using System;
using Org.BouncyCastle.Utilities.Encoders;
namespace Org.BouncyCastle.Math.EC.Custom.Sec
{
internal class SecT131R2Curve
: AbstractF2mCurve
{
private const int SecT131R2_DEFAULT_COORDS = COORD_LAMBDA_PROJECTIVE;
protected readonly SecT131R2Point m_infinity;
public SecT131R2Curve()
: base(131, 2, 3, 8)
{
this.m_infinity = new SecT131R2Point(this, null, null);
this.m_a = FromBigInteger(new BigInteger(1, Hex.Decode("03E5A88919D7CAFCBF415F07C2176573B2")));
this.m_b = FromBigInteger(new BigInteger(1, Hex.Decode("04B8266A46C55657AC734CE38F018F2192")));
this.m_order = new BigInteger(1, Hex.Decode("0400000000000000016954A233049BA98F"));
this.m_cofactor = BigInteger.Two;
this.m_coord = SecT131R2_DEFAULT_COORDS;
}
protected override ECCurve CloneCurve()
{
return new SecT131R2Curve();
}
public override bool SupportsCoordinateSystem(int coord)
{
switch (coord)
{
case COORD_LAMBDA_PROJECTIVE:
return true;
default:
return false;
}
}
public override int FieldSize
{
get { return 131; }
}
public override ECFieldElement FromBigInteger(BigInteger x)
{
return new SecT131FieldElement(x);
}
protected internal override ECPoint CreateRawPoint(ECFieldElement x, ECFieldElement y, bool withCompression)
{
return new SecT131R2Point(this, x, y, withCompression);
}
protected internal override ECPoint CreateRawPoint(ECFieldElement x, ECFieldElement y, ECFieldElement[] zs, bool withCompression)
{
return new SecT131R2Point(this, x, y, zs, withCompression);
}
public override ECPoint Infinity
{
get { return m_infinity; }
}
public override bool IsKoblitz
{
get { return false; }
}
/**
* Decompresses a compressed point P = (xp, yp) (X9.62 s 4.2.2).
*
* @param yTilde
* ~yp, an indication bit for the decompression of yp.
* @param X1
* The field element xp.
* @return the decompressed point.
*/
protected override ECPoint DecompressPoint(int yTilde, BigInteger X1)
{
ECFieldElement x = FromBigInteger(X1), y = null;
if (x.IsZero)
{
y = B.Sqrt();
}
else
{
ECFieldElement beta = x.Square().Invert().Multiply(B).Add(A).Add(x);
ECFieldElement z = SolveQuadraticEquation(beta);
if (z != null)
{
if (z.TestBitZero() != (yTilde == 1))
{
z = z.AddOne();
}
switch (this.CoordinateSystem)
{
case COORD_LAMBDA_AFFINE:
case COORD_LAMBDA_PROJECTIVE:
{
y = z.Add(x);
break;
}
default:
{
y = z.Multiply(x);
break;
}
}
}
}
if (y == null)
throw new ArgumentException("Invalid point compression");
return this.CreateRawPoint(x, y, true);
}
/**
* Solves a quadratic equation z2 + z = beta
(X9.62
* D.1.6) The other solution is z + 1
.
*
* @param beta
* The value to solve the quadratic equation for.
* @return the solution for z2 + z = beta
or
* null
if no solution exists.
*/
private ECFieldElement SolveQuadraticEquation(ECFieldElement beta)
{
if (beta.IsZero)
{
return beta;
}
ECFieldElement zeroElement = FromBigInteger(BigInteger.Zero);
ECFieldElement z = null;
ECFieldElement gamma = null;
Random rand = new Random();
do
{
ECFieldElement t = FromBigInteger(new BigInteger(131, rand));
z = zeroElement;
ECFieldElement w = beta;
for (int i = 1; i < 131; i++)
{
ECFieldElement w2 = w.Square();
z = z.Square().Add(w2.Multiply(t));
w = w2.Add(beta);
}
if (!w.IsZero)
return null;
gamma = z.Square().Add(z);
}
while (gamma.IsZero);
return z;
}
public virtual int M
{
get { return 131; }
}
public virtual bool IsTrinomial
{
get { return false; }
}
public virtual int K1
{
get { return 2; }
}
public virtual int K2
{
get { return 3; }
}
public virtual int K3
{
get { return 8; }
}
}
}