using System; using Org.BouncyCastle.Math.Raw; using Org.BouncyCastle.Utilities; namespace Org.BouncyCastle.Math.EC.Custom.Sec { internal class SecT113FieldElement : ECFieldElement { protected internal readonly ulong[] x; public SecT113FieldElement(BigInteger x) { if (x == null || x.SignValue < 0) throw new ArgumentException("value invalid for SecT113FieldElement", "x"); this.x = SecT113Field.FromBigInteger(x); } public SecT113FieldElement() { this.x = Nat128.Create64(); } protected internal SecT113FieldElement(ulong[] x) { this.x = x; } public override bool IsOne { get { return Nat128.IsOne64(x); } } public override bool IsZero { get { return Nat128.IsZero64(x); } } public override bool TestBitZero() { return (x[0] & 1L) != 0L; } public override BigInteger ToBigInteger() { return Nat128.ToBigInteger64(x); } public override string FieldName { get { return "SecT113Field"; } } public override int FieldSize { get { return 113; } } public override ECFieldElement Add(ECFieldElement b) { ulong[] z = Nat128.Create64(); SecT113Field.Add(x, ((SecT113FieldElement)b).x, z); return new SecT113FieldElement(z); } public override ECFieldElement AddOne() { ulong[] z = Nat128.Create64(); SecT113Field.AddOne(x, z); return new SecT113FieldElement(z); } public override ECFieldElement Subtract(ECFieldElement b) { // Addition and Subtraction are the same in F2m return Add(b); } public override ECFieldElement Multiply(ECFieldElement b) { ulong[] z = Nat128.Create64(); SecT113Field.Multiply(x, ((SecT113FieldElement)b).x, z); return new SecT113FieldElement(z); } public override ECFieldElement MultiplyMinusProduct(ECFieldElement b, ECFieldElement x, ECFieldElement y) { return MultiplyPlusProduct(b, x, y); } public override ECFieldElement MultiplyPlusProduct(ECFieldElement b, ECFieldElement x, ECFieldElement y) { ulong[] ax = this.x, bx = ((SecT113FieldElement)b).x; ulong[] xx = ((SecT113FieldElement)x).x, yx = ((SecT113FieldElement)y).x; ulong[] tt = Nat128.CreateExt64(); SecT113Field.MultiplyAddToExt(ax, bx, tt); SecT113Field.MultiplyAddToExt(xx, yx, tt); ulong[] z = Nat128.Create64(); SecT113Field.Reduce(tt, z); return new SecT113FieldElement(z); } public override ECFieldElement Divide(ECFieldElement b) { return Multiply(b.Invert()); } public override ECFieldElement Negate() { return this; } public override ECFieldElement Square() { ulong[] z = Nat128.Create64(); SecT113Field.Square(x, z); return new SecT113FieldElement(z); } public override ECFieldElement SquareMinusProduct(ECFieldElement x, ECFieldElement y) { return SquarePlusProduct(x, y); } public override ECFieldElement SquarePlusProduct(ECFieldElement x, ECFieldElement y) { ulong[] ax = this.x; ulong[] xx = ((SecT113FieldElement)x).x, yx = ((SecT113FieldElement)y).x; ulong[] tt = Nat128.CreateExt64(); SecT113Field.SquareAddToExt(ax, tt); SecT113Field.MultiplyAddToExt(xx, yx, tt); ulong[] z = Nat128.Create64(); SecT113Field.Reduce(tt, z); return new SecT113FieldElement(z); } public override ECFieldElement SquarePow(int pow) { if (pow < 1) return this; ulong[] z = Nat128.Create64(); SecT113Field.SquareN(x, pow, z); return new SecT113FieldElement(z); } public override ECFieldElement Invert() { return new SecT113FieldElement( AbstractF2mCurve.Inverse(113, new int[]{ 9 }, ToBigInteger())); } public override ECFieldElement Sqrt() { return SquarePow(M - 1); } public virtual int Representation { get { return F2mFieldElement.Tpb; } } public virtual int M { get { return 113; } } public virtual int K1 { get { return 9; } } public virtual int K2 { get { return 0; } } public virtual int K3 { get { return 0; } } public override bool Equals(object obj) { return Equals(obj as SecT113FieldElement); } public override bool Equals(ECFieldElement other) { return Equals(other as SecT113FieldElement); } public virtual bool Equals(SecT113FieldElement other) { if (this == other) return true; if (null == other) return false; return Nat128.Eq64(x, other.x); } public override int GetHashCode() { return 113009 ^ Arrays.GetHashCode(x, 0, 2); } } }