using System; using System.Diagnostics; using Org.BouncyCastle.Math.Raw; using Org.BouncyCastle.Utilities; namespace Org.BouncyCastle.Math.EC.Custom.Sec { internal class SecP224K1FieldElement : ECFieldElement { public static readonly BigInteger Q = SecP224K1Curve.q; // Calculated as BigInteger.Two.ModPow(Q.ShiftRight(2), Q) private static readonly uint[] PRECOMP_POW2 = new uint[]{ 0x33bfd202, 0xdcfad133, 0x2287624a, 0xc3811ba8, 0xa85558fc, 0x1eaef5d7, 0x8edf154c }; protected internal readonly uint[] x; public SecP224K1FieldElement(BigInteger x) { if (x == null || x.SignValue < 0 || x.CompareTo(Q) >= 0) throw new ArgumentException("value invalid for SecP224K1FieldElement", "x"); this.x = SecP224K1Field.FromBigInteger(x); } public SecP224K1FieldElement() { this.x = Nat224.Create(); } protected internal SecP224K1FieldElement(uint[] x) { this.x = x; } public override bool IsZero { get { return Nat224.IsZero(x); } } public override bool IsOne { get { return Nat224.IsOne(x); } } public override bool TestBitZero() { return Nat224.GetBit(x, 0) == 1; } public override BigInteger ToBigInteger() { return Nat224.ToBigInteger(x); } public override string FieldName { get { return "SecP224K1Field"; } } public override int FieldSize { get { return Q.BitLength; } } public override ECFieldElement Add(ECFieldElement b) { uint[] z = Nat224.Create(); SecP224K1Field.Add(x, ((SecP224K1FieldElement)b).x, z); return new SecP224K1FieldElement(z); } public override ECFieldElement AddOne() { uint[] z = Nat224.Create(); SecP224K1Field.AddOne(x, z); return new SecP224K1FieldElement(z); } public override ECFieldElement Subtract(ECFieldElement b) { uint[] z = Nat224.Create(); SecP224K1Field.Subtract(x, ((SecP224K1FieldElement)b).x, z); return new SecP224K1FieldElement(z); } public override ECFieldElement Multiply(ECFieldElement b) { uint[] z = Nat224.Create(); SecP224K1Field.Multiply(x, ((SecP224K1FieldElement)b).x, z); return new SecP224K1FieldElement(z); } public override ECFieldElement Divide(ECFieldElement b) { //return Multiply(b.Invert()); uint[] z = Nat224.Create(); Mod.Invert(SecP224K1Field.P, ((SecP224K1FieldElement)b).x, z); SecP224K1Field.Multiply(z, x, z); return new SecP224K1FieldElement(z); } public override ECFieldElement Negate() { uint[] z = Nat224.Create(); SecP224K1Field.Negate(x, z); return new SecP224K1FieldElement(z); } public override ECFieldElement Square() { uint[] z = Nat224.Create(); SecP224K1Field.Square(x, z); return new SecP224K1FieldElement(z); } public override ECFieldElement Invert() { //return new SecP224K1FieldElement(ToBigInteger().ModInverse(Q)); uint[] z = Nat224.Create(); Mod.Invert(SecP224K1Field.P, x, z); return new SecP224K1FieldElement(z); } /** * return a sqrt root - the routine verifies that the calculation returns the right value - if * none exists it returns null. */ public override ECFieldElement Sqrt() { /* * Q == 8m + 5, so we use Pocklington's method for this case. * * First, raise this element to the exponent 2^221 - 2^29 - 2^9 - 2^8 - 2^6 - 2^4 - 2^1 (i.e. m + 1) * * Breaking up the exponent's binary representation into "repunits", we get: * { 191 1s } { 1 0s } { 19 1s } { 2 0s } { 1 1s } { 1 0s} { 1 1s } { 1 0s} { 3 1s } { 1 0s} * * Therefore we need an addition chain containing 1, 3, 19, 191 (the lengths of the repunits) * We use: [1], 2, [3], 4, 8, 11, [19], 23, 42, 84, 107, [191] */ uint[] x1 = this.x; if (Nat224.IsZero(x1) || Nat224.IsOne(x1)) return this; uint[] x2 = Nat224.Create(); SecP224K1Field.Square(x1, x2); SecP224K1Field.Multiply(x2, x1, x2); uint[] x3 = x2; SecP224K1Field.Square(x2, x3); SecP224K1Field.Multiply(x3, x1, x3); uint[] x4 = Nat224.Create(); SecP224K1Field.Square(x3, x4); SecP224K1Field.Multiply(x4, x1, x4); uint[] x8 = Nat224.Create(); SecP224K1Field.SquareN(x4, 4, x8); SecP224K1Field.Multiply(x8, x4, x8); uint[] x11 = Nat224.Create(); SecP224K1Field.SquareN(x8, 3, x11); SecP224K1Field.Multiply(x11, x3, x11); uint[] x19 = x11; SecP224K1Field.SquareN(x11, 8, x19); SecP224K1Field.Multiply(x19, x8, x19); uint[] x23 = x8; SecP224K1Field.SquareN(x19, 4, x23); SecP224K1Field.Multiply(x23, x4, x23); uint[] x42 = x4; SecP224K1Field.SquareN(x23, 19, x42); SecP224K1Field.Multiply(x42, x19, x42); uint[] x84 = Nat224.Create(); SecP224K1Field.SquareN(x42, 42, x84); SecP224K1Field.Multiply(x84, x42, x84); uint[] x107 = x42; SecP224K1Field.SquareN(x84, 23, x107); SecP224K1Field.Multiply(x107, x23, x107); uint[] x191 = x23; SecP224K1Field.SquareN(x107, 84, x191); SecP224K1Field.Multiply(x191, x84, x191); uint[] t1 = x191; SecP224K1Field.SquareN(t1, 20, t1); SecP224K1Field.Multiply(t1, x19, t1); SecP224K1Field.SquareN(t1, 3, t1); SecP224K1Field.Multiply(t1, x1, t1); SecP224K1Field.SquareN(t1, 2, t1); SecP224K1Field.Multiply(t1, x1, t1); SecP224K1Field.SquareN(t1, 4, t1); SecP224K1Field.Multiply(t1, x3, t1); SecP224K1Field.Square(t1, t1); uint[] t2 = x84; SecP224K1Field.Square(t1, t2); if (Nat224.Eq(x1, t2)) { return new SecP224K1FieldElement(t1); } /* * If the first guess is incorrect, we multiply by a precomputed power of 2 to get the second guess, * which is ((4x)^(m + 1))/2 mod Q */ SecP224K1Field.Multiply(t1, PRECOMP_POW2, t1); SecP224K1Field.Square(t1, t2); if (Nat224.Eq(x1, t2)) { return new SecP224K1FieldElement(t1); } return null; } public override bool Equals(object obj) { return Equals(obj as SecP224K1FieldElement); } public override bool Equals(ECFieldElement other) { return Equals(other as SecP224K1FieldElement); } public virtual bool Equals(SecP224K1FieldElement other) { if (this == other) return true; if (null == other) return false; return Nat224.Eq(x, other.x); } public override int GetHashCode() { return Q.GetHashCode() ^ Arrays.GetHashCode(x, 0, 7); } } }