using System; using System.Diagnostics; using Org.BouncyCastle.Crypto.Utilities; using Org.BouncyCastle.Math.Raw; using Org.BouncyCastle.Security; namespace Org.BouncyCastle.Math.EC.Custom.Sec { internal class SecP192K1Field { // 2^192 - 2^32 - 2^12 - 2^8 - 2^7 - 2^6 - 2^3 - 1 internal static readonly uint[] P = new uint[]{ 0xFFFFEE37, 0xFFFFFFFE, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF }; private static readonly uint[] PExt = new uint[]{ 0x013C4FD1, 0x00002392, 0x00000001, 0x00000000, 0x00000000, 0x00000000, 0xFFFFDC6E, 0xFFFFFFFD, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF }; private static readonly uint[] PExtInv = new uint[]{ 0xFEC3B02F, 0xFFFFDC6D, 0xFFFFFFFE, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0x00002391, 0x00000002 }; private const uint P5 = 0xFFFFFFFF; private const uint PExt11 = 0xFFFFFFFF; private const uint PInv33 = 0x11C9; public static void Add(uint[] x, uint[] y, uint[] z) { uint c = Nat192.Add(x, y, z); if (c != 0 || (z[5] == P5 && Nat192.Gte(z, P))) { Nat.Add33To(6, PInv33, z); } } public static void AddExt(uint[] xx, uint[] yy, uint[] zz) { uint c = Nat.Add(12, xx, yy, zz); if (c != 0 || (zz[11] == PExt11 && Nat.Gte(12, zz, PExt))) { if (Nat.AddTo(PExtInv.Length, PExtInv, zz) != 0) { Nat.IncAt(12, zz, PExtInv.Length); } } } public static void AddOne(uint[] x, uint[] z) { uint c = Nat.Inc(6, x, z); if (c != 0 || (z[5] == P5 && Nat192.Gte(z, P))) { Nat.Add33To(6, PInv33, z); } } public static uint[] FromBigInteger(BigInteger x) { uint[] z = Nat192.FromBigInteger(x); if (z[5] == P5 && Nat192.Gte(z, P)) { Nat192.SubFrom(P, z); } return z; } public static void Half(uint[] x, uint[] z) { if ((x[0] & 1) == 0) { Nat.ShiftDownBit(6, x, 0, z); } else { uint c = Nat192.Add(x, P, z); Nat.ShiftDownBit(6, z, c); } } public static void Inv(uint[] x, uint[] z) { /* * Raise this element to the exponent 2^192 - 2^32 - 2^12 - 2^8 - 2^7 - 2^6 - 2^3 - 3 * * Breaking up the exponent's binary representation into "repunits", we get: * { 159 1s } { 1 0s } { 19 1s } { 1 0s } { 3 1s } "000110101" * * Therefore we need an addition chain containing 1, 2, 3, 19, 159 (the lengths of the repunits) * We use: [1], [2], [3], 6, 12, 18, [19], 38, 76, 152, 158, [159] */ if (0 != IsZero(x)) throw new ArgumentException("cannot be 0", "x"); uint[] x1 = x; uint[] x2 = Nat192.Create(); Square(x1, x2); Multiply(x2, x1, x2); uint[] x3 = Nat192.Create(); Square(x2, x3); Multiply(x3, x1, x3); uint[] x6 = Nat192.Create(); SquareN(x3, 3, x6); Multiply(x6, x3, x6); uint[] x12 = Nat192.Create(); SquareN(x6, 6, x12); Multiply(x12, x6, x12); uint[] x18 = x12; SquareN(x12, 6, x18); Multiply(x18, x6, x18); uint[] x19 = x18; Square(x18, x19); Multiply(x19, x1, x19); uint[] x38 = Nat192.Create(); SquareN(x19, 19, x38); Multiply(x38, x19, x38); uint[] x76 = Nat192.Create(); SquareN(x38, 38, x76); Multiply(x76, x38, x76); uint[] x152 = x38; SquareN(x76, 76, x152); Multiply(x152, x76, x152); uint[] x158 = x76; SquareN(x152, 6, x158); Multiply(x158, x6, x158); uint[] x159 = x6; Square(x158, x159); Multiply(x159, x1, x159); uint[] t = x159; SquareN(t, 20, t); Multiply(t, x19, t); SquareN(t, 4, t); Multiply(t, x3, t); SquareN(t, 5, t); Multiply(t, x2, t); SquareN(t, 2, t); Multiply(t, x1, t); SquareN(t, 2, t); // NOTE that x1 and z could be the same array Multiply(x1, t, z); } public static int IsZero(uint[] x) { uint d = 0; for (int i = 0; i < 6; ++i) { d |= x[i]; } d = (d >> 1) | (d & 1); return ((int)d - 1) >> 31; } public static void Multiply(uint[] x, uint[] y, uint[] z) { uint[] tt = Nat192.CreateExt(); Nat192.Mul(x, y, tt); Reduce(tt, z); } public static void MultiplyAddToExt(uint[] x, uint[] y, uint[] zz) { uint c = Nat192.MulAddTo(x, y, zz); if (c != 0 || (zz[11] == PExt11 && Nat.Gte(12, zz, PExt))) { if (Nat.AddTo(PExtInv.Length, PExtInv, zz) != 0) { Nat.IncAt(12, zz, PExtInv.Length); } } } public static void Negate(uint[] x, uint[] z) { if (0 != IsZero(x)) { Nat192.Sub(P, P, z); } else { Nat192.Sub(P, x, z); } } public static void Random(SecureRandom r, uint[] z) { byte[] bb = new byte[6 * 4]; do { r.NextBytes(bb); Pack.LE_To_UInt32(bb, 0, z, 0, 6); } while (0 == Nat.LessThan(6, z, P)); } public static void RandomMult(SecureRandom r, uint[] z) { do { Random(r, z); } while (0 != IsZero(z)); } public static void Reduce(uint[] xx, uint[] z) { ulong cc = Nat192.Mul33Add(PInv33, xx, 6, xx, 0, z, 0); uint c = Nat192.Mul33DWordAdd(PInv33, cc, z, 0); Debug.Assert(c == 0 || c == 1); if (c != 0 || (z[5] == P5 && Nat192.Gte(z, P))) { Nat.Add33To(6, PInv33, z); } } public static void Reduce32(uint x, uint[] z) { if ((x != 0 && Nat192.Mul33WordAdd(PInv33, x, z, 0) != 0) || (z[5] == P5 && Nat192.Gte(z, P))) { Nat.Add33To(6, PInv33, z); } } public static void Square(uint[] x, uint[] z) { uint[] tt = Nat192.CreateExt(); Nat192.Square(x, tt); Reduce(tt, z); } public static void SquareN(uint[] x, int n, uint[] z) { Debug.Assert(n > 0); uint[] tt = Nat192.CreateExt(); Nat192.Square(x, tt); Reduce(tt, z); while (--n > 0) { Nat192.Square(z, tt); Reduce(tt, z); } } public static void Subtract(uint[] x, uint[] y, uint[] z) { int c = Nat192.Sub(x, y, z); if (c != 0) { Nat.Sub33From(6, PInv33, z); } } public static void SubtractExt(uint[] xx, uint[] yy, uint[] zz) { int c = Nat.Sub(12, xx, yy, zz); if (c != 0) { if (Nat.SubFrom(PExtInv.Length, PExtInv, zz) != 0) { Nat.DecAt(12, zz, PExtInv.Length); } } } public static void Twice(uint[] x, uint[] z) { uint c = Nat.ShiftUpBit(6, x, 0, z); if (c != 0 || (z[5] == P5 && Nat192.Gte(z, P))) { Nat.Add33To(6, PInv33, z); } } } }