using System; using Org.BouncyCastle.Math.Raw; using Org.BouncyCastle.Utilities; namespace Org.BouncyCastle.Math.EC.Custom.Djb { internal class Curve25519FieldElement : AbstractFpFieldElement { public static readonly BigInteger Q = Nat256.ToBigInteger(Curve25519Field.P); // Calculated as ECConstants.TWO.modPow(Q.shiftRight(2), Q) private static readonly uint[] PRECOMP_POW2 = new uint[]{ 0x4a0ea0b0, 0xc4ee1b27, 0xad2fe478, 0x2f431806, 0x3dfbd7a7, 0x2b4d0099, 0x4fc1df0b, 0x2b832480 }; protected internal readonly uint[] x; public Curve25519FieldElement(BigInteger x) { if (x == null || x.SignValue < 0 || x.CompareTo(Q) >= 0) throw new ArgumentException("value invalid for Curve25519FieldElement", "x"); this.x = Curve25519Field.FromBigInteger(x); } public Curve25519FieldElement() { this.x = Nat256.Create(); } protected internal Curve25519FieldElement(uint[] x) { this.x = x; } public override bool IsZero { get { return Nat256.IsZero(x); } } public override bool IsOne { get { return Nat256.IsOne(x); } } public override bool TestBitZero() { return Nat256.GetBit(x, 0) == 1; } public override BigInteger ToBigInteger() { return Nat256.ToBigInteger(x); } public override string FieldName { get { return "Curve25519Field"; } } public override int FieldSize { get { return Q.BitLength; } } public override ECFieldElement Add(ECFieldElement b) { uint[] z = Nat256.Create(); Curve25519Field.Add(x, ((Curve25519FieldElement)b).x, z); return new Curve25519FieldElement(z); } public override ECFieldElement AddOne() { uint[] z = Nat256.Create(); Curve25519Field.AddOne(x, z); return new Curve25519FieldElement(z); } public override ECFieldElement Subtract(ECFieldElement b) { uint[] z = Nat256.Create(); Curve25519Field.Subtract(x, ((Curve25519FieldElement)b).x, z); return new Curve25519FieldElement(z); } public override ECFieldElement Multiply(ECFieldElement b) { uint[] z = Nat256.Create(); Curve25519Field.Multiply(x, ((Curve25519FieldElement)b).x, z); return new Curve25519FieldElement(z); } public override ECFieldElement Divide(ECFieldElement b) { //return Multiply(b.Invert()); uint[] z = Nat256.Create(); Curve25519Field.Inv(((Curve25519FieldElement)b).x, z); Curve25519Field.Multiply(z, x, z); return new Curve25519FieldElement(z); } public override ECFieldElement Negate() { uint[] z = Nat256.Create(); Curve25519Field.Negate(x, z); return new Curve25519FieldElement(z); } public override ECFieldElement Square() { uint[] z = Nat256.Create(); Curve25519Field.Square(x, z); return new Curve25519FieldElement(z); } public override ECFieldElement Invert() { //return new Curve25519FieldElement(ToBigInteger().ModInverse(Q)); uint[] z = Nat256.Create(); Curve25519Field.Inv(x, z); return new Curve25519FieldElement(z); } /** * return a sqrt root - the routine verifies that the calculation returns the right value - if * none exists it returns null. */ public override ECFieldElement Sqrt() { /* * Q == 8m + 5, so we use Pocklington's method for this case. * * First, raise this element to the exponent 2^252 - 2^1 (i.e. m + 1) * * Breaking up the exponent's binary representation into "repunits", we get: * { 251 1s } { 1 0s } * * Therefore we need an addition chain containing 251 (the lengths of the repunits) * We use: 1, 2, 3, 4, 7, 11, 15, 30, 60, 120, 131, [251] */ uint[] x1 = this.x; if (Nat256.IsZero(x1) || Nat256.IsOne(x1)) return this; uint[] x2 = Nat256.Create(); Curve25519Field.Square(x1, x2); Curve25519Field.Multiply(x2, x1, x2); uint[] x3 = x2; Curve25519Field.Square(x2, x3); Curve25519Field.Multiply(x3, x1, x3); uint[] x4 = Nat256.Create(); Curve25519Field.Square(x3, x4); Curve25519Field.Multiply(x4, x1, x4); uint[] x7 = Nat256.Create(); Curve25519Field.SquareN(x4, 3, x7); Curve25519Field.Multiply(x7, x3, x7); uint[] x11 = x3; Curve25519Field.SquareN(x7, 4, x11); Curve25519Field.Multiply(x11, x4, x11); uint[] x15 = x7; Curve25519Field.SquareN(x11, 4, x15); Curve25519Field.Multiply(x15, x4, x15); uint[] x30 = x4; Curve25519Field.SquareN(x15, 15, x30); Curve25519Field.Multiply(x30, x15, x30); uint[] x60 = x15; Curve25519Field.SquareN(x30, 30, x60); Curve25519Field.Multiply(x60, x30, x60); uint[] x120 = x30; Curve25519Field.SquareN(x60, 60, x120); Curve25519Field.Multiply(x120, x60, x120); uint[] x131 = x60; Curve25519Field.SquareN(x120, 11, x131); Curve25519Field.Multiply(x131, x11, x131); uint[] x251 = x11; Curve25519Field.SquareN(x131, 120, x251); Curve25519Field.Multiply(x251, x120, x251); uint[] t1 = x251; Curve25519Field.Square(t1, t1); uint[] t2 = x120; Curve25519Field.Square(t1, t2); if (Nat256.Eq(x1, t2)) { return new Curve25519FieldElement(t1); } /* * If the first guess is incorrect, we multiply by a precomputed power of 2 to get the second guess, * which is ((4x)^(m + 1))/2 mod Q */ Curve25519Field.Multiply(t1, PRECOMP_POW2, t1); Curve25519Field.Square(t1, t2); if (Nat256.Eq(x1, t2)) { return new Curve25519FieldElement(t1); } return null; } public override bool Equals(object obj) { return Equals(obj as Curve25519FieldElement); } public override bool Equals(ECFieldElement other) { return Equals(other as Curve25519FieldElement); } public virtual bool Equals(Curve25519FieldElement other) { if (this == other) return true; if (null == other) return false; return Nat256.Eq(x, other.x); } public override int GetHashCode() { return Q.GetHashCode() ^ Arrays.GetHashCode(x, 0, 8); } } }