using System; using Org.BouncyCastle.Math.Raw; namespace Org.BouncyCastle.Math.EC.Custom.Djb { internal class Curve25519Point : AbstractFpPoint { /** * Create a point which encodes with point compression. * * @param curve the curve to use * @param x affine x co-ordinate * @param y affine y co-ordinate * * @deprecated Use ECCurve.CreatePoint to construct points */ public Curve25519Point(ECCurve curve, ECFieldElement x, ECFieldElement y) : this(curve, x, y, false) { } /** * Create a point that encodes with or without point compresion. * * @param curve the curve to use * @param x affine x co-ordinate * @param y affine y co-ordinate * @param withCompression if true encode with point compression * * @deprecated per-point compression property will be removed, refer {@link #getEncoded(bool)} */ public Curve25519Point(ECCurve curve, ECFieldElement x, ECFieldElement y, bool withCompression) : base(curve, x, y, withCompression) { if ((x == null) != (y == null)) throw new ArgumentException("Exactly one of the field elements is null"); } internal Curve25519Point(ECCurve curve, ECFieldElement x, ECFieldElement y, ECFieldElement[] zs, bool withCompression) : base(curve, x, y, zs, withCompression) { } protected override ECPoint Detach() { return new Curve25519Point(null, AffineXCoord, AffineYCoord); } public override ECFieldElement GetZCoord(int index) { if (index == 1) { return GetJacobianModifiedW(); } return base.GetZCoord(index); } public override ECPoint Add(ECPoint b) { if (this.IsInfinity) return b; if (b.IsInfinity) return this; if (this == b) return Twice(); ECCurve curve = this.Curve; Curve25519FieldElement X1 = (Curve25519FieldElement)this.RawXCoord, Y1 = (Curve25519FieldElement)this.RawYCoord, Z1 = (Curve25519FieldElement)this.RawZCoords[0]; Curve25519FieldElement X2 = (Curve25519FieldElement)b.RawXCoord, Y2 = (Curve25519FieldElement)b.RawYCoord, Z2 = (Curve25519FieldElement)b.RawZCoords[0]; uint c; uint[] tt1 = Nat256.CreateExt(); uint[] t2 = Nat256.Create(); uint[] t3 = Nat256.Create(); uint[] t4 = Nat256.Create(); bool Z1IsOne = Z1.IsOne; uint[] U2, S2; if (Z1IsOne) { U2 = X2.x; S2 = Y2.x; } else { S2 = t3; Curve25519Field.Square(Z1.x, S2); U2 = t2; Curve25519Field.Multiply(S2, X2.x, U2); Curve25519Field.Multiply(S2, Z1.x, S2); Curve25519Field.Multiply(S2, Y2.x, S2); } bool Z2IsOne = Z2.IsOne; uint[] U1, S1; if (Z2IsOne) { U1 = X1.x; S1 = Y1.x; } else { S1 = t4; Curve25519Field.Square(Z2.x, S1); U1 = tt1; Curve25519Field.Multiply(S1, X1.x, U1); Curve25519Field.Multiply(S1, Z2.x, S1); Curve25519Field.Multiply(S1, Y1.x, S1); } uint[] H = Nat256.Create(); Curve25519Field.Subtract(U1, U2, H); uint[] R = t2; Curve25519Field.Subtract(S1, S2, R); // Check if b == this or b == -this if (Nat256.IsZero(H)) { if (Nat256.IsZero(R)) { // this == b, i.e. this must be doubled return this.Twice(); } // this == -b, i.e. the result is the point at infinity return curve.Infinity; } uint[] HSquared = Nat256.Create(); Curve25519Field.Square(H, HSquared); uint[] G = Nat256.Create(); Curve25519Field.Multiply(HSquared, H, G); uint[] V = t3; Curve25519Field.Multiply(HSquared, U1, V); Curve25519Field.Negate(G, G); Nat256.Mul(S1, G, tt1); c = Nat256.AddBothTo(V, V, G); Curve25519Field.Reduce27(c, G); Curve25519FieldElement X3 = new Curve25519FieldElement(t4); Curve25519Field.Square(R, X3.x); Curve25519Field.Subtract(X3.x, G, X3.x); Curve25519FieldElement Y3 = new Curve25519FieldElement(G); Curve25519Field.Subtract(V, X3.x, Y3.x); Curve25519Field.MultiplyAddToExt(Y3.x, R, tt1); Curve25519Field.Reduce(tt1, Y3.x); Curve25519FieldElement Z3 = new Curve25519FieldElement(H); if (!Z1IsOne) { Curve25519Field.Multiply(Z3.x, Z1.x, Z3.x); } if (!Z2IsOne) { Curve25519Field.Multiply(Z3.x, Z2.x, Z3.x); } uint[] Z3Squared = (Z1IsOne && Z2IsOne) ? HSquared : null; // TODO If the result will only be used in a subsequent addition, we don't need W3 Curve25519FieldElement W3 = CalculateJacobianModifiedW((Curve25519FieldElement)Z3, Z3Squared); ECFieldElement[] zs = new ECFieldElement[] { Z3, W3 }; return new Curve25519Point(curve, X3, Y3, zs, IsCompressed); } public override ECPoint Twice() { if (this.IsInfinity) return this; ECCurve curve = this.Curve; ECFieldElement Y1 = this.RawYCoord; if (Y1.IsZero) return curve.Infinity; return TwiceJacobianModified(true); } public override ECPoint TwicePlus(ECPoint b) { if (this == b) return ThreeTimes(); if (this.IsInfinity) return b; if (b.IsInfinity) return Twice(); ECFieldElement Y1 = this.RawYCoord; if (Y1.IsZero) return b; return TwiceJacobianModified(false).Add(b); } public override ECPoint ThreeTimes() { if (this.IsInfinity || this.RawYCoord.IsZero) return this; return TwiceJacobianModified(false).Add(this); } public override ECPoint Negate() { if (IsInfinity) return this; return new Curve25519Point(Curve, RawXCoord, RawYCoord.Negate(), RawZCoords, IsCompressed); } protected virtual Curve25519FieldElement CalculateJacobianModifiedW(Curve25519FieldElement Z, uint[] ZSquared) { Curve25519FieldElement a4 = (Curve25519FieldElement)this.Curve.A; if (Z.IsOne) return a4; Curve25519FieldElement W = new Curve25519FieldElement(); if (ZSquared == null) { ZSquared = W.x; Curve25519Field.Square(Z.x, ZSquared); } Curve25519Field.Square(ZSquared, W.x); Curve25519Field.Multiply(W.x, a4.x, W.x); return W; } protected virtual Curve25519FieldElement GetJacobianModifiedW() { ECFieldElement[] ZZ = this.RawZCoords; Curve25519FieldElement W = (Curve25519FieldElement)ZZ[1]; if (W == null) { // NOTE: Rarely, TwicePlus will result in the need for a lazy W1 calculation here ZZ[1] = W = CalculateJacobianModifiedW((Curve25519FieldElement)ZZ[0], null); } return W; } protected virtual Curve25519Point TwiceJacobianModified(bool calculateW) { Curve25519FieldElement X1 = (Curve25519FieldElement)this.RawXCoord, Y1 = (Curve25519FieldElement)this.RawYCoord, Z1 = (Curve25519FieldElement)this.RawZCoords[0], W1 = GetJacobianModifiedW(); uint c; uint[] M = Nat256.Create(); Curve25519Field.Square(X1.x, M); c = Nat256.AddBothTo(M, M, M); c += Nat256.AddTo(W1.x, M); Curve25519Field.Reduce27(c, M); uint[] _2Y1 = Nat256.Create(); Curve25519Field.Twice(Y1.x, _2Y1); uint[] _2Y1Squared = Nat256.Create(); Curve25519Field.Multiply(_2Y1, Y1.x, _2Y1Squared); uint[] S = Nat256.Create(); Curve25519Field.Multiply(_2Y1Squared, X1.x, S); Curve25519Field.Twice(S, S); uint[] _8T = Nat256.Create(); Curve25519Field.Square(_2Y1Squared, _8T); Curve25519Field.Twice(_8T, _8T); Curve25519FieldElement X3 = new Curve25519FieldElement(_2Y1Squared); Curve25519Field.Square(M, X3.x); Curve25519Field.Subtract(X3.x, S, X3.x); Curve25519Field.Subtract(X3.x, S, X3.x); Curve25519FieldElement Y3 = new Curve25519FieldElement(S); Curve25519Field.Subtract(S, X3.x, Y3.x); Curve25519Field.Multiply(Y3.x, M, Y3.x); Curve25519Field.Subtract(Y3.x, _8T, Y3.x); Curve25519FieldElement Z3 = new Curve25519FieldElement(_2Y1); if (!Nat256.IsOne(Z1.x)) { Curve25519Field.Multiply(Z3.x, Z1.x, Z3.x); } Curve25519FieldElement W3 = null; if (calculateW) { W3 = new Curve25519FieldElement(_8T); Curve25519Field.Multiply(W3.x, W1.x, W3.x); Curve25519Field.Twice(W3.x, W3.x); } return new Curve25519Point(this.Curve, X3, Y3, new ECFieldElement[] { Z3, W3 }, IsCompressed); } } }