using System; using Org.BouncyCastle.Utilities.Encoders; namespace Org.BouncyCastle.Math.EC.Custom.Sec { internal class SecT131R2Curve : AbstractF2mCurve { private const int SecT131R2_DEFAULT_COORDS = COORD_LAMBDA_PROJECTIVE; protected readonly SecT131R2Point m_infinity; public SecT131R2Curve() : base(131, 2, 3, 8) { this.m_infinity = new SecT131R2Point(this, null, null); this.m_a = FromBigInteger(new BigInteger(1, Hex.Decode("03E5A88919D7CAFCBF415F07C2176573B2"))); this.m_b = FromBigInteger(new BigInteger(1, Hex.Decode("04B8266A46C55657AC734CE38F018F2192"))); this.m_order = new BigInteger(1, Hex.Decode("0400000000000000016954A233049BA98F")); this.m_cofactor = BigInteger.Two; this.m_coord = SecT131R2_DEFAULT_COORDS; } protected override ECCurve CloneCurve() { return new SecT131R2Curve(); } public override bool SupportsCoordinateSystem(int coord) { switch (coord) { case COORD_LAMBDA_PROJECTIVE: return true; default: return false; } } public override int FieldSize { get { return 131; } } public override ECFieldElement FromBigInteger(BigInteger x) { return new SecT131FieldElement(x); } protected internal override ECPoint CreateRawPoint(ECFieldElement x, ECFieldElement y, bool withCompression) { return new SecT131R2Point(this, x, y, withCompression); } protected internal override ECPoint CreateRawPoint(ECFieldElement x, ECFieldElement y, ECFieldElement[] zs, bool withCompression) { return new SecT131R2Point(this, x, y, zs, withCompression); } public override ECPoint Infinity { get { return m_infinity; } } public override bool IsKoblitz { get { return false; } } /** * Decompresses a compressed point P = (xp, yp) (X9.62 s 4.2.2). * * @param yTilde * ~yp, an indication bit for the decompression of yp. * @param X1 * The field element xp. * @return the decompressed point. */ protected override ECPoint DecompressPoint(int yTilde, BigInteger X1) { ECFieldElement x = FromBigInteger(X1), y = null; if (x.IsZero) { y = B.Sqrt(); } else { ECFieldElement beta = x.Square().Invert().Multiply(B).Add(A).Add(x); ECFieldElement z = SolveQuadraticEquation(beta); if (z != null) { if (z.TestBitZero() != (yTilde == 1)) { z = z.AddOne(); } switch (this.CoordinateSystem) { case COORD_LAMBDA_AFFINE: case COORD_LAMBDA_PROJECTIVE: { y = z.Add(x); break; } default: { y = z.Multiply(x); break; } } } } if (y == null) throw new ArgumentException("Invalid point compression"); return this.CreateRawPoint(x, y, true); } /** * Solves a quadratic equation z2 + z = beta(X9.62 * D.1.6) The other solution is z + 1. * * @param beta * The value to solve the quadratic equation for. * @return the solution for z2 + z = beta or * null if no solution exists. */ private ECFieldElement SolveQuadraticEquation(ECFieldElement beta) { if (beta.IsZero) { return beta; } ECFieldElement zeroElement = FromBigInteger(BigInteger.Zero); ECFieldElement z = null; ECFieldElement gamma = null; Random rand = new Random(); do { ECFieldElement t = FromBigInteger(new BigInteger(131, rand)); z = zeroElement; ECFieldElement w = beta; for (int i = 1; i < 131; i++) { ECFieldElement w2 = w.Square(); z = z.Square().Add(w2.Multiply(t)); w = w2.Add(beta); } if (!w.IsZero) return null; gamma = z.Square().Add(z); } while (gamma.IsZero); return z; } public virtual int M { get { return 131; } } public virtual bool IsTrinomial { get { return false; } } public virtual int K1 { get { return 2; } } public virtual int K2 { get { return 3; } } public virtual int K3 { get { return 8; } } } }