using System;
using Org.BouncyCastle.Utilities.Encoders;
namespace Org.BouncyCastle.Math.EC.Custom.Sec
{
internal class SecT571R1Curve
: AbstractF2mCurve
{
private const int SecT571R1_DEFAULT_COORDS = COORD_LAMBDA_PROJECTIVE;
protected readonly SecT571R1Point m_infinity;
internal static readonly SecT571FieldElement SecT571R1_B = new SecT571FieldElement(
new BigInteger(1, Hex.Decode("02F40E7E2221F295DE297117B7F3D62F5C6A97FFCB8CEFF1CD6BA8CE4A9A18AD84FFABBD8EFA59332BE7AD6756A66E294AFD185A78FF12AA520E4DE739BACA0C7FFEFF7F2955727A")));
internal static readonly SecT571FieldElement SecT571R1_B_SQRT = (SecT571FieldElement)SecT571R1_B.Sqrt();
public SecT571R1Curve()
: base(571, 2, 5, 10)
{
this.m_infinity = new SecT571R1Point(this, null, null);
this.m_a = FromBigInteger(BigInteger.One);
this.m_b = SecT571R1_B;
this.m_order = new BigInteger(1, Hex.Decode("03FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE661CE18FF55987308059B186823851EC7DD9CA1161DE93D5174D66E8382E9BB2FE84E47"));
this.m_cofactor = BigInteger.Two;
this.m_coord = SecT571R1_DEFAULT_COORDS;
}
protected override ECCurve CloneCurve()
{
return new SecT571R1Curve();
}
public override bool SupportsCoordinateSystem(int coord)
{
switch (coord)
{
case COORD_LAMBDA_PROJECTIVE:
return true;
default:
return false;
}
}
public override ECPoint Infinity
{
get { return m_infinity; }
}
public override int FieldSize
{
get { return 571; }
}
public override ECFieldElement FromBigInteger(BigInteger x)
{
return new SecT571FieldElement(x);
}
protected internal override ECPoint CreateRawPoint(ECFieldElement x, ECFieldElement y, bool withCompression)
{
return new SecT571R1Point(this, x, y, withCompression);
}
protected internal override ECPoint CreateRawPoint(ECFieldElement x, ECFieldElement y, ECFieldElement[] zs, bool withCompression)
{
return new SecT571R1Point(this, x, y, zs, withCompression);
}
public override bool IsKoblitz
{
get { return false; }
}
/**
* Decompresses a compressed point P = (xp, yp) (X9.62 s 4.2.2).
*
* @param yTilde
* ~yp, an indication bit for the decompression of yp.
* @param X1
* The field element xp.
* @return the decompressed point.
*/
protected override ECPoint DecompressPoint(int yTilde, BigInteger X1)
{
ECFieldElement x = FromBigInteger(X1), y = null;
if (x.IsZero)
{
// y = B.Sqrt();
y = SecT571R1_B_SQRT;
}
else
{
ECFieldElement beta = x.Square().Invert().Multiply(B).Add(A).Add(x);
ECFieldElement z = SolveQuadraticEquation(beta);
if (z != null)
{
if (z.TestBitZero() != (yTilde == 1))
{
z = z.AddOne();
}
switch (this.CoordinateSystem)
{
case COORD_LAMBDA_AFFINE:
case COORD_LAMBDA_PROJECTIVE:
{
y = z.Add(x);
break;
}
default:
{
y = z.Multiply(x);
break;
}
}
}
}
if (y == null)
throw new ArgumentException("Invalid point compression");
return this.CreateRawPoint(x, y, true);
}
/**
* Solves a quadratic equation z2 + z = beta
(X9.62
* D.1.6) The other solution is z + 1
.
*
* @param beta
* The value to solve the quadratic equation for.
* @return the solution for z2 + z = beta
or
* null
if no solution exists.
*/
private ECFieldElement SolveQuadraticEquation(ECFieldElement beta)
{
if (beta.IsZero)
return beta;
ECFieldElement zeroElement = FromBigInteger(BigInteger.Zero);
ECFieldElement z = null;
ECFieldElement gamma = null;
Random rand = new Random();
do
{
ECFieldElement t = FromBigInteger(new BigInteger(571, rand));
z = zeroElement;
ECFieldElement w = beta;
for (int i = 1; i < 571; i++)
{
ECFieldElement w2 = w.Square();
z = z.Square().Add(w2.Multiply(t));
w = w2.Add(beta);
}
if (!w.IsZero)
return null;
gamma = z.Square().Add(z);
}
while (gamma.IsZero);
return z;
}
public virtual int M
{
get { return 571; }
}
public virtual bool IsTrinomial
{
get { return false; }
}
public virtual int K1
{
get { return 2; }
}
public virtual int K2
{
get { return 5; }
}
public virtual int K3
{
get { return 10; }
}
}
}