using System; using System.Diagnostics; using Org.BouncyCastle.Crypto.Utilities; using Org.BouncyCastle.Math.Raw; using Org.BouncyCastle.Security; namespace Org.BouncyCastle.Math.EC.Custom.Sec { internal class SecP256K1Field { // 2^256 - 2^32 - 2^9 - 2^8 - 2^7 - 2^6 - 2^4 - 1 private static readonly uint[] P = new uint[]{ 0xFFFFFC2F, 0xFFFFFFFE, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF }; private static readonly uint[] PExt = new uint[]{ 0x000E90A1, 0x000007A2, 0x00000001, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0xFFFFF85E, 0xFFFFFFFD, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF }; private static readonly uint[] PExtInv = new uint[]{ 0xFFF16F5F, 0xFFFFF85D, 0xFFFFFFFE, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0x000007A1, 0x00000002 }; private const uint P7 = 0xFFFFFFFF; private const uint PExt15 = 0xFFFFFFFF; private const uint PInv33 = 0x3D1; public static void Add(uint[] x, uint[] y, uint[] z) { uint c = Nat256.Add(x, y, z); if (c != 0 || (z[7] == P7 && Nat256.Gte(z, P))) { Nat.Add33To(8, PInv33, z); } } public static void AddExt(uint[] xx, uint[] yy, uint[] zz) { uint c = Nat.Add(16, xx, yy, zz); if (c != 0 || (zz[15] == PExt15 && Nat.Gte(16, zz, PExt))) { if (Nat.AddTo(PExtInv.Length, PExtInv, zz) != 0) { Nat.IncAt(16, zz, PExtInv.Length); } } } public static void AddOne(uint[] x, uint[] z) { uint c = Nat.Inc(8, x, z); if (c != 0 || (z[7] == P7 && Nat256.Gte(z, P))) { Nat.Add33To(8, PInv33, z); } } public static uint[] FromBigInteger(BigInteger x) { uint[] z = Nat256.FromBigInteger(x); if (z[7] == P7 && Nat256.Gte(z, P)) { Nat256.SubFrom(P, z); } return z; } public static void Half(uint[] x, uint[] z) { if ((x[0] & 1) == 0) { Nat.ShiftDownBit(8, x, 0, z); } else { uint c = Nat256.Add(x, P, z); Nat.ShiftDownBit(8, z, c); } } public static void Inv(uint[] x, uint[] z) { /* * Raise this element to the exponent 2^256 - 2^32 - 2^9 - 2^8 - 2^7 - 2^6 - 2^4 - 3 * * Breaking up the exponent's binary representation into "repunits", we get: * { 223 1s } { 1 0s } { 22 1s } { 4 0s } { 1 1s } { 1 0s } { 2 1s } { 1 0s } { 1 1s } * * Therefore we need an addition chain containing 1, 2, 22, 223 (the lengths of the repunits) * We use: [1], [2], 3, 6, 9, 11, [22], 44, 88, 176, 220, [223] */ if (0 != IsZero(x)) throw new ArgumentException("cannot be 0", "x"); uint[] x1 = x; uint[] x2 = Nat256.Create(); Square(x1, x2); Multiply(x2, x1, x2); uint[] x3 = Nat256.Create(); Square(x2, x3); Multiply(x3, x1, x3); uint[] x6 = Nat256.Create(); SquareN(x3, 3, x6); Multiply(x6, x3, x6); uint[] x9 = x6; SquareN(x6, 3, x9); Multiply(x9, x3, x9); uint[] x11 = x9; SquareN(x9, 2, x11); Multiply(x11, x2, x11); uint[] x22 = Nat256.Create(); SquareN(x11, 11, x22); Multiply(x22, x11, x22); uint[] x44 = x11; SquareN(x22, 22, x44); Multiply(x44, x22, x44); uint[] x88 = Nat256.Create(); SquareN(x44, 44, x88); Multiply(x88, x44, x88); uint[] x176 = Nat256.Create(); SquareN(x88, 88, x176); Multiply(x176, x88, x176); uint[] x220 = x88; SquareN(x176, 44, x220); Multiply(x220, x44, x220); uint[] x223 = x44; SquareN(x220, 3, x223); Multiply(x223, x3, x223); uint[] t = x223; SquareN(t, 23, t); Multiply(t, x22, t); SquareN(t, 5, t); Multiply(t, x1, t); SquareN(t, 3, t); Multiply(t, x2, t); SquareN(t, 2, t); // NOTE that x1 and z could be the same array Multiply(x1, t, z); } public static int IsZero(uint[] x) { uint d = 0; for (int i = 0; i < 8; ++i) { d |= x[i]; } d = (d >> 1) | (d & 1); return ((int)d - 1) >> 31; } public static void Multiply(uint[] x, uint[] y, uint[] z) { uint[] tt = Nat256.CreateExt(); Nat256.Mul(x, y, tt); Reduce(tt, z); } public static void MultiplyAddToExt(uint[] x, uint[] y, uint[] zz) { uint c = Nat256.MulAddTo(x, y, zz); if (c != 0 || (zz[15] == PExt15 && Nat.Gte(16, zz, PExt))) { if (Nat.AddTo(PExtInv.Length, PExtInv, zz) != 0) { Nat.IncAt(16, zz, PExtInv.Length); } } } public static void Negate(uint[] x, uint[] z) { if (0 != IsZero(x)) { Nat256.Sub(P, P, z); } else { Nat256.Sub(P, x, z); } } public static void Random(SecureRandom r, uint[] z) { byte[] bb = new byte[8 * 4]; do { r.NextBytes(bb); Pack.LE_To_UInt32(bb, 0, z, 0, 8); } while (0 == Nat.LessThan(8, z, P)); } public static void RandomMult(SecureRandom r, uint[] z) { do { Random(r, z); } while (0 != IsZero(z)); } public static void Reduce(uint[] xx, uint[] z) { ulong cc = Nat256.Mul33Add(PInv33, xx, 8, xx, 0, z, 0); uint c = Nat256.Mul33DWordAdd(PInv33, cc, z, 0); Debug.Assert(c == 0 || c == 1); if (c != 0 || (z[7] == P7 && Nat256.Gte(z, P))) { Nat.Add33To(8, PInv33, z); } } public static void Reduce32(uint x, uint[] z) { if ((x != 0 && Nat256.Mul33WordAdd(PInv33, x, z, 0) != 0) || (z[7] == P7 && Nat256.Gte(z, P))) { Nat.Add33To(8, PInv33, z); } } public static void Square(uint[] x, uint[] z) { uint[] tt = Nat256.CreateExt(); Nat256.Square(x, tt); Reduce(tt, z); } public static void SquareN(uint[] x, int n, uint[] z) { Debug.Assert(n > 0); uint[] tt = Nat256.CreateExt(); Nat256.Square(x, tt); Reduce(tt, z); while (--n > 0) { Nat256.Square(z, tt); Reduce(tt, z); } } public static void Subtract(uint[] x, uint[] y, uint[] z) { int c = Nat256.Sub(x, y, z); if (c != 0) { Nat.Sub33From(8, PInv33, z); } } public static void SubtractExt(uint[] xx, uint[] yy, uint[] zz) { int c = Nat.Sub(16, xx, yy, zz); if (c != 0) { if (Nat.SubFrom(PExtInv.Length, PExtInv, zz) != 0) { Nat.DecAt(16, zz, PExtInv.Length); } } } public static void Twice(uint[] x, uint[] z) { uint c = Nat.ShiftUpBit(8, x, 0, z); if (c != 0 || (z[7] == P7 && Nat256.Gte(z, P))) { Nat.Add33To(8, PInv33, z); } } } }