using System; using Org.BouncyCastle.Math.Raw; using Org.BouncyCastle.Utilities; using Org.BouncyCastle.Utilities.Encoders; namespace Org.BouncyCastle.Math.EC.Custom.Sec { internal class SecP256K1FieldElement : AbstractFpFieldElement { public static readonly BigInteger Q = new BigInteger(1, Hex.DecodeStrict("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F")); protected internal readonly uint[] x; public SecP256K1FieldElement(BigInteger x) { if (x == null || x.SignValue < 0 || x.CompareTo(Q) >= 0) throw new ArgumentException("value invalid for SecP256K1FieldElement", "x"); this.x = SecP256K1Field.FromBigInteger(x); } public SecP256K1FieldElement() { this.x = Nat256.Create(); } protected internal SecP256K1FieldElement(uint[] x) { this.x = x; } public override bool IsZero { get { return Nat256.IsZero(x); } } public override bool IsOne { get { return Nat256.IsOne(x); } } public override bool TestBitZero() { return Nat256.GetBit(x, 0) == 1; } public override BigInteger ToBigInteger() { return Nat256.ToBigInteger(x); } public override string FieldName { get { return "SecP256K1Field"; } } public override int FieldSize { get { return Q.BitLength; } } public override ECFieldElement Add(ECFieldElement b) { uint[] z = Nat256.Create(); SecP256K1Field.Add(x, ((SecP256K1FieldElement)b).x, z); return new SecP256K1FieldElement(z); } public override ECFieldElement AddOne() { uint[] z = Nat256.Create(); SecP256K1Field.AddOne(x, z); return new SecP256K1FieldElement(z); } public override ECFieldElement Subtract(ECFieldElement b) { uint[] z = Nat256.Create(); SecP256K1Field.Subtract(x, ((SecP256K1FieldElement)b).x, z); return new SecP256K1FieldElement(z); } public override ECFieldElement Multiply(ECFieldElement b) { uint[] z = Nat256.Create(); SecP256K1Field.Multiply(x, ((SecP256K1FieldElement)b).x, z); return new SecP256K1FieldElement(z); } public override ECFieldElement Divide(ECFieldElement b) { //return Multiply(b.Invert()); uint[] z = Nat256.Create(); SecP256K1Field.Inv(((SecP256K1FieldElement)b).x, z); SecP256K1Field.Multiply(z, x, z); return new SecP256K1FieldElement(z); } public override ECFieldElement Negate() { uint[] z = Nat256.Create(); SecP256K1Field.Negate(x, z); return new SecP256K1FieldElement(z); } public override ECFieldElement Square() { uint[] z = Nat256.Create(); SecP256K1Field.Square(x, z); return new SecP256K1FieldElement(z); } public override ECFieldElement Invert() { uint[] z = Nat256.Create(); SecP256K1Field.Inv(x, z); return new SecP256K1FieldElement(z); } /** * return a sqrt root - the routine verifies that the calculation returns the right value - if * none exists it returns null. */ public override ECFieldElement Sqrt() { /* * Raise this element to the exponent 2^254 - 2^30 - 2^7 - 2^6 - 2^5 - 2^4 - 2^2 * * Breaking up the exponent's binary representation into "repunits", we get: * { 223 1s } { 1 0s } { 22 1s } { 4 0s } { 2 1s } { 2 0s} * * Therefore we need an addition chain containing 2, 22, 223 (the lengths of the repunits) * We use: 1, [2], 3, 6, 9, 11, [22], 44, 88, 176, 220, [223] */ uint[] x1 = this.x; if (Nat256.IsZero(x1) || Nat256.IsOne(x1)) return this; uint[] tt0 = Nat256.CreateExt(); uint[] x2 = Nat256.Create(); SecP256K1Field.Square(x1, x2, tt0); SecP256K1Field.Multiply(x2, x1, x2, tt0); uint[] x3 = Nat256.Create(); SecP256K1Field.Square(x2, x3, tt0); SecP256K1Field.Multiply(x3, x1, x3, tt0); uint[] x6 = Nat256.Create(); SecP256K1Field.SquareN(x3, 3, x6, tt0); SecP256K1Field.Multiply(x6, x3, x6, tt0); uint[] x9 = x6; SecP256K1Field.SquareN(x6, 3, x9, tt0); SecP256K1Field.Multiply(x9, x3, x9, tt0); uint[] x11 = x9; SecP256K1Field.SquareN(x9, 2, x11, tt0); SecP256K1Field.Multiply(x11, x2, x11, tt0); uint[] x22 = Nat256.Create(); SecP256K1Field.SquareN(x11, 11, x22, tt0); SecP256K1Field.Multiply(x22, x11, x22, tt0); uint[] x44 = x11; SecP256K1Field.SquareN(x22, 22, x44, tt0); SecP256K1Field.Multiply(x44, x22, x44, tt0); uint[] x88 = Nat256.Create(); SecP256K1Field.SquareN(x44, 44, x88, tt0); SecP256K1Field.Multiply(x88, x44, x88, tt0); uint[] x176 = Nat256.Create(); SecP256K1Field.SquareN(x88, 88, x176, tt0); SecP256K1Field.Multiply(x176, x88, x176, tt0); uint[] x220 = x88; SecP256K1Field.SquareN(x176, 44, x220, tt0); SecP256K1Field.Multiply(x220, x44, x220, tt0); uint[] x223 = x44; SecP256K1Field.SquareN(x220, 3, x223, tt0); SecP256K1Field.Multiply(x223, x3, x223, tt0); uint[] t1 = x223; SecP256K1Field.SquareN(t1, 23, t1, tt0); SecP256K1Field.Multiply(t1, x22, t1, tt0); SecP256K1Field.SquareN(t1, 6, t1, tt0); SecP256K1Field.Multiply(t1, x2, t1, tt0); SecP256K1Field.SquareN(t1, 2, t1, tt0); uint[] t2 = x2; SecP256K1Field.Square(t1, t2, tt0); return Nat256.Eq(x1, t2) ? new SecP256K1FieldElement(t1) : null; } public override bool Equals(object obj) { return Equals(obj as SecP256K1FieldElement); } public override bool Equals(ECFieldElement other) { return Equals(other as SecP256K1FieldElement); } public virtual bool Equals(SecP256K1FieldElement other) { if (this == other) return true; if (null == other) return false; return Nat256.Eq(x, other.x); } public override int GetHashCode() { return Q.GetHashCode() ^ Arrays.GetHashCode(x, 0, 8); } } }