using System; using System.Diagnostics; using Org.BouncyCastle.Crypto.Utilities; using Org.BouncyCastle.Math.Raw; using Org.BouncyCastle.Security; namespace Org.BouncyCastle.Math.EC.Custom.Sec { internal class SecP224K1Field { // 2^224 - 2^32 - 2^12 - 2^11 - 2^9 - 2^7 - 2^4 - 2 - 1 internal static readonly uint[] P = new uint[]{ 0xFFFFE56D, 0xFFFFFFFE, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF }; private static readonly uint[] PExt = new uint[]{ 0x02C23069, 0x00003526, 0x00000001, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0xFFFFCADA, 0xFFFFFFFD, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF }; private static readonly uint[] PExtInv = new uint[]{ 0xFD3DCF97, 0xFFFFCAD9, 0xFFFFFFFE, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0x00003525, 0x00000002 }; private const uint P6 = 0xFFFFFFFF; private const uint PExt13 = 0xFFFFFFFF; private const uint PInv33 = 0x1A93; public static void Add(uint[] x, uint[] y, uint[] z) { uint c = Nat224.Add(x, y, z); if (c != 0 || (z[6] == P6 && Nat224.Gte(z, P))) { Nat.Add33To(7, PInv33, z); } } public static void AddExt(uint[] xx, uint[] yy, uint[] zz) { uint c = Nat.Add(14, xx, yy, zz); if (c != 0 || (zz[13] == PExt13 && Nat.Gte(14, zz, PExt))) { if (Nat.AddTo(PExtInv.Length, PExtInv, zz) != 0) { Nat.IncAt(14, zz, PExtInv.Length); } } } public static void AddOne(uint[] x, uint[] z) { uint c = Nat.Inc(7, x, z); if (c != 0 || (z[6] == P6 && Nat224.Gte(z, P))) { Nat.Add33To(7, PInv33, z); } } public static uint[] FromBigInteger(BigInteger x) { uint[] z = Nat224.FromBigInteger(x); if (z[6] == P6 && Nat224.Gte(z, P)) { Nat224.SubFrom(P, z); } return z; } public static void Half(uint[] x, uint[] z) { if ((x[0] & 1) == 0) { Nat.ShiftDownBit(7, x, 0, z); } else { uint c = Nat224.Add(x, P, z); Nat.ShiftDownBit(7, z, c); } } public static void Inv(uint[] x, uint[] z) { /* * Raise this element to the exponent 2^224 - 2^32 - 2^12 - 2^11 - 2^9 - 2^7 - 2^4 - 5 * * Breaking up the exponent's binary representation into "repunits", we get: * { 191 1s } { 1 0s } { 19 1s } "0010101101011" * * Therefore we need an addition chain containing 1, 2, 19, 191 (the lengths of the repunits) * We use: [1], [2], 4, 5, 9, 10, [19], 38, 76, 152, 190 [191] */ if (0 != IsZero(x)) throw new ArgumentException("cannot be 0", "x"); uint[] x1 = x; uint[] x2 = Nat224.Create(); Square(x1, x2); Multiply(x2, x1, x2); uint[] x4 = Nat224.Create(); SquareN(x2, 2, x4); Multiply(x4, x2, x4); uint[] x5 = Nat224.Create(); Square(x4, x5); Multiply(x5, x1, x5); uint[] x9 = x5; SquareN(x5, 4, x9); Multiply(x9, x4, x9); uint[] x10 = x4; Square(x9, x10); Multiply(x10, x1, x10); uint[] x19 = x10; SquareN(x10, 9, x19); Multiply(x19, x9, x19); uint[] x38 = x9; SquareN(x19, 19, x38); Multiply(x38, x19, x38); uint[] x76 = Nat224.Create(); SquareN(x38, 38, x76); Multiply(x76, x38, x76); uint[] x152 = Nat224.Create(); SquareN(x76, 76, x152); Multiply(x152, x76, x152); uint[] x190 = x76; SquareN(x152, 38, x190); Multiply(x190, x38, x190); uint[] x191 = x38; Square(x190, x191); Multiply(x191, x1, x191); uint[] t = x191; SquareN(t, 20, t); Multiply(t, x19, t); SquareN(t, 3, t); Multiply(t, x1, t); SquareN(t, 2, t); Multiply(t, x1, t); SquareN(t, 3, t); Multiply(t, x2, t); SquareN(t, 2, t); Multiply(t, x1, t); SquareN(t, 3, t); Multiply(t, x2, z); } public static int IsZero(uint[] x) { uint d = 0; for (int i = 0; i < 7; ++i) { d |= x[i]; } d = (d >> 1) | (d & 1); return ((int)d - 1) >> 31; } public static void Multiply(uint[] x, uint[] y, uint[] z) { uint[] tt = Nat224.CreateExt(); Nat224.Mul(x, y, tt); Reduce(tt, z); } public static void MultiplyAddToExt(uint[] x, uint[] y, uint[] zz) { uint c = Nat224.MulAddTo(x, y, zz); if (c != 0 || (zz[13] == PExt13 && Nat.Gte(14, zz, PExt))) { if (Nat.AddTo(PExtInv.Length, PExtInv, zz) != 0) { Nat.IncAt(14, zz, PExtInv.Length); } } } public static void Negate(uint[] x, uint[] z) { if (0 != IsZero(x)) { Nat224.Sub(P, P, z); } else { Nat224.Sub(P, x, z); } } public static void Random(SecureRandom r, uint[] z) { byte[] bb = new byte[7 * 4]; do { r.NextBytes(bb); Pack.LE_To_UInt32(bb, 0, z, 0, 7); } while (0 == Nat.LessThan(7, z, P)); } public static void RandomMult(SecureRandom r, uint[] z) { do { Random(r, z); } while (0 != IsZero(z)); } public static void Reduce(uint[] xx, uint[] z) { ulong cc = Nat224.Mul33Add(PInv33, xx, 7, xx, 0, z, 0); uint c = Nat224.Mul33DWordAdd(PInv33, cc, z, 0); Debug.Assert(c == 0 || c == 1); if (c != 0 || (z[6] == P6 && Nat224.Gte(z, P))) { Nat.Add33To(7, PInv33, z); } } public static void Reduce32(uint x, uint[] z) { if ((x != 0 && Nat224.Mul33WordAdd(PInv33, x, z, 0) != 0) || (z[6] == P6 && Nat224.Gte(z, P))) { Nat.Add33To(7, PInv33, z); } } public static void Square(uint[] x, uint[] z) { uint[] tt = Nat224.CreateExt(); Nat224.Square(x, tt); Reduce(tt, z); } public static void SquareN(uint[] x, int n, uint[] z) { Debug.Assert(n > 0); uint[] tt = Nat224.CreateExt(); Nat224.Square(x, tt); Reduce(tt, z); while (--n > 0) { Nat224.Square(z, tt); Reduce(tt, z); } } public static void Subtract(uint[] x, uint[] y, uint[] z) { int c = Nat224.Sub(x, y, z); if (c != 0) { Nat.Sub33From(7, PInv33, z); } } public static void SubtractExt(uint[] xx, uint[] yy, uint[] zz) { int c = Nat.Sub(14, xx, yy, zz); if (c != 0) { if (Nat.SubFrom(PExtInv.Length, PExtInv, zz) != 0) { Nat.DecAt(14, zz, PExtInv.Length); } } } public static void Twice(uint[] x, uint[] z) { uint c = Nat.ShiftUpBit(7, x, 0, z); if (c != 0 || (z[6] == P6 && Nat224.Gte(z, P))) { Nat.Add33To(7, PInv33, z); } } } }