15 >> 28); x15 &= M28L;
x07 -= x16 * L0; // x07:54/28
x08 -= x16 * L1; // x08:54/53
x09 -= x16 * L2; // x09:55/53
x10 -= x16 * L3; // x10:55/52
x11 -= x16 * L4; // x11:51/41
x15 += (x14 >> 28); x14 &= M28L; // x15:28/--, x14:28/--
x06 -= x15 * L0; // x06:54/32
x07 -= x15 * L1; // x07:54/53
x08 -= x15 * L2; // x08:56/--
x09 -= x15 * L3; // x09:55/54
x10 -= x15 * L4; // x10:55/53
//x14 += (x13 >> 28); x13 &= M28L;
x05 -= x14 * L0; // x05:54/28
x06 -= x14 * L1; // x06:54/53
x07 -= x14 * L2; // x07:56/--
x08 -= x14 * L3; // x08:56/51
x09 -= x14 * L4; // x09:56/--
x13 += (x12 >> 28); x12 &= M28L; // x13:28/22, x12:28/--
x04 -= x13 * L0; // x04:54/49
x05 -= x13 * L1; // x05:54/53
x06 -= x13 * L2; // x06:56/--
x07 -= x13 * L3; // x07:56/52
x08 -= x13 * L4; // x08:56/52
x12 += (x11 >> 28); x11 &= M28L; // x12:28/24, x11:28/--
x03 -= x12 * L0; // x03:54/49
x04 -= x12 * L1; // x04:54/51
x05 -= x12 * L2; // x05:56/--
x06 -= x12 * L3; // x06:56/52
x07 -= x12 * L4; // x07:56/53
x11 += (x10 >> 28); x10 &= M28L; // x11:29/--, x10:28/--
x02 -= x11 * L0; // x02:55/32
x03 -= x11 * L1; // x03:55/--
x04 -= x11 * L2; // x04:56/55
x05 -= x11 * L3; // x05:56/52
x06 -= x11 * L4; // x06:56/53
x10 += (x09 >> 28); x09 &= M28L; // x10:29/--, x09:28/--
x01 -= x10 * L0; // x01:55/28
x02 -= x10 * L1; // x02:55/54
x03 -= x10 * L2; // x03:56/55
x04 -= x10 * L3; // x04:57/--
x05 -= x10 * L4; // x05:56/53
x08 += (x07 >> 28); x07 &= M28L; // x08:56/53, x07:28/--
x09 += (x08 >> 28); x08 &= M28L; // x09:29/25, x08:28/--
t = (x08 >> 27) & 1L;
x09 += t; // x09:29/26
x00 -= x09 * L0; // x00:55/53
x01 -= x09 * L1; // x01:55/54
x02 -= x09 * L2; // x02:57/--
x03 -= x09 * L3; // x03:57/--
x04 -= x09 * L4; // x04:57/42
x01 += (x00 >> 28); x00 &= M28L;
x02 += (x01 >> 28); x01 &= M28L;
x03 += (x02 >> 28); x02 &= M28L;
x04 += (x03 >> 28); x03 &= M28L;
x05 += (x04 >> 28); x04 &= M28L;
x06 += (x05 >> 28); x05 &= M28L;
x07 += (x06 >> 28); x06 &= M28L;
x08 += (x07 >> 28); x07 &= M28L;
x09 = (x08 >> 28); x08 &= M28L;
x09 -= t;
Debug.Assert(x09 == 0L || x09 == -1L);
x00 += x09 & L0;
x01 += x09 & L1;
x02 += x09 & L2;
x03 += x09 & L3;
x04 += x09 & L4;
x01 += (x00 >> 28); x00 &= M28L;
x02 += (x01 >> 28); x01 &= M28L;
x03 += (x02 >> 28); x02 &= M28L;
x04 += (x03 >> 28); x03 &= M28L;
x05 += (x04 >> 28); x04 &= M28L;
x06 += (x05 >> 28); x05 &= M28L;
x07 += (x06 >> 28); x06 &= M28L;
x08 += (x07 >> 28); x07 &= M28L;
byte[] r = new byte[ScalarBytes];
Encode56((ulong)(x00 | (x01 << 28)), r, 0);
Encode56((ulong)(x02 | (x03 << 28)), r, 7);
Encode56((ulong)(x04 | (x05 << 28)), r, 14);
Encode56((ulong)(x06 | (x07 << 28)), r, 21);
Encode32((uint)x08, r, 28);
return r;
}
private static void ScalarMult(byte[] k, ref PointAffine p, ref PointAccum r)
{
#if NETCOREAPP2_1_OR_GREATER || NETSTANDARD2_1_OR_GREATER
ScalarMult(k.AsSpan(), ref p, ref r);
#else
uint[] n = new uint[ScalarUints];
DecodeScalar(k, 0, n);
// Recode the scalar into signed-digit form
{
uint c1 = Nat.CAdd(ScalarUints, ~(int)n[0] & 1, n, L, n); Debug.Assert(c1 == 0U);
uint c2 = Nat.ShiftDownBit(ScalarUints, n, 1U); Debug.Assert(c2 == (1U << 31));
}
Init(out PointPrecompZ q);
Init(out PointTemp t);
int[] table = PointPrecomputeZ(ref p, 8, ref t);
PointSetNeutral(ref r);
int w = 63;
for (;;)
{
PointLookupZ(n, w, table, ref q);
PointAdd(ref q, ref r, ref t);
if (--w < 0)
break;
for (int i = 0; i < 4; ++i)
{
PointDouble(ref r);
}
}
#endif
}
#if NETCOREAPP2_1_OR_GREATER || NETSTANDARD2_1_OR_GREATER
private static void ScalarMult(ReadOnlySpan k, ref PointAffine p, ref PointAccum r)
{
Span n = stackalloc uint[ScalarUints];
DecodeScalar(k, n);
// Recode the scalar into signed-digit form
{
uint c1 = Nat.CAdd(ScalarUints, ~(int)n[0] & 1, n, L, n); Debug.Assert(c1 == 0U);
uint c2 = Nat.ShiftDownBit(ScalarUints, n, 1U); Debug.Assert(c2 == (1U << 31));
}
Init(out PointPrecompZ q);
Init(out PointTemp t);
int[] table = PointPrecomputeZ(ref p, 8, ref t);
PointSetNeutral(ref r);
int w = 63;
for (;;)
{
PointLookupZ(n, w, table, ref q);
PointAdd(ref q, ref r, ref t);
if (--w < 0)
break;
for (int i = 0; i < 4; ++i)
{
PointDouble(ref r);
}
}
}
#endif
private static void ScalarMultBase(byte[] k, ref PointAccum r)
{
#if NETCOREAPP2_1_OR_GREATER || NETSTANDARD2_1_OR_GREATER
ScalarMultBase(k.AsSpan(), ref r);
#else
// Equivalent (but much slower)
//Init(out PointAffine p);
//F.Copy(B_x, 0, p.x, 0);
//F.Copy(B_y, 0, p.y, 0);
//ScalarMult(k, ref p, ref r);
Precompute();
uint[] n = new uint[ScalarUints];
DecodeScalar(k, 0, n);
// Recode the scalar into signed-digit form, then group comb bits in each block
{
uint c1 = Nat.CAdd(ScalarUints, ~(int)n[0] & 1, n, L, n); Debug.Assert(c1 == 0U);
uint c2 = Nat.ShiftDownBit(ScalarUints, n, 1U); Debug.Assert(c2 == (1U << 31));
/*
* Because we are using 4 teeth and 8 spacing, each limb of n corresponds to one of the 8 blocks.
* Therefore we can efficiently group the bits for each comb position using a (double) shuffle.
*/
for (int i = 0; i < ScalarUints; ++i)
{
n[i] = Interleave.Shuffle2(n[i]);
}
}
Init(out PointPrecomp p);
Init(out PointTemp t);
PointSetNeutral(ref r);
int resultSign = 0;
int cOff = (PrecompSpacing - 1) * PrecompTeeth;
for (;;)
{
for (int b = 0; b < PrecompBlocks; ++b)
{
uint w = n[b] >> cOff;
int sign = (int)(w >> (PrecompTeeth - 1)) & 1;
int abs = ((int)w ^ -sign) & PrecompMask;
Debug.Assert(sign == 0 || sign == 1);
Debug.Assert(0 <= abs && abs < PrecompPoints);
PointLookup(b, abs, ref p);
F.CNegate(resultSign ^ sign, r.x);
F.CNegate(resultSign ^ sign, r.u);
resultSign = sign;
PointAdd(ref p, ref r, ref t);
}
if ((cOff -= PrecompTeeth) < 0)
break;
PointDouble(ref r);
}
F.CNegate(resultSign, r.x);
F.CNegate(resultSign, r.u);
#endif
}
#if NETCOREAPP2_1_OR_GREATER || NETSTANDARD2_1_OR_GREATER
private static void ScalarMultBase(ReadOnlySpan k, ref PointAccum r)
{
// Equivalent (but much slower)
//Init(out PointAffine p);
//F.Copy(B_x, 0, p.x, 0);
//F.Copy(B_y, 0, p.y, 0);
//ScalarMult(k, ref p, ref r);
Precompute();
Span n = stackalloc uint[ScalarUints];
DecodeScalar(k, n);
// Recode the scalar into signed-digit form, then group comb bits in each block
{
uint c1 = Nat.CAdd(ScalarUints, ~(int)n[0] & 1, n, L, n); Debug.Assert(c1 == 0U);
uint c2 = Nat.ShiftDownBit(ScalarUints, n, 1U); Debug.Assert(c2 == (1U << 31));
/*
* Because we are using 4 teeth and 8 spacing, each limb of n corresponds to one of the 8 blocks.
* Therefore we can efficiently group the bits for each comb position using a (double) shuffle.
*/
for (int i = 0; i < ScalarUints; ++i)
{
n[i] = Interleave.Shuffle2(n[i]);
}
}
Init(out PointPrecomp p);
Init(out PointTemp t);
PointSetNeutral(ref r);
int resultSign = 0;
int cOff = (PrecompSpacing - 1) * PrecompTeeth;
for (;;)
{
for (int b = 0; b < PrecompBlocks; ++b)
{
uint w = n[b] >> cOff;
int sign = (int)(w >> (PrecompTeeth - 1)) & 1;
int abs = ((int)w ^ -sign) & PrecompMask;
Debug.Assert(sign == 0 || sign == 1);
Debug.Assert(0 <= abs && abs < PrecompPoints);
PointLookup(b, abs, ref p);
F.CNegate(resultSign ^ sign, r.x);
F.CNegate(resultSign ^ sign, r.u);
resultSign = sign;
PointAdd(ref p, ref r, ref t);
}
if ((cOff -= PrecompTeeth) < 0)
break;
PointDouble(ref r);
}
F.CNegate(resultSign, r.x);
F.CNegate(resultSign, r.u);
}
#endif
private static void ScalarMultBaseEncoded(byte[] k, byte[] r, int rOff)
{
#if NETCOREAPP2_1_OR_GREATER || NETSTANDARD2_1_OR_GREATER
ScalarMultBaseEncoded(k.AsSpan(), r.AsSpan(rOff));
#else
Init(out PointAccum p);
ScalarMultBase(k, ref p);
if (0 == EncodePoint(ref p, r, rOff))
throw new InvalidOperationException();
#endif
}
#if NETCOREAPP2_1_OR_GREATER || NETSTANDARD2_1_OR_GREATER
private static void ScalarMultBaseEncoded(ReadOnlySpan k, Span r)
{
Init(out PointAccum p);
ScalarMultBase(k, ref p);
if (0 == EncodePoint(ref p, r))
throw new InvalidOperationException();
}
#endif
internal static void ScalarMultBaseYZ(byte[] k, int kOff, int[] y, int[] z)
{
#if NETCOREAPP2_1_OR_GREATER || NETSTANDARD2_1_OR_GREATER
ScalarMultBaseYZ(k.AsSpan(kOff), y.AsSpan(), z.AsSpan());
#else
byte[] n = new byte[ScalarBytes];
PruneScalar(k, kOff, n);
Init(out PointAccum p);
ScalarMultBase(n, ref p);
if (0 == CheckPoint(p.x, p.y, p.z))
throw new InvalidOperationException();
F.Copy(p.y, 0, y, 0);
F.Copy(p.z, 0, z, 0);
#endif
}
#if NETCOREAPP2_1_OR_GREATER || NETSTANDARD2_1_OR_GREATER
internal static void ScalarMultBaseYZ(ReadOnlySpan k, Span y, Span z)
{
Span n = stackalloc byte[ScalarBytes];
PruneScalar(k, n);
Init(out PointAccum p);
ScalarMultBase(n, ref p);
if (0 == CheckPoint(p.x, p.y, p.z))
throw new InvalidOperationException();
F.Copy(p.y, y);
F.Copy(p.z, z);
}
#endif
private static void ScalarMultOrderVar(ref PointAffine p, ref PointAccum r)
{
sbyte[] ws_p = GetWnafVar(L, WnafWidth);
int count = 1 << (WnafWidth - 2);
PointPrecompZ[] tp = new PointPrecompZ[count];
Init(out PointTemp t);
PointPrecomputeZ(ref p, tp, count, ref t);
PointSetNeutral(ref r);
for (int bit = 252;;)
{
int wp = ws_p[bit];
if (wp != 0)
{
int sign = wp >> 31;
int index = (wp ^ sign) >> 1;
PointAddVar(sign != 0, ref tp[index], ref r, ref t);
}
if (--bit < 0)
break;
PointDouble(ref r);
}
}
private static void ScalarMultStrausVar(uint[] nb, uint[] np, ref PointAffine p, ref PointAccum r)
{
Precompute();
sbyte[] ws_b = GetWnafVar(nb, WnafWidthBase);
sbyte[] ws_p = GetWnafVar(np, WnafWidth);
int count = 1 << (WnafWidth - 2);
PointPrecompZ[] tp = new PointPrecompZ[count];
Init(out PointTemp t);
PointPrecomputeZ(ref p, tp, count, ref t);
PointSetNeutral(ref r);
for (int bit = 252;;)
{
int wb = ws_b[bit];
if (wb != 0)
{
int sign = wb >> 31;
int index = (wb ^ sign) >> 1;
PointAddVar(sign != 0, ref PrecompBaseWnaf[index], ref r, ref t);
}
int wp = ws_p[bit];
if (wp != 0)
{
int sign = wp >> 31;
int index = (wp ^ sign) >> 1;
PointAddVar(sign != 0, ref tp[index], ref r, ref t);
}
if (--bit < 0)
break;
PointDouble(ref r);
}
}
public static void Sign(byte[] sk, int skOff, byte[] m, int mOff, int mLen, byte[] sig, int sigOff)
{
byte[] ctx = null;
byte phflag = 0x00;
ImplSign(sk, skOff, ctx, phflag, m, mOff, mLen, sig, sigOff);
}
public static void Sign(byte[] sk, int skOff, byte[] pk, int pkOff, byte[] m, int mOff, int mLen, byte[] sig, int sigOff)
{
byte[] ctx = null;
byte phflag = 0x00;
ImplSign(sk, skOff, pk, pkOff, ctx, phflag, m, mOff, mLen, sig, sigOff);
}
public static void Sign(byte[] sk, int skOff, byte[] ctx, byte[] m, int mOff, int mLen, byte[] sig, int sigOff)
{
byte phflag = 0x00;
ImplSign(sk, skOff, ctx, phflag, m, mOff, mLen, sig, sigOff);
}
public static void Sign(byte[] sk, int skOff, byte[] pk, int pkOff, byte[] ctx, byte[] m, int mOff, int mLen, byte[] sig, int sigOff)
{
byte phflag = 0x00;
ImplSign(sk, skOff, pk, pkOff, ctx, phflag, m, mOff, mLen, sig, sigOff);
}
public static void SignPrehash(byte[] sk, int skOff, byte[] ctx, byte[] ph, int phOff, byte[] sig, int sigOff)
{
byte phflag = 0x01;
ImplSign(sk, skOff, ctx, phflag, ph, phOff, PrehashSize, sig, sigOff);
}
public static void SignPrehash(byte[] sk, int skOff, byte[] pk, int pkOff, byte[] ctx, byte[] ph, int phOff, byte[] sig, int sigOff)
{
byte phflag = 0x01;
ImplSign(sk, skOff, pk, pkOff, ctx, phflag, ph, phOff, PrehashSize, sig, sigOff);
}
public static void SignPrehash(byte[] sk, int skOff, byte[] ctx, IDigest ph, byte[] sig, int sigOff)
{
byte[] m = new byte[PrehashSize];
if (PrehashSize != ph.DoFinal(m, 0))
throw new ArgumentException("ph");
byte phflag = 0x01;
ImplSign(sk, skOff, ctx, phflag, m, 0, m.Length, sig, sigOff);
}
public static void SignPrehash(byte[] sk, int skOff, byte[] pk, int pkOff, byte[] ctx, IDigest ph, byte[] sig, int sigOff)
{
byte[] m = new byte[PrehashSize];
if (PrehashSize != ph.DoFinal(m, 0))
throw new ArgumentException("ph");
byte phflag = 0x01;
ImplSign(sk, skOff, pk, pkOff, ctx, phflag, m, 0, m.Length, sig, sigOff);
}
public static bool ValidatePublicKeyFull(byte[] pk, int pkOff)
{
Init(out PointAffine p);
if (!DecodePointVar(pk, pkOff, false, ref p))
return false;
F.Normalize(p.x);
F.Normalize(p.y);
if (IsNeutralElementVar(p.x, p.y))
return false;
Init(out PointAccum r);
ScalarMultOrderVar(ref p, ref r);
F.Normalize(r.x);
F.Normalize(r.y);
F.Normalize(r.z);
return IsNeutralElementVar(r.x, r.y, r.z);
}
public static bool ValidatePublicKeyPartial(byte[] pk, int pkOff)
{
Init(out PointAffine p);
return DecodePointVar(pk, pkOff, false, ref p);
}
public static bool Verify(byte[] sig, int sigOff, byte[] pk, int pkOff, byte[] m, int mOff, int mLen)
{
byte[] ctx = null;
byte phflag = 0x00;
return ImplVerify(sig, sigOff, pk, pkOff, ctx, phflag, m, mOff, mLen);
}
public static bool Verify(byte[] sig, int sigOff, byte[] pk, int pkOff, byte[] ctx, byte[] m, int mOff, int mLen)
{
byte phflag = 0x00;
return ImplVerify(sig, sigOff, pk, pkOff, ctx, phflag, m, mOff, mLen);
}
public static bool VerifyPrehash(byte[] sig, int sigOff, byte[] pk, int pkOff, byte[] ctx, byte[] ph, int phOff)
{
byte phflag = 0x01;
return ImplVerify(sig, sigOff, pk, pkOff, ctx, phflag, ph, phOff, PrehashSize);
}
public static bool VerifyPrehash(byte[] sig, int sigOff, byte[] pk, int pkOff, byte[] ctx, IDigest ph)
{
byte[] m = new byte[PrehashSize];
if (PrehashSize != ph.DoFinal(m, 0))
throw new ArgumentException("ph");
byte phflag = 0x01;
return ImplVerify(sig, sigOff, pk, pkOff, ctx, phflag, m, 0, m.Length);
}
}
}