using System; using Org.BouncyCastle.Math.Raw; using Org.BouncyCastle.Utilities; namespace Org.BouncyCastle.Math.EC.Custom.Sec { internal class SecP160R2FieldElement : AbstractFpFieldElement { public static readonly BigInteger Q = SecP160R2Curve.q; protected internal readonly uint[] x; public SecP160R2FieldElement(BigInteger x) { if (x == null || x.SignValue < 0 || x.CompareTo(Q) >= 0) throw new ArgumentException("value invalid for SecP160R2FieldElement", "x"); this.x = SecP160R2Field.FromBigInteger(x); } public SecP160R2FieldElement() { this.x = Nat160.Create(); } protected internal SecP160R2FieldElement(uint[] x) { this.x = x; } public override bool IsZero { get { return Nat160.IsZero(x); } } public override bool IsOne { get { return Nat160.IsOne(x); } } public override bool TestBitZero() { return Nat160.GetBit(x, 0) == 1; } public override BigInteger ToBigInteger() { return Nat160.ToBigInteger(x); } public override string FieldName { get { return "SecP160R2Field"; } } public override int FieldSize { get { return Q.BitLength; } } public override ECFieldElement Add(ECFieldElement b) { uint[] z = Nat160.Create(); SecP160R2Field.Add(x, ((SecP160R2FieldElement)b).x, z); return new SecP160R2FieldElement(z); } public override ECFieldElement AddOne() { uint[] z = Nat160.Create(); SecP160R2Field.AddOne(x, z); return new SecP160R2FieldElement(z); } public override ECFieldElement Subtract(ECFieldElement b) { uint[] z = Nat160.Create(); SecP160R2Field.Subtract(x, ((SecP160R2FieldElement)b).x, z); return new SecP160R2FieldElement(z); } public override ECFieldElement Multiply(ECFieldElement b) { uint[] z = Nat160.Create(); SecP160R2Field.Multiply(x, ((SecP160R2FieldElement)b).x, z); return new SecP160R2FieldElement(z); } public override ECFieldElement Divide(ECFieldElement b) { // return Multiply(b.invert()); uint[] z = Nat160.Create(); Mod.Invert(SecP160R2Field.P, ((SecP160R2FieldElement)b).x, z); SecP160R2Field.Multiply(z, x, z); return new SecP160R2FieldElement(z); } public override ECFieldElement Negate() { uint[] z = Nat160.Create(); SecP160R2Field.Negate(x, z); return new SecP160R2FieldElement(z); } public override ECFieldElement Square() { uint[] z = Nat160.Create(); SecP160R2Field.Square(x, z); return new SecP160R2FieldElement(z); } public override ECFieldElement Invert() { // return new SecP160R2FieldElement(ToBigInteger().modInverse(Q)); uint[] z = Nat160.Create(); Mod.Invert(SecP160R2Field.P, x, z); return new SecP160R2FieldElement(z); } // D.1.4 91 /** * return a sqrt root - the routine verifies that the calculation returns the right value - if * none exists it returns null. */ public override ECFieldElement Sqrt() { /* * Raise this element to the exponent 2^158 - 2^30 - 2^12 - 2^10 - 2^7 - 2^6 - 2^5 - 2^1 - 2^0 * * Breaking up the exponent's binary representation into "repunits", we get: { 127 1s } { 1 * 0s } { 17 1s } { 1 0s } { 1 1s } { 1 0s } { 2 1s } { 3 0s } { 3 1s } { 1 0s } { 1 1s } * * Therefore we need an Addition chain containing 1, 2, 3, 17, 127 (the lengths of the repunits) * We use: [1], [2], [3], 4, 7, 14, [17], 31, 62, 124, [127] */ uint[] x1 = this.x; if (Nat160.IsZero(x1) || Nat160.IsOne(x1)) { return this; } uint[] x2 = Nat160.Create(); SecP160R2Field.Square(x1, x2); SecP160R2Field.Multiply(x2, x1, x2); uint[] x3 = Nat160.Create(); SecP160R2Field.Square(x2, x3); SecP160R2Field.Multiply(x3, x1, x3); uint[] x4 = Nat160.Create(); SecP160R2Field.Square(x3, x4); SecP160R2Field.Multiply(x4, x1, x4); uint[] x7 = Nat160.Create(); SecP160R2Field.SquareN(x4, 3, x7); SecP160R2Field.Multiply(x7, x3, x7); uint[] x14 = x4; SecP160R2Field.SquareN(x7, 7, x14); SecP160R2Field.Multiply(x14, x7, x14); uint[] x17 = x7; SecP160R2Field.SquareN(x14, 3, x17); SecP160R2Field.Multiply(x17, x3, x17); uint[] x31 = Nat160.Create(); SecP160R2Field.SquareN(x17, 14, x31); SecP160R2Field.Multiply(x31, x14, x31); uint[] x62 = x14; SecP160R2Field.SquareN(x31, 31, x62); SecP160R2Field.Multiply(x62, x31, x62); uint[] x124 = x31; SecP160R2Field.SquareN(x62, 62, x124); SecP160R2Field.Multiply(x124, x62, x124); uint[] x127 = x62; SecP160R2Field.SquareN(x124, 3, x127); SecP160R2Field.Multiply(x127, x3, x127); uint[] t1 = x127; SecP160R2Field.SquareN(t1, 18, t1); SecP160R2Field.Multiply(t1, x17, t1); SecP160R2Field.SquareN(t1, 2, t1); SecP160R2Field.Multiply(t1, x1, t1); SecP160R2Field.SquareN(t1, 3, t1); SecP160R2Field.Multiply(t1, x2, t1); SecP160R2Field.SquareN(t1, 6, t1); SecP160R2Field.Multiply(t1, x3, t1); SecP160R2Field.SquareN(t1, 2, t1); SecP160R2Field.Multiply(t1, x1, t1); uint[] t2 = x2; SecP160R2Field.Square(t1, t2); return Nat160.Eq(x1, t2) ? new SecP160R2FieldElement(t1) : null; } public override bool Equals(object obj) { return Equals(obj as SecP160R2FieldElement); } public override bool Equals(ECFieldElement other) { return Equals(other as SecP160R2FieldElement); } public virtual bool Equals(SecP160R2FieldElement other) { if (this == other) return true; if (null == other) return false; return Nat160.Eq(x, other.x); } public override int GetHashCode() { return Q.GetHashCode() ^ Arrays.GetHashCode(x, 0, 5); } } }