using System; using System.Diagnostics; using Org.BouncyCastle.Math.Raw; using Org.BouncyCastle.Utilities; namespace Org.BouncyCastle.Math.EC.Custom.Sec { internal class SecP192K1FieldElement : AbstractFpFieldElement { public static readonly BigInteger Q = SecP192K1Curve.q; protected internal readonly uint[] x; public SecP192K1FieldElement(BigInteger x) { if (x == null || x.SignValue < 0 || x.CompareTo(Q) >= 0) throw new ArgumentException("value invalid for SecP192K1FieldElement", "x"); this.x = SecP192K1Field.FromBigInteger(x); } public SecP192K1FieldElement() { this.x = Nat192.Create(); } protected internal SecP192K1FieldElement(uint[] x) { this.x = x; } public override bool IsZero { get { return Nat192.IsZero(x); } } public override bool IsOne { get { return Nat192.IsOne(x); } } public override bool TestBitZero() { return Nat192.GetBit(x, 0) == 1; } public override BigInteger ToBigInteger() { return Nat192.ToBigInteger(x); } public override string FieldName { get { return "SecP192K1Field"; } } public override int FieldSize { get { return Q.BitLength; } } public override ECFieldElement Add(ECFieldElement b) { uint[] z = Nat192.Create(); SecP192K1Field.Add(x, ((SecP192K1FieldElement)b).x, z); return new SecP192K1FieldElement(z); } public override ECFieldElement AddOne() { uint[] z = Nat192.Create(); SecP192K1Field.AddOne(x, z); return new SecP192K1FieldElement(z); } public override ECFieldElement Subtract(ECFieldElement b) { uint[] z = Nat192.Create(); SecP192K1Field.Subtract(x, ((SecP192K1FieldElement)b).x, z); return new SecP192K1FieldElement(z); } public override ECFieldElement Multiply(ECFieldElement b) { uint[] z = Nat192.Create(); SecP192K1Field.Multiply(x, ((SecP192K1FieldElement)b).x, z); return new SecP192K1FieldElement(z); } public override ECFieldElement Divide(ECFieldElement b) { //return Multiply(b.Invert()); uint[] z = Nat192.Create(); Mod.Invert(SecP192K1Field.P, ((SecP192K1FieldElement)b).x, z); SecP192K1Field.Multiply(z, x, z); return new SecP192K1FieldElement(z); } public override ECFieldElement Negate() { uint[] z = Nat192.Create(); SecP192K1Field.Negate(x, z); return new SecP192K1FieldElement(z); } public override ECFieldElement Square() { uint[] z = Nat192.Create(); SecP192K1Field.Square(x, z); return new SecP192K1FieldElement(z); } public override ECFieldElement Invert() { //return new SecP192K1FieldElement(ToBigInteger().ModInverse(Q)); uint[] z = Nat192.Create(); Mod.Invert(SecP192K1Field.P, x, z); return new SecP192K1FieldElement(z); } /** * return a sqrt root - the routine verifies that the calculation returns the right value - if * none exists it returns null. */ public override ECFieldElement Sqrt() { /* * Raise this element to the exponent 2^190 - 2^30 - 2^10 - 2^6 - 2^5 - 2^4 - 2^1 * * Breaking up the exponent's binary representation into "repunits", we get: * { 159 1s } { 1 0s } { 19 1s } { 1 0s } { 3 1s } { 3 0s} { 3 1s } { 1 0s } * * Therefore we need an addition chain containing 3, 19, 159 (the lengths of the repunits) * We use: 1, 2, [3], 6, 8, 16, [19], 35, 70, 140, [159] */ uint[] x1 = this.x; if (Nat192.IsZero(x1) || Nat192.IsOne(x1)) return this; uint[] x2 = Nat192.Create(); SecP192K1Field.Square(x1, x2); SecP192K1Field.Multiply(x2, x1, x2); uint[] x3 = Nat192.Create(); SecP192K1Field.Square(x2, x3); SecP192K1Field.Multiply(x3, x1, x3); uint[] x6 = Nat192.Create(); SecP192K1Field.SquareN(x3, 3, x6); SecP192K1Field.Multiply(x6, x3, x6); uint[] x8 = x6; SecP192K1Field.SquareN(x6, 2, x8); SecP192K1Field.Multiply(x8, x2, x8); uint[] x16 = x2; SecP192K1Field.SquareN(x8, 8, x16); SecP192K1Field.Multiply(x16, x8, x16); uint[] x19 = x8; SecP192K1Field.SquareN(x16, 3, x19); SecP192K1Field.Multiply(x19, x3, x19); uint[] x35 = Nat192.Create(); SecP192K1Field.SquareN(x19, 16, x35); SecP192K1Field.Multiply(x35, x16, x35); uint[] x70 = x16; SecP192K1Field.SquareN(x35, 35, x70); SecP192K1Field.Multiply(x70, x35, x70); uint[] x140 = x35; SecP192K1Field.SquareN(x70, 70, x140); SecP192K1Field.Multiply(x140, x70, x140); uint[] x159 = x70; SecP192K1Field.SquareN(x140, 19, x159); SecP192K1Field.Multiply(x159, x19, x159); uint[] t1 = x159; SecP192K1Field.SquareN(t1, 20, t1); SecP192K1Field.Multiply(t1, x19, t1); SecP192K1Field.SquareN(t1, 4, t1); SecP192K1Field.Multiply(t1, x3, t1); SecP192K1Field.SquareN(t1, 6, t1); SecP192K1Field.Multiply(t1, x3, t1); SecP192K1Field.Square(t1, t1); uint[] t2 = x3; SecP192K1Field.Square(t1, t2); return Nat192.Eq(x1, t2) ? new SecP192K1FieldElement(t1) : null; } public override bool Equals(object obj) { return Equals(obj as SecP192K1FieldElement); } public override bool Equals(ECFieldElement other) { return Equals(other as SecP192K1FieldElement); } public virtual bool Equals(SecP192K1FieldElement other) { if (this == other) return true; if (null == other) return false; return Nat192.Eq(x, other.x); } public override int GetHashCode() { return Q.GetHashCode() ^ Arrays.GetHashCode(x, 0, 6); } } }