using System; using System.Diagnostics; using Org.BouncyCastle.Math.Raw; namespace Org.BouncyCastle.Math.EC.Custom.Sec { internal class SecT113Field { private const ulong M49 = ulong.MaxValue >> 15; private const ulong M57 = ulong.MaxValue >> 7; public static void Add(ulong[] x, ulong[] y, ulong[] z) { z[0] = x[0] ^ y[0]; z[1] = x[1] ^ y[1]; } public static void AddExt(ulong[] xx, ulong[] yy, ulong[] zz) { zz[0] = xx[0] ^ yy[0]; zz[1] = xx[1] ^ yy[1]; zz[2] = xx[2] ^ yy[2]; zz[3] = xx[3] ^ yy[3]; } public static void AddOne(ulong[] x, ulong[] z) { z[0] = x[0] ^ 1UL; z[1] = x[1]; } public static ulong[] FromBigInteger(BigInteger x) { ulong[] z = Nat128.FromBigInteger64(x); Reduce15(z, 0); return z; } public static void Invert(ulong[] x, ulong[] z) { if (Nat128.IsZero64(x)) throw new InvalidOperationException(); // Itoh-Tsujii inversion ulong[] t0 = Nat128.Create64(); ulong[] t1 = Nat128.Create64(); Square(x, t0); Multiply(t0, x, t0); Square(t0, t0); Multiply(t0, x, t0); SquareN(t0, 3, t1); Multiply(t1, t0, t1); Square(t1, t1); Multiply(t1, x, t1); SquareN(t1, 7, t0); Multiply(t0, t1, t0); SquareN(t0, 14, t1); Multiply(t1, t0, t1); SquareN(t1, 28, t0); Multiply(t0, t1, t0); SquareN(t0, 56, t1); Multiply(t1, t0, t1); Square(t1, z); } public static void Multiply(ulong[] x, ulong[] y, ulong[] z) { ulong[] tt = Nat128.CreateExt64(); ImplMultiply(x, y, tt); Reduce(tt, z); } public static void MultiplyAddToExt(ulong[] x, ulong[] y, ulong[] zz) { ulong[] tt = Nat128.CreateExt64(); ImplMultiply(x, y, tt); AddExt(zz, tt, zz); } public static void Reduce(ulong[] xx, ulong[] z) { ulong x0 = xx[0], x1 = xx[1], x2 = xx[2], x3 = xx[3]; x1 ^= (x3 << 15) ^ (x3 << 24); x2 ^= (x3 >> 49) ^ (x3 >> 40); x0 ^= (x2 << 15) ^ (x2 << 24); x1 ^= (x2 >> 49) ^ (x2 >> 40); ulong t = x1 >> 49; z[0] = x0 ^ t ^ (t << 9); z[1] = x1 & M49; } public static void Reduce15(ulong[] z, int zOff) { ulong z1 = z[zOff + 1], t = z1 >> 49; z[zOff ] ^= t ^ (t << 9); z[zOff + 1] = z1 & M49; } public static void Square(ulong[] x, ulong[] z) { ulong[] tt = Nat128.CreateExt64(); ImplSquare(x, tt); Reduce(tt, z); } public static void SquareAddToExt(ulong[] x, ulong[] zz) { ulong[] tt = Nat128.CreateExt64(); ImplSquare(x, tt); AddExt(zz, tt, zz); } public static void SquareN(ulong[] x, int n, ulong[] z) { Debug.Assert(n > 0); ulong[] tt = Nat128.CreateExt64(); ImplSquare(x, tt); Reduce(tt, z); while (--n > 0) { ImplSquare(z, tt); Reduce(tt, z); } } protected static void ImplMultiply(ulong[] x, ulong[] y, ulong[] zz) { /* * "Three-way recursion" as described in "Batch binary Edwards", Daniel J. Bernstein. */ ulong f0 = x[0], f1 = x[1]; f1 = ((f0 >> 57) ^ (f1 << 7)) & M57; f0 &= M57; ulong g0 = y[0], g1 = y[1]; g1 = ((g0 >> 57) ^ (g1 << 7)) & M57; g0 &= M57; ulong[] H = new ulong[6]; ImplMulw(f0, g0, H, 0); // H(0) 57/56 bits ImplMulw(f1, g1, H, 2); // H(INF) 57/54 bits ImplMulw(f0 ^ f1, g0 ^ g1, H, 4); // H(1) 57/56 bits ulong r = H[1] ^ H[2]; ulong z0 = H[0], z3 = H[3], z1 = H[4] ^ z0 ^ r, z2 = H[5] ^ z3 ^ r; zz[0] = z0 ^ (z1 << 57); zz[1] = (z1 >> 7) ^ (z2 << 50); zz[2] = (z2 >> 14) ^ (z3 << 43); zz[3] = (z3 >> 21); } protected static void ImplMulw(ulong x, ulong y, ulong[] z, int zOff) { Debug.Assert(x >> 57 == 0); Debug.Assert(y >> 57 == 0); ulong[] u = new ulong[8]; //u[0] = 0; u[1] = y; u[2] = u[1] << 1; u[3] = u[2] ^ y; u[4] = u[2] << 1; u[5] = u[4] ^ y; u[6] = u[3] << 1; u[7] = u[6] ^ y; uint j = (uint)x; ulong g, h = 0, l = u[j & 7]; int k = 48; do { j = (uint)(x >> k); g = u[j & 7] ^ u[(j >> 3) & 7] << 3 ^ u[(j >> 6) & 7] << 6; l ^= (g << k); h ^= (g >> -k); } while ((k -= 9) > 0); h ^= ((x & 0x0100804020100800UL) & (ulong)(((long)y << 7) >> 63)) >> 8; Debug.Assert(h >> 49 == 0); z[zOff ] = l & M57; z[zOff + 1] = (l >> 57) ^ (h << 7); } protected static void ImplSquare(ulong[] x, ulong[] zz) { Interleave.Expand64To128(x[0], zz, 0); Interleave.Expand64To128(x[1], zz, 2); } } }