using System; using System.Diagnostics; using Org.BouncyCastle.Math.Raw; namespace Org.BouncyCastle.Math.EC.Custom.Sec { internal class SecT193Field { private const ulong M01 = 1UL; private const ulong M49 = ulong.MaxValue >> 15; public static void Add(ulong[] x, ulong[] y, ulong[] z) { z[0] = x[0] ^ y[0]; z[1] = x[1] ^ y[1]; z[2] = x[2] ^ y[2]; z[3] = x[3] ^ y[3]; } public static void AddExt(ulong[] xx, ulong[] yy, ulong[] zz) { zz[0] = xx[0] ^ yy[0]; zz[1] = xx[1] ^ yy[1]; zz[2] = xx[2] ^ yy[2]; zz[3] = xx[3] ^ yy[3]; zz[4] = xx[4] ^ yy[4]; zz[5] = xx[5] ^ yy[5]; zz[6] = xx[6] ^ yy[6]; } public static void AddOne(ulong[] x, ulong[] z) { z[0] = x[0] ^ 1UL; z[1] = x[1]; z[2] = x[2]; z[3] = x[3]; } private static void AddTo(ulong[] x, ulong[] z) { z[0] ^= x[0]; z[1] ^= x[1]; z[2] ^= x[2]; z[3] ^= x[3]; } public static ulong[] FromBigInteger(BigInteger x) { return Nat.FromBigInteger64(193, x); } public static void HalfTrace(ulong[] x, ulong[] z) { ulong[] tt = Nat256.CreateExt64(); Nat256.Copy64(x, z); for (int i = 1; i < 193; i += 2) { ImplSquare(z, tt); Reduce(tt, z); ImplSquare(z, tt); Reduce(tt, z); AddTo(x, z); } } public static void Invert(ulong[] x, ulong[] z) { if (Nat256.IsZero64(x)) throw new InvalidOperationException(); // Itoh-Tsujii inversion with bases { 2, 3 } ulong[] t0 = Nat256.Create64(); ulong[] t1 = Nat256.Create64(); Square(x, t0); // 3 | 192 SquareN(t0, 1, t1); Multiply(t0, t1, t0); SquareN(t1, 1, t1); Multiply(t0, t1, t0); // 2 | 64 SquareN(t0, 3, t1); Multiply(t0, t1, t0); // 2 | 32 SquareN(t0, 6, t1); Multiply(t0, t1, t0); // 2 | 16 SquareN(t0, 12, t1); Multiply(t0, t1, t0); // 2 | 8 SquareN(t0, 24, t1); Multiply(t0, t1, t0); // 2 | 4 SquareN(t0, 48, t1); Multiply(t0, t1, t0); // 2 | 2 SquareN(t0, 96, t1); Multiply(t0, t1, z); } public static void Multiply(ulong[] x, ulong[] y, ulong[] z) { ulong[] tt = Nat256.CreateExt64(); ImplMultiply(x, y, tt); Reduce(tt, z); } public static void MultiplyAddToExt(ulong[] x, ulong[] y, ulong[] zz) { ulong[] tt = Nat256.CreateExt64(); ImplMultiply(x, y, tt); AddExt(zz, tt, zz); } public static void Reduce(ulong[] xx, ulong[] z) { ulong x0 = xx[0], x1 = xx[1], x2 = xx[2], x3 = xx[3], x4 = xx[4], x5 = xx[5], x6 = xx[6]; x2 ^= (x6 << 63); x3 ^= (x6 >> 1) ^ (x6 << 14); x4 ^= (x6 >> 50); x1 ^= (x5 << 63); x2 ^= (x5 >> 1) ^ (x5 << 14); x3 ^= (x5 >> 50); x0 ^= (x4 << 63); x1 ^= (x4 >> 1) ^ (x4 << 14); x2 ^= (x4 >> 50); ulong t = x3 >> 1; z[0] = x0 ^ t ^ (t << 15); z[1] = x1 ^ (t >> 49); z[2] = x2; z[3] = x3 & M01; } public static void Reduce63(ulong[] z, int zOff) { ulong z3 = z[zOff + 3], t = z3 >> 1; z[zOff ] ^= t ^ (t << 15); z[zOff + 1] ^= (t >> 49); z[zOff + 3] = z3 & M01; } public static void Sqrt(ulong[] x, ulong[] z) { ulong u0, u1; u0 = Interleave.Unshuffle(x[0]); u1 = Interleave.Unshuffle(x[1]); ulong e0 = (u0 & 0x00000000FFFFFFFFUL) | (u1 << 32); ulong c0 = (u0 >> 32) | (u1 & 0xFFFFFFFF00000000UL); u0 = Interleave.Unshuffle(x[2]); ulong e1 = (u0 & 0x00000000FFFFFFFFUL) ^ (x[3] << 32); ulong c1 = (u0 >> 32); z[0] = e0 ^ (c0 << 8); z[1] = e1 ^ (c1 << 8) ^ (c0 >> 56) ^ (c0 << 33); z[2] = (c1 >> 56) ^ (c1 << 33) ^ (c0 >> 31); z[3] = (c1 >> 31); } public static void Square(ulong[] x, ulong[] z) { ulong[] tt = Nat256.CreateExt64(); ImplSquare(x, tt); Reduce(tt, z); } public static void SquareAddToExt(ulong[] x, ulong[] zz) { ulong[] tt = Nat256.CreateExt64(); ImplSquare(x, tt); AddExt(zz, tt, zz); } public static void SquareN(ulong[] x, int n, ulong[] z) { Debug.Assert(n > 0); ulong[] tt = Nat256.CreateExt64(); ImplSquare(x, tt); Reduce(tt, z); while (--n > 0) { ImplSquare(z, tt); Reduce(tt, z); } } public static uint Trace(ulong[] x) { // Non-zero-trace bits: 0 return (uint)(x[0]) & 1U; } protected static void ImplCompactExt(ulong[] zz) { ulong z0 = zz[0], z1 = zz[1], z2 = zz[2], z3 = zz[3], z4 = zz[4], z5 = zz[5], z6 = zz[6], z7 = zz[7]; zz[0] = z0 ^ (z1 << 49); zz[1] = (z1 >> 15) ^ (z2 << 34); zz[2] = (z2 >> 30) ^ (z3 << 19); zz[3] = (z3 >> 45) ^ (z4 << 4) ^ (z5 << 53); zz[4] = (z4 >> 60) ^ (z6 << 38) ^ (z5 >> 11); zz[5] = (z6 >> 26) ^ (z7 << 23); zz[6] = (z7 >> 41); zz[7] = 0; } protected static void ImplExpand(ulong[] x, ulong[] z) { ulong x0 = x[0], x1 = x[1], x2 = x[2], x3 = x[3]; z[0] = x0 & M49; z[1] = ((x0 >> 49) ^ (x1 << 15)) & M49; z[2] = ((x1 >> 34) ^ (x2 << 30)) & M49; z[3] = ((x2 >> 19) ^ (x3 << 45)); } protected static void ImplMultiply(ulong[] x, ulong[] y, ulong[] zz) { /* * "Two-level seven-way recursion" as described in "Batch binary Edwards", Daniel J. Bernstein. */ ulong[] f = new ulong[4], g = new ulong[4]; ImplExpand(x, f); ImplExpand(y, g); ImplMulwAcc(f[0], g[0], zz, 0); ImplMulwAcc(f[1], g[1], zz, 1); ImplMulwAcc(f[2], g[2], zz, 2); ImplMulwAcc(f[3], g[3], zz, 3); // U *= (1 - t^n) for (int i = 5; i > 0; --i) { zz[i] ^= zz[i - 1]; } ImplMulwAcc(f[0] ^ f[1], g[0] ^ g[1], zz, 1); ImplMulwAcc(f[2] ^ f[3], g[2] ^ g[3], zz, 3); // V *= (1 - t^2n) for (int i = 7; i > 1; --i) { zz[i] ^= zz[i - 2]; } // Double-length recursion { ulong c0 = f[0] ^ f[2], c1 = f[1] ^ f[3]; ulong d0 = g[0] ^ g[2], d1 = g[1] ^ g[3]; ImplMulwAcc(c0 ^ c1, d0 ^ d1, zz, 3); ulong[] t = new ulong[3]; ImplMulwAcc(c0, d0, t, 0); ImplMulwAcc(c1, d1, t, 1); ulong t0 = t[0], t1 = t[1], t2 = t[2]; zz[2] ^= t0; zz[3] ^= t0 ^ t1; zz[4] ^= t2 ^ t1; zz[5] ^= t2; } ImplCompactExt(zz); } protected static void ImplMulwAcc(ulong x, ulong y, ulong[] z, int zOff) { Debug.Assert(x >> 49 == 0); Debug.Assert(y >> 49 == 0); ulong[] u = new ulong[8]; //u[0] = 0; u[1] = y; u[2] = u[1] << 1; u[3] = u[2] ^ y; u[4] = u[2] << 1; u[5] = u[4] ^ y; u[6] = u[3] << 1; u[7] = u[6] ^ y; uint j = (uint)x; ulong g, h = 0, l = u[j & 7] ^ (u[(j >> 3) & 7] << 3); int k = 36; do { j = (uint)(x >> k); g = u[j & 7] ^ u[(j >> 3) & 7] << 3 ^ u[(j >> 6) & 7] << 6 ^ u[(j >> 9) & 7] << 9 ^ u[(j >> 12) & 7] << 12; l ^= (g << k); h ^= (g >> -k); } while ((k -= 15) > 0); Debug.Assert(h >> 33 == 0); z[zOff ] ^= l & M49; z[zOff + 1] ^= (l >> 49) ^ (h << 15); } protected static void ImplSquare(ulong[] x, ulong[] zz) { Interleave.Expand64To128(x[0], zz, 0); Interleave.Expand64To128(x[1], zz, 2); Interleave.Expand64To128(x[2], zz, 4); zz[6] = (x[3] & M01); } } }