using System; using System.Collections; using System.Diagnostics; using System.Text; using Org.BouncyCastle.Math.EC.Multiplier; namespace Org.BouncyCastle.Math.EC { /** * base class for points on elliptic curves. */ public abstract class ECPoint { protected static ECFieldElement[] EMPTY_ZS = new ECFieldElement[0]; protected static ECFieldElement[] GetInitialZCoords(ECCurve curve) { // Cope with null curve, most commonly used by implicitlyCa int coord = null == curve ? ECCurve.COORD_AFFINE : curve.CoordinateSystem; switch (coord) { case ECCurve.COORD_AFFINE: case ECCurve.COORD_LAMBDA_AFFINE: return EMPTY_ZS; default: break; } ECFieldElement one = curve.FromBigInteger(BigInteger.One); switch (coord) { case ECCurve.COORD_HOMOGENEOUS: case ECCurve.COORD_JACOBIAN: case ECCurve.COORD_LAMBDA_PROJECTIVE: return new ECFieldElement[] { one }; case ECCurve.COORD_JACOBIAN_CHUDNOVSKY: return new ECFieldElement[] { one, one, one }; case ECCurve.COORD_JACOBIAN_MODIFIED: return new ECFieldElement[] { one, curve.A }; default: throw new ArgumentException("unknown coordinate system"); } } protected internal readonly ECCurve m_curve; protected internal readonly ECFieldElement m_x, m_y; protected internal readonly ECFieldElement[] m_zs; protected internal readonly bool m_withCompression; protected internal PreCompInfo m_preCompInfo = null; protected ECPoint(ECCurve curve, ECFieldElement x, ECFieldElement y, bool withCompression) : this(curve, x, y, GetInitialZCoords(curve), withCompression) { } internal ECPoint(ECCurve curve, ECFieldElement x, ECFieldElement y, ECFieldElement[] zs, bool withCompression) { this.m_curve = curve; this.m_x = x; this.m_y = y; this.m_zs = zs; this.m_withCompression = withCompression; } public ECPoint GetDetachedPoint() { return Normalize().Detach(); } public virtual ECCurve Curve { get { return m_curve; } } protected abstract ECPoint Detach(); protected virtual int CurveCoordinateSystem { get { // Cope with null curve, most commonly used by implicitlyCa return null == m_curve ? ECCurve.COORD_AFFINE : m_curve.CoordinateSystem; } } /** * Normalizes this point, and then returns the affine x-coordinate. * * Note: normalization can be expensive, this method is deprecated in favour * of caller-controlled normalization. */ [Obsolete("Use AffineXCoord, or Normalize() and XCoord, instead")] public virtual ECFieldElement X { get { return Normalize().XCoord; } } /** * Normalizes this point, and then returns the affine y-coordinate. * * Note: normalization can be expensive, this method is deprecated in favour * of caller-controlled normalization. */ [Obsolete("Use AffineYCoord, or Normalize() and YCoord, instead")] public virtual ECFieldElement Y { get { return Normalize().YCoord; } } /** * Returns the affine x-coordinate after checking that this point is normalized. * * @return The affine x-coordinate of this point * @throws IllegalStateException if the point is not normalized */ public virtual ECFieldElement AffineXCoord { get { CheckNormalized(); return XCoord; } } /** * Returns the affine y-coordinate after checking that this point is normalized * * @return The affine y-coordinate of this point * @throws IllegalStateException if the point is not normalized */ public virtual ECFieldElement AffineYCoord { get { CheckNormalized(); return YCoord; } } /** * Returns the x-coordinate. * * Caution: depending on the curve's coordinate system, this may not be the same value as in an * affine coordinate system; use Normalize() to get a point where the coordinates have their * affine values, or use AffineXCoord if you expect the point to already have been normalized. * * @return the x-coordinate of this point */ public virtual ECFieldElement XCoord { get { return m_x; } } /** * Returns the y-coordinate. * * Caution: depending on the curve's coordinate system, this may not be the same value as in an * affine coordinate system; use Normalize() to get a point where the coordinates have their * affine values, or use AffineYCoord if you expect the point to already have been normalized. * * @return the y-coordinate of this point */ public virtual ECFieldElement YCoord { get { return m_y; } } public virtual ECFieldElement GetZCoord(int index) { return (index < 0 || index >= m_zs.Length) ? null : m_zs[index]; } public virtual ECFieldElement[] GetZCoords() { int zsLen = m_zs.Length; if (zsLen == 0) { return m_zs; } ECFieldElement[] copy = new ECFieldElement[zsLen]; Array.Copy(m_zs, 0, copy, 0, zsLen); return copy; } protected internal ECFieldElement RawXCoord { get { return m_x; } } protected internal ECFieldElement RawYCoord { get { return m_y; } } protected internal ECFieldElement[] RawZCoords { get { return m_zs; } } protected virtual void CheckNormalized() { if (!IsNormalized()) throw new InvalidOperationException("point not in normal form"); } public virtual bool IsNormalized() { int coord = this.CurveCoordinateSystem; return coord == ECCurve.COORD_AFFINE || coord == ECCurve.COORD_LAMBDA_AFFINE || IsInfinity || RawZCoords[0].IsOne; } /** * Normalization ensures that any projective coordinate is 1, and therefore that the x, y * coordinates reflect those of the equivalent point in an affine coordinate system. * * @return a new ECPoint instance representing the same point, but with normalized coordinates */ public virtual ECPoint Normalize() { if (this.IsInfinity) { return this; } switch (this.CurveCoordinateSystem) { case ECCurve.COORD_AFFINE: case ECCurve.COORD_LAMBDA_AFFINE: { return this; } default: { ECFieldElement Z1 = RawZCoords[0]; if (Z1.IsOne) { return this; } return Normalize(Z1.Invert()); } } } internal virtual ECPoint Normalize(ECFieldElement zInv) { switch (this.CurveCoordinateSystem) { case ECCurve.COORD_HOMOGENEOUS: case ECCurve.COORD_LAMBDA_PROJECTIVE: { return CreateScaledPoint(zInv, zInv); } case ECCurve.COORD_JACOBIAN: case ECCurve.COORD_JACOBIAN_CHUDNOVSKY: case ECCurve.COORD_JACOBIAN_MODIFIED: { ECFieldElement zInv2 = zInv.Square(), zInv3 = zInv2.Multiply(zInv); return CreateScaledPoint(zInv2, zInv3); } default: { throw new InvalidOperationException("not a projective coordinate system"); } } } protected virtual ECPoint CreateScaledPoint(ECFieldElement sx, ECFieldElement sy) { return Curve.CreateRawPoint(RawXCoord.Multiply(sx), RawYCoord.Multiply(sy), IsCompressed); } public bool IsInfinity { get { return m_x == null && m_y == null; } } public bool IsCompressed { get { return m_withCompression; } } public override bool Equals(object obj) { return Equals(obj as ECPoint); } public virtual bool Equals(ECPoint other) { if (this == other) return true; if (null == other) return false; ECCurve c1 = this.Curve, c2 = other.Curve; bool n1 = (null == c1), n2 = (null == c2); bool i1 = IsInfinity, i2 = other.IsInfinity; if (i1 || i2) { return (i1 && i2) && (n1 || n2 || c1.Equals(c2)); } ECPoint p1 = this, p2 = other; if (n1 && n2) { // Points with null curve are in affine form, so already normalized } else if (n1) { p2 = p2.Normalize(); } else if (n2) { p1 = p1.Normalize(); } else if (!c1.Equals(c2)) { return false; } else { // TODO Consider just requiring already normalized, to avoid silent performance degradation ECPoint[] points = new ECPoint[] { this, c1.ImportPoint(p2) }; // TODO This is a little strong, really only requires coZNormalizeAll to get Zs equal c1.NormalizeAll(points); p1 = points[0]; p2 = points[1]; } return p1.XCoord.Equals(p2.XCoord) && p1.YCoord.Equals(p2.YCoord); } public override int GetHashCode() { ECCurve c = this.Curve; int hc = (null == c) ? 0 : ~c.GetHashCode(); if (!this.IsInfinity) { // TODO Consider just requiring already normalized, to avoid silent performance degradation ECPoint p = Normalize(); hc ^= p.XCoord.GetHashCode() * 17; hc ^= p.YCoord.GetHashCode() * 257; } return hc; } public override string ToString() { if (this.IsInfinity) { return "INF"; } StringBuilder sb = new StringBuilder(); sb.Append('('); sb.Append(RawXCoord); sb.Append(','); sb.Append(RawYCoord); for (int i = 0; i < m_zs.Length; ++i) { sb.Append(','); sb.Append(m_zs[i]); } sb.Append(')'); return sb.ToString(); } public virtual byte[] GetEncoded() { return GetEncoded(m_withCompression); } public abstract byte[] GetEncoded(bool compressed); protected internal abstract bool CompressionYTilde { get; } public abstract ECPoint Add(ECPoint b); public abstract ECPoint Subtract(ECPoint b); public abstract ECPoint Negate(); public virtual ECPoint TimesPow2(int e) { if (e < 0) throw new ArgumentException("cannot be negative", "e"); ECPoint p = this; while (--e >= 0) { p = p.Twice(); } return p; } public abstract ECPoint Twice(); public abstract ECPoint Multiply(BigInteger b); public virtual ECPoint TwicePlus(ECPoint b) { return Twice().Add(b); } public virtual ECPoint ThreeTimes() { return TwicePlus(this); } } public abstract class ECPointBase : ECPoint { protected internal ECPointBase( ECCurve curve, ECFieldElement x, ECFieldElement y, bool withCompression) : base(curve, x, y, withCompression) { } protected internal ECPointBase(ECCurve curve, ECFieldElement x, ECFieldElement y, ECFieldElement[] zs, bool withCompression) : base(curve, x, y, zs, withCompression) { } /** * return the field element encoded with point compression. (S 4.3.6) */ public override byte[] GetEncoded(bool compressed) { if (this.IsInfinity) { return new byte[1]; } ECPoint normed = Normalize(); byte[] X = normed.XCoord.GetEncoded(); if (compressed) { byte[] PO = new byte[X.Length + 1]; PO[0] = (byte)(normed.CompressionYTilde ? 0x03 : 0x02); Array.Copy(X, 0, PO, 1, X.Length); return PO; } byte[] Y = normed.YCoord.GetEncoded(); { byte[] PO = new byte[X.Length + Y.Length + 1]; PO[0] = 0x04; Array.Copy(X, 0, PO, 1, X.Length); Array.Copy(Y, 0, PO, X.Length + 1, Y.Length); return PO; } } /** * Multiplies this ECPoint by the given number. * @param k The multiplicator. * @return k * this. */ public override ECPoint Multiply(BigInteger k) { return this.Curve.GetMultiplier().Multiply(this, k); } } /** * Elliptic curve points over Fp */ public class FpPoint : ECPointBase { /** * Create a point which encodes with point compression. * * @param curve the curve to use * @param x affine x co-ordinate * @param y affine y co-ordinate */ public FpPoint(ECCurve curve, ECFieldElement x, ECFieldElement y) : this(curve, x, y, false) { } /** * Create a point that encodes with or without point compresion. * * @param curve the curve to use * @param x affine x co-ordinate * @param y affine y co-ordinate * @param withCompression if true encode with point compression */ public FpPoint(ECCurve curve, ECFieldElement x, ECFieldElement y, bool withCompression) : base(curve, x, y, withCompression) { if ((x == null) != (y == null)) throw new ArgumentException("Exactly one of the field elements is null"); } internal FpPoint(ECCurve curve, ECFieldElement x, ECFieldElement y, ECFieldElement[] zs, bool withCompression) : base(curve, x, y, zs, withCompression) { } protected override ECPoint Detach() { return new FpPoint(null, AffineXCoord, AffineYCoord); } protected internal override bool CompressionYTilde { get { return this.AffineYCoord.TestBitZero(); } } public override ECFieldElement GetZCoord(int index) { if (index == 1 && ECCurve.COORD_JACOBIAN_MODIFIED == this.CurveCoordinateSystem) { return GetJacobianModifiedW(); } return base.GetZCoord(index); } // B.3 pg 62 public override ECPoint Add(ECPoint b) { if (this.IsInfinity) return b; if (b.IsInfinity) return this; if (this == b) return Twice(); ECCurve curve = this.Curve; int coord = curve.CoordinateSystem; ECFieldElement X1 = this.RawXCoord, Y1 = this.RawYCoord; ECFieldElement X2 = b.RawXCoord, Y2 = b.RawYCoord; switch (coord) { case ECCurve.COORD_AFFINE: { ECFieldElement dx = X2.Subtract(X1), dy = Y2.Subtract(Y1); if (dx.IsZero) { if (dy.IsZero) { // this == b, i.e. this must be doubled return Twice(); } // this == -b, i.e. the result is the point at infinity return Curve.Infinity; } ECFieldElement gamma = dy.Divide(dx); ECFieldElement X3 = gamma.Square().Subtract(X1).Subtract(X2); ECFieldElement Y3 = gamma.Multiply(X1.Subtract(X3)).Subtract(Y1); return new FpPoint(Curve, X3, Y3, IsCompressed); } case ECCurve.COORD_HOMOGENEOUS: { ECFieldElement Z1 = this.RawZCoords[0]; ECFieldElement Z2 = b.RawZCoords[0]; bool Z1IsOne = Z1.IsOne; bool Z2IsOne = Z2.IsOne; ECFieldElement u1 = Z1IsOne ? Y2 : Y2.Multiply(Z1); ECFieldElement u2 = Z2IsOne ? Y1 : Y1.Multiply(Z2); ECFieldElement u = u1.Subtract(u2); ECFieldElement v1 = Z1IsOne ? X2 : X2.Multiply(Z1); ECFieldElement v2 = Z2IsOne ? X1 : X1.Multiply(Z2); ECFieldElement v = v1.Subtract(v2); // Check if b == this or b == -this if (v.IsZero) { if (u.IsZero) { // this == b, i.e. this must be doubled return this.Twice(); } // this == -b, i.e. the result is the point at infinity return curve.Infinity; } // TODO Optimize for when w == 1 ECFieldElement w = Z1IsOne ? Z2 : Z2IsOne ? Z1 : Z1.Multiply(Z2); ECFieldElement vSquared = v.Square(); ECFieldElement vCubed = vSquared.Multiply(v); ECFieldElement vSquaredV2 = vSquared.Multiply(v2); ECFieldElement A = u.Square().Multiply(w).Subtract(vCubed).Subtract(Two(vSquaredV2)); ECFieldElement X3 = v.Multiply(A); ECFieldElement Y3 = vSquaredV2.Subtract(A).Multiply(u).Subtract(vCubed.Multiply(u2)); ECFieldElement Z3 = vCubed.Multiply(w); return new FpPoint(curve, X3, Y3, new ECFieldElement[] { Z3 }, IsCompressed); } case ECCurve.COORD_JACOBIAN: case ECCurve.COORD_JACOBIAN_MODIFIED: { ECFieldElement Z1 = this.RawZCoords[0]; ECFieldElement Z2 = b.RawZCoords[0]; bool Z1IsOne = Z1.IsOne; ECFieldElement X3, Y3, Z3, Z3Squared = null; if (!Z1IsOne && Z1.Equals(Z2)) { // TODO Make this available as public method coZAdd? ECFieldElement dx = X1.Subtract(X2), dy = Y1.Subtract(Y2); if (dx.IsZero) { if (dy.IsZero) { return Twice(); } return curve.Infinity; } ECFieldElement C = dx.Square(); ECFieldElement W1 = X1.Multiply(C), W2 = X2.Multiply(C); ECFieldElement A1 = W1.Subtract(W2).Multiply(Y1); X3 = dy.Square().Subtract(W1).Subtract(W2); Y3 = W1.Subtract(X3).Multiply(dy).Subtract(A1); Z3 = dx; if (Z1IsOne) { Z3Squared = C; } else { Z3 = Z3.Multiply(Z1); } } else { ECFieldElement Z1Squared, U2, S2; if (Z1IsOne) { Z1Squared = Z1; U2 = X2; S2 = Y2; } else { Z1Squared = Z1.Square(); U2 = Z1Squared.Multiply(X2); ECFieldElement Z1Cubed = Z1Squared.Multiply(Z1); S2 = Z1Cubed.Multiply(Y2); } bool Z2IsOne = Z2.IsOne; ECFieldElement Z2Squared, U1, S1; if (Z2IsOne) { Z2Squared = Z2; U1 = X1; S1 = Y1; } else { Z2Squared = Z2.Square(); U1 = Z2Squared.Multiply(X1); ECFieldElement Z2Cubed = Z2Squared.Multiply(Z2); S1 = Z2Cubed.Multiply(Y1); } ECFieldElement H = U1.Subtract(U2); ECFieldElement R = S1.Subtract(S2); // Check if b == this or b == -this if (H.IsZero) { if (R.IsZero) { // this == b, i.e. this must be doubled return this.Twice(); } // this == -b, i.e. the result is the point at infinity return curve.Infinity; } ECFieldElement HSquared = H.Square(); ECFieldElement G = HSquared.Multiply(H); ECFieldElement V = HSquared.Multiply(U1); X3 = R.Square().Add(G).Subtract(Two(V)); Y3 = V.Subtract(X3).Multiply(R).Subtract(S1.Multiply(G)); Z3 = H; if (!Z1IsOne) { Z3 = Z3.Multiply(Z1); } if (!Z2IsOne) { Z3 = Z3.Multiply(Z2); } // Alternative calculation of Z3 using fast square //X3 = four(X3); //Y3 = eight(Y3); //Z3 = doubleProductFromSquares(Z1, Z2, Z1Squared, Z2Squared).multiply(H); if (Z3 == H) { Z3Squared = HSquared; } } ECFieldElement[] zs; if (coord == ECCurve.COORD_JACOBIAN_MODIFIED) { // TODO If the result will only be used in a subsequent addition, we don't need W3 ECFieldElement W3 = CalculateJacobianModifiedW(Z3, Z3Squared); zs = new ECFieldElement[] { Z3, W3 }; } else { zs = new ECFieldElement[] { Z3 }; } return new FpPoint(curve, X3, Y3, zs, IsCompressed); } default: { throw new InvalidOperationException("unsupported coordinate system"); } } } // B.3 pg 62 public override ECPoint Twice() { if (this.IsInfinity) return this; ECCurve curve = this.Curve; ECFieldElement Y1 = this.RawYCoord; if (Y1.IsZero) return curve.Infinity; int coord = curve.CoordinateSystem; ECFieldElement X1 = this.RawXCoord; switch (coord) { case ECCurve.COORD_AFFINE: { ECFieldElement X1Squared = X1.Square(); ECFieldElement gamma = Three(X1Squared).Add(this.Curve.A).Divide(Two(Y1)); ECFieldElement X3 = gamma.Square().Subtract(Two(X1)); ECFieldElement Y3 = gamma.Multiply(X1.Subtract(X3)).Subtract(Y1); return new FpPoint(Curve, X3, Y3, IsCompressed); } case ECCurve.COORD_HOMOGENEOUS: { ECFieldElement Z1 = this.RawZCoords[0]; bool Z1IsOne = Z1.IsOne; // TODO Optimize for small negative a4 and -3 ECFieldElement w = curve.A; if (!w.IsZero && !Z1IsOne) { w = w.Multiply(Z1.Square()); } w = w.Add(Three(X1.Square())); ECFieldElement s = Z1IsOne ? Y1 : Y1.Multiply(Z1); ECFieldElement t = Z1IsOne ? Y1.Square() : s.Multiply(Y1); ECFieldElement B = X1.Multiply(t); ECFieldElement _4B = Four(B); ECFieldElement h = w.Square().Subtract(Two(_4B)); ECFieldElement _2s = Two(s); ECFieldElement X3 = h.Multiply(_2s); ECFieldElement _2t = Two(t); ECFieldElement Y3 = _4B.Subtract(h).Multiply(w).Subtract(Two(_2t.Square())); ECFieldElement _4sSquared = Z1IsOne ? Two(_2t) : _2s.Square(); ECFieldElement Z3 = Two(_4sSquared).Multiply(s); return new FpPoint(curve, X3, Y3, new ECFieldElement[] { Z3 }, IsCompressed); } case ECCurve.COORD_JACOBIAN: { ECFieldElement Z1 = this.RawZCoords[0]; bool Z1IsOne = Z1.IsOne; ECFieldElement Y1Squared = Y1.Square(); ECFieldElement T = Y1Squared.Square(); ECFieldElement a4 = curve.A; ECFieldElement a4Neg = a4.Negate(); ECFieldElement M, S; if (a4Neg.ToBigInteger().Equals(BigInteger.ValueOf(3))) { ECFieldElement Z1Squared = Z1IsOne ? Z1 : Z1.Square(); M = Three(X1.Add(Z1Squared).Multiply(X1.Subtract(Z1Squared))); S = Four(Y1Squared.Multiply(X1)); } else { ECFieldElement X1Squared = X1.Square(); M = Three(X1Squared); if (Z1IsOne) { M = M.Add(a4); } else if (!a4.IsZero) { ECFieldElement Z1Squared = Z1IsOne ? Z1 : Z1.Square(); ECFieldElement Z1Pow4 = Z1Squared.Square(); if (a4Neg.BitLength < a4.BitLength) { M = M.Subtract(Z1Pow4.Multiply(a4Neg)); } else { M = M.Add(Z1Pow4.Multiply(a4)); } } //S = two(doubleProductFromSquares(X1, Y1Squared, X1Squared, T)); S = Four(X1.Multiply(Y1Squared)); } ECFieldElement X3 = M.Square().Subtract(Two(S)); ECFieldElement Y3 = S.Subtract(X3).Multiply(M).Subtract(Eight(T)); ECFieldElement Z3 = Two(Y1); if (!Z1IsOne) { Z3 = Z3.Multiply(Z1); } // Alternative calculation of Z3 using fast square //ECFieldElement Z3 = doubleProductFromSquares(Y1, Z1, Y1Squared, Z1Squared); return new FpPoint(curve, X3, Y3, new ECFieldElement[] { Z3 }, IsCompressed); } case ECCurve.COORD_JACOBIAN_MODIFIED: { return TwiceJacobianModified(true); } default: { throw new InvalidOperationException("unsupported coordinate system"); } } } public override ECPoint TwicePlus(ECPoint b) { if (this == b) return ThreeTimes(); if (this.IsInfinity) return b; if (b.IsInfinity) return Twice(); ECFieldElement Y1 = this.RawYCoord; if (Y1.IsZero) return b; ECCurve curve = this.Curve; int coord = curve.CoordinateSystem; switch (coord) { case ECCurve.COORD_AFFINE: { ECFieldElement X1 = this.RawXCoord; ECFieldElement X2 = b.RawXCoord, Y2 = b.RawYCoord; ECFieldElement dx = X2.Subtract(X1), dy = Y2.Subtract(Y1); if (dx.IsZero) { if (dy.IsZero) { // this == b i.e. the result is 3P return ThreeTimes(); } // this == -b, i.e. the result is P return this; } /* * Optimized calculation of 2P + Q, as described in "Trading Inversions for * Multiplications in Elliptic Curve Cryptography", by Ciet, Joye, Lauter, Montgomery. */ ECFieldElement X = dx.Square(), Y = dy.Square(); ECFieldElement d = X.Multiply(Two(X1).Add(X2)).Subtract(Y); if (d.IsZero) { return Curve.Infinity; } ECFieldElement D = d.Multiply(dx); ECFieldElement I = D.Invert(); ECFieldElement L1 = d.Multiply(I).Multiply(dy); ECFieldElement L2 = Two(Y1).Multiply(X).Multiply(dx).Multiply(I).Subtract(L1); ECFieldElement X4 = (L2.Subtract(L1)).Multiply(L1.Add(L2)).Add(X2); ECFieldElement Y4 = (X1.Subtract(X4)).Multiply(L2).Subtract(Y1); return new FpPoint(Curve, X4, Y4, IsCompressed); } case ECCurve.COORD_JACOBIAN_MODIFIED: { return TwiceJacobianModified(false).Add(b); } default: { return Twice().Add(b); } } } public override ECPoint ThreeTimes() { if (this.IsInfinity) return this; ECFieldElement Y1 = this.RawYCoord; if (Y1.IsZero) return this; ECCurve curve = this.Curve; int coord = curve.CoordinateSystem; switch (coord) { case ECCurve.COORD_AFFINE: { ECFieldElement X1 = this.RawXCoord; ECFieldElement _2Y1 = Two(Y1); ECFieldElement X = _2Y1.Square(); ECFieldElement Z = Three(X1.Square()).Add(Curve.A); ECFieldElement Y = Z.Square(); ECFieldElement d = Three(X1).Multiply(X).Subtract(Y); if (d.IsZero) { return Curve.Infinity; } ECFieldElement D = d.Multiply(_2Y1); ECFieldElement I = D.Invert(); ECFieldElement L1 = d.Multiply(I).Multiply(Z); ECFieldElement L2 = X.Square().Multiply(I).Subtract(L1); ECFieldElement X4 = (L2.Subtract(L1)).Multiply(L1.Add(L2)).Add(X1); ECFieldElement Y4 = (X1.Subtract(X4)).Multiply(L2).Subtract(Y1); return new FpPoint(Curve, X4, Y4, IsCompressed); } case ECCurve.COORD_JACOBIAN_MODIFIED: { return TwiceJacobianModified(false).Add(this); } default: { // NOTE: Be careful about recursions between TwicePlus and ThreeTimes return Twice().Add(this); } } } protected virtual ECFieldElement Two(ECFieldElement x) { return x.Add(x); } protected virtual ECFieldElement Three(ECFieldElement x) { return Two(x).Add(x); } protected virtual ECFieldElement Four(ECFieldElement x) { return Two(Two(x)); } protected virtual ECFieldElement Eight(ECFieldElement x) { return Four(Two(x)); } protected virtual ECFieldElement DoubleProductFromSquares(ECFieldElement a, ECFieldElement b, ECFieldElement aSquared, ECFieldElement bSquared) { /* * NOTE: If squaring in the field is faster than multiplication, then this is a quicker * way to calculate 2.A.B, if A^2 and B^2 are already known. */ return a.Add(b).Square().Subtract(aSquared).Subtract(bSquared); } // D.3.2 pg 102 (see Note:) public override ECPoint Subtract( ECPoint b) { if (b.IsInfinity) return this; // Add -b return Add(b.Negate()); } public override ECPoint Negate() { if (IsInfinity) return this; ECCurve curve = Curve; int coord = curve.CoordinateSystem; if (ECCurve.COORD_AFFINE != coord) { return new FpPoint(curve, RawXCoord, RawYCoord.Negate(), RawZCoords, IsCompressed); } return new FpPoint(curve, RawXCoord, RawYCoord.Negate(), IsCompressed); } protected virtual ECFieldElement CalculateJacobianModifiedW(ECFieldElement Z, ECFieldElement ZSquared) { ECFieldElement a4 = this.Curve.A; if (a4.IsZero) return a4; if (ZSquared == null) { ZSquared = Z.Square(); } ECFieldElement W = ZSquared.Square(); ECFieldElement a4Neg = a4.Negate(); if (a4Neg.BitLength < a4.BitLength) { W = W.Multiply(a4Neg).Negate(); } else { W = W.Multiply(a4); } return W; } protected virtual ECFieldElement GetJacobianModifiedW() { ECFieldElement[] ZZ = this.RawZCoords; ECFieldElement W = ZZ[1]; if (W == null) { // NOTE: Rarely, twicePlus will result in the need for a lazy W1 calculation here ZZ[1] = W = CalculateJacobianModifiedW(ZZ[0], null); } return W; } protected FpPoint TwiceJacobianModified(bool calculateW) { ECFieldElement X1 = this.RawXCoord, Y1 = this.RawYCoord, Z1 = this.RawZCoords[0], W1 = GetJacobianModifiedW(); ECFieldElement X1Squared = X1.Square(); ECFieldElement M = Three(X1Squared).Add(W1); ECFieldElement _2Y1 = Two(Y1); ECFieldElement _2Y1Squared = _2Y1.Multiply(Y1); ECFieldElement S = Two(X1.Multiply(_2Y1Squared)); ECFieldElement X3 = M.Square().Subtract(Two(S)); ECFieldElement _4T = _2Y1Squared.Square(); ECFieldElement _8T = Two(_4T); ECFieldElement Y3 = M.Multiply(S.Subtract(X3)).Subtract(_8T); ECFieldElement W3 = calculateW ? Two(_8T.Multiply(W1)) : null; ECFieldElement Z3 = Z1.IsOne ? _2Y1 : _2Y1.Multiply(Z1); return new FpPoint(this.Curve, X3, Y3, new ECFieldElement[] { Z3, W3 }, IsCompressed); } } /** * Elliptic curve points over F2m */ public class F2mPoint : ECPointBase { /** * @param curve base curve * @param x x point * @param y y point */ public F2mPoint( ECCurve curve, ECFieldElement x, ECFieldElement y) : this(curve, x, y, false) { } /** * @param curve base curve * @param x x point * @param y y point * @param withCompression true if encode with point compression. */ public F2mPoint( ECCurve curve, ECFieldElement x, ECFieldElement y, bool withCompression) : base(curve, x, y, withCompression) { if ((x == null) != (y == null)) { throw new ArgumentException("Exactly one of the field elements is null"); } if (x != null) { // Check if x and y are elements of the same field F2mFieldElement.CheckFieldElements(x, y); // Check if x and a are elements of the same field if (curve != null) { F2mFieldElement.CheckFieldElements(x, curve.A); } } } internal F2mPoint(ECCurve curve, ECFieldElement x, ECFieldElement y, ECFieldElement[] zs, bool withCompression) : base(curve, x, y, zs, withCompression) { } /** * Constructor for point at infinity */ [Obsolete("Use ECCurve.Infinity property")] public F2mPoint( ECCurve curve) : this(curve, null, null) { } protected override ECPoint Detach() { return new F2mPoint(null, AffineXCoord, AffineYCoord); } public override ECFieldElement YCoord { get { int coord = this.CurveCoordinateSystem; switch (coord) { case ECCurve.COORD_LAMBDA_AFFINE: case ECCurve.COORD_LAMBDA_PROJECTIVE: { ECFieldElement X = RawXCoord, L = RawYCoord; if (this.IsInfinity || X.IsZero) return L; // Y is actually Lambda (X + Y/X) here; convert to affine value on the fly ECFieldElement Y = L.Add(X).Multiply(X); if (ECCurve.COORD_LAMBDA_PROJECTIVE == coord) { ECFieldElement Z = RawZCoords[0]; if (!Z.IsOne) { Y = Y.Divide(Z); } } return Y; } default: { return RawYCoord; } } } } protected internal override bool CompressionYTilde { get { ECFieldElement X = this.RawXCoord; if (X.IsZero) { return false; } ECFieldElement Y = this.RawYCoord; switch (this.CurveCoordinateSystem) { case ECCurve.COORD_LAMBDA_AFFINE: case ECCurve.COORD_LAMBDA_PROJECTIVE: { // Y is actually Lambda (X + Y/X) here return Y.TestBitZero() != X.TestBitZero(); } default: { return Y.Divide(X).TestBitZero(); } } } } /** * Check, if two ECPoints can be added or subtracted. * @param a The first ECPoint to check. * @param b The second ECPoint to check. * @throws IllegalArgumentException if a and b * cannot be added. */ private static void CheckPoints( ECPoint a, ECPoint b) { // Check, if points are on the same curve if (!a.Curve.Equals(b.Curve)) throw new ArgumentException("Only points on the same curve can be added or subtracted"); // F2mFieldElement.CheckFieldElements(a.x, b.x); } /* (non-Javadoc) * @see org.bouncycastle.math.ec.ECPoint#add(org.bouncycastle.math.ec.ECPoint) */ public override ECPoint Add(ECPoint b) { CheckPoints(this, b); return AddSimple((F2mPoint) b); } /** * Adds another ECPoints.F2m to this without * checking if both points are on the same curve. Used by multiplication * algorithms, because there all points are a multiple of the same point * and hence the checks can be omitted. * @param b The other ECPoints.F2m to add to * this. * @return this + b */ internal F2mPoint AddSimple(F2mPoint b) { if (this.IsInfinity) return b; if (b.IsInfinity) return this; ECCurve curve = this.Curve; int coord = curve.CoordinateSystem; ECFieldElement X1 = this.RawXCoord; ECFieldElement X2 = b.RawXCoord; switch (coord) { case ECCurve.COORD_AFFINE: { ECFieldElement Y1 = this.RawYCoord; ECFieldElement Y2 = b.RawYCoord; ECFieldElement dx = X1.Add(X2), dy = Y1.Add(Y2); if (dx.IsZero) { if (dy.IsZero) { return (F2mPoint)Twice(); } return (F2mPoint)curve.Infinity; } ECFieldElement L = dy.Divide(dx); ECFieldElement X3 = L.Square().Add(L).Add(dx).Add(curve.A); ECFieldElement Y3 = L.Multiply(X1.Add(X3)).Add(X3).Add(Y1); return new F2mPoint(curve, X3, Y3, IsCompressed); } case ECCurve.COORD_HOMOGENEOUS: { ECFieldElement Y1 = this.RawYCoord, Z1 = this.RawZCoords[0]; ECFieldElement Y2 = b.RawYCoord, Z2 = b.RawZCoords[0]; bool Z2IsOne = Z2.IsOne; ECFieldElement U1 = Z1.Multiply(Y2); ECFieldElement U2 = Z2IsOne ? Y1 : Y1.Multiply(Z2); ECFieldElement U = U1.Add(U2); ECFieldElement V1 = Z1.Multiply(X2); ECFieldElement V2 = Z2IsOne ? X1 : X1.Multiply(Z2); ECFieldElement V = V1.Add(V2); if (V.IsZero) { if (U.IsZero) { return (F2mPoint)Twice(); } return (F2mPoint)curve.Infinity; } ECFieldElement VSq = V.Square(); ECFieldElement VCu = VSq.Multiply(V); ECFieldElement W = Z2IsOne ? Z1 : Z1.Multiply(Z2); ECFieldElement uv = U.Add(V); // TODO Delayed modular reduction for sum of products ECFieldElement A = uv.Multiply(U).Add(VSq.Multiply(curve.A)).Multiply(W).Add(VCu); ECFieldElement X3 = V.Multiply(A); ECFieldElement VSqZ2 = Z2IsOne ? VSq : VSq.Multiply(Z2); // TODO Delayed modular reduction for sum of products ECFieldElement Y3 = U.Multiply(X1).Add(Y1.Multiply(V)).Multiply(VSqZ2).Add(A.Multiply(uv)); ECFieldElement Z3 = VCu.Multiply(W); return new F2mPoint(curve, X3, Y3, new ECFieldElement[] { Z3 }, IsCompressed); } case ECCurve.COORD_LAMBDA_PROJECTIVE: { if (X1.IsZero) { if (X2.IsZero) return (F2mPoint)curve.Infinity; return b.AddSimple(this); } ECFieldElement L1 = this.RawYCoord, Z1 = this.RawZCoords[0]; ECFieldElement L2 = b.RawYCoord, Z2 = b.RawZCoords[0]; bool Z1IsOne = Z1.IsOne; ECFieldElement U2 = X2, S2 = L2; if (!Z1IsOne) { U2 = U2.Multiply(Z1); S2 = S2.Multiply(Z1); } bool Z2IsOne = Z2.IsOne; ECFieldElement U1 = X1, S1 = L1; if (!Z2IsOne) { U1 = U1.Multiply(Z2); S1 = S1.Multiply(Z2); } ECFieldElement A = S1.Add(S2); ECFieldElement B = U1.Add(U2); if (B.IsZero) { if (A.IsZero) { return (F2mPoint)Twice(); } return (F2mPoint)curve.Infinity; } ECFieldElement X3, L3, Z3; if (X2.IsZero) { // TODO This can probably be optimized quite a bit ECPoint p = this.Normalize(); X1 = p.RawXCoord; ECFieldElement Y1 = p.YCoord; ECFieldElement Y2 = L2; ECFieldElement L = Y1.Add(Y2).Divide(X1); X3 = L.Square().Add(L).Add(X1).Add(curve.A); if (X3.IsZero) { return new F2mPoint(curve, X3, curve.B.Sqrt(), IsCompressed); } ECFieldElement Y3 = L.Multiply(X1.Add(X3)).Add(X3).Add(Y1); L3 = Y3.Divide(X3).Add(X3); Z3 = curve.FromBigInteger(BigInteger.One); } else { B = B.Square(); ECFieldElement AU1 = A.Multiply(U1); ECFieldElement AU2 = A.Multiply(U2); X3 = AU1.Multiply(AU2); if (X3.IsZero) { return new F2mPoint(curve, X3, curve.B.Sqrt(), IsCompressed); } ECFieldElement ABZ2 = A.Multiply(B); if (!Z2IsOne) { ABZ2 = ABZ2.Multiply(Z2); } // TODO Delayed modular reduction for sum of products L3 = AU2.Add(B).Square().Add(ABZ2.Multiply(L1.Add(Z1))); Z3 = ABZ2; if (!Z1IsOne) { Z3 = Z3.Multiply(Z1); } } return new F2mPoint(curve, X3, L3, new ECFieldElement[] { Z3 }, IsCompressed); } default: { throw new InvalidOperationException("unsupported coordinate system"); } } } /* (non-Javadoc) * @see org.bouncycastle.math.ec.ECPoint#subtract(org.bouncycastle.math.ec.ECPoint) */ public override ECPoint Subtract( ECPoint b) { CheckPoints(this, b); return SubtractSimple((F2mPoint) b); } /** * Subtracts another ECPoints.F2m from this * without checking if both points are on the same curve. Used by * multiplication algorithms, because there all points are a multiple * of the same point and hence the checks can be omitted. * @param b The other ECPoints.F2m to subtract from * this. * @return this - b */ internal F2mPoint SubtractSimple( F2mPoint b) { if (b.IsInfinity) return this; // Add -b return AddSimple((F2mPoint) b.Negate()); } public virtual F2mPoint Tau() { if (this.IsInfinity) { return this; } ECCurve curve = this.Curve; int coord = curve.CoordinateSystem; ECFieldElement X1 = this.RawXCoord; switch (coord) { case ECCurve.COORD_AFFINE: case ECCurve.COORD_LAMBDA_AFFINE: { ECFieldElement Y1 = this.RawYCoord; return new F2mPoint(curve, X1.Square(), Y1.Square(), IsCompressed); } case ECCurve.COORD_HOMOGENEOUS: case ECCurve.COORD_LAMBDA_PROJECTIVE: { ECFieldElement Y1 = this.RawYCoord, Z1 = this.RawZCoords[0]; return new F2mPoint(curve, X1.Square(), Y1.Square(), new ECFieldElement[] { Z1.Square() }, IsCompressed); } default: { throw new InvalidOperationException("unsupported coordinate system"); } } } /* (non-Javadoc) * @see Org.BouncyCastle.Math.EC.ECPoint#twice() */ public override ECPoint Twice() { if (this.IsInfinity) return this; ECCurve curve = this.Curve; ECFieldElement X1 = this.RawXCoord; if (X1.IsZero) { // A point with X == 0 is it's own additive inverse return curve.Infinity; } int coord = curve.CoordinateSystem; switch (coord) { case ECCurve.COORD_AFFINE: { ECFieldElement Y1 = this.RawYCoord; ECFieldElement L1 = Y1.Divide(X1).Add(X1); ECFieldElement X3 = L1.Square().Add(L1).Add(curve.A); // TODO Delayed modular reduction for sum of products ECFieldElement Y3 = X1.Square().Add(X3.Multiply(L1.AddOne())); return new F2mPoint(curve, X3, Y3, IsCompressed); } case ECCurve.COORD_HOMOGENEOUS: { ECFieldElement Y1 = this.RawYCoord, Z1 = this.RawZCoords[0]; bool Z1IsOne = Z1.IsOne; ECFieldElement X1Z1 = Z1IsOne ? X1 : X1.Multiply(Z1); ECFieldElement Y1Z1 = Z1IsOne ? Y1 : Y1.Multiply(Z1); ECFieldElement X1Sq = X1.Square(); ECFieldElement S = X1Sq.Add(Y1Z1); ECFieldElement V = X1Z1; ECFieldElement vSquared = V.Square(); ECFieldElement sv = S.Add(V); // TODO Delayed modular reduction for sum of products ECFieldElement h = sv.Multiply(S).Add(curve.A.Multiply(vSquared)); ECFieldElement X3 = V.Multiply(h); // TODO Delayed modular reduction for sum of products ECFieldElement Y3 = h.Multiply(sv).Add(X1Sq.Square().Multiply(V)); ECFieldElement Z3 = V.Multiply(vSquared); return new F2mPoint(curve, X3, Y3, new ECFieldElement[] { Z3 }, IsCompressed); } case ECCurve.COORD_LAMBDA_PROJECTIVE: { ECFieldElement L1 = this.RawYCoord, Z1 = this.RawZCoords[0]; bool Z1IsOne = Z1.IsOne; ECFieldElement L1Z1 = Z1IsOne ? L1 : L1.Multiply(Z1); ECFieldElement Z1Sq = Z1IsOne ? Z1 : Z1.Square(); ECFieldElement a = curve.A; ECFieldElement aZ1Sq = Z1IsOne ? a : a.Multiply(Z1Sq); ECFieldElement T = L1.Square().Add(L1Z1).Add(aZ1Sq); if (T.IsZero) { return new F2mPoint(curve, T, curve.B.Sqrt(), IsCompressed); } ECFieldElement X3 = T.Square(); ECFieldElement Z3 = Z1IsOne ? T : T.Multiply(Z1Sq); ECFieldElement b = curve.B; ECFieldElement L3; if (b.BitLength < (curve.FieldSize >> 1)) { ECFieldElement t1 = L1.Add(X1).Square(); ECFieldElement t4; if (b.IsOne) { t4 = aZ1Sq.Add(Z1Sq).Square(); } else { // TODO t2/t3 can be calculated with one square if we pre-compute sqrt(b) ECFieldElement t2 = aZ1Sq.Square(); ECFieldElement t3 = b.Multiply(Z1Sq.Square()); t4 = t2.Add(t3); } L3 = t1.Add(T).Add(Z1Sq).Multiply(t1).Add(t4).Add(X3); if (a.IsZero) { L3 = L3.Add(Z3); } else if (!a.IsOne) { L3 = L3.Add(a.AddOne().Multiply(Z3)); } } else { ECFieldElement X1Z1 = Z1IsOne ? X1 : X1.Multiply(Z1); // TODO Delayed modular reduction for sum of products L3 = X1Z1.Square().Add(T.Multiply(L1Z1)).Add(X3).Add(Z3); } return new F2mPoint(curve, X3, L3, new ECFieldElement[] { Z3 }, IsCompressed); } default: { throw new InvalidOperationException("unsupported coordinate system"); } } } public override ECPoint TwicePlus(ECPoint b) { if (this.IsInfinity) return b; if (b.IsInfinity) return Twice(); ECCurve curve = this.Curve; ECFieldElement X1 = this.RawXCoord; if (X1.IsZero) { // A point with X == 0 is it's own additive inverse return b; } int coord = curve.CoordinateSystem; switch (coord) { case ECCurve.COORD_LAMBDA_PROJECTIVE: { // NOTE: twicePlus() only optimized for lambda-affine argument ECFieldElement X2 = b.RawXCoord, Z2 = b.RawZCoords[0]; if (X2.IsZero || !Z2.IsOne) { return Twice().Add(b); } ECFieldElement L1 = this.RawYCoord, Z1 = this.RawZCoords[0]; ECFieldElement L2 = b.RawYCoord; ECFieldElement X1Sq = X1.Square(); ECFieldElement L1Sq = L1.Square(); ECFieldElement Z1Sq = Z1.Square(); ECFieldElement L1Z1 = L1.Multiply(Z1); ECFieldElement T = curve.A.Multiply(Z1Sq).Add(L1Sq).Add(L1Z1); ECFieldElement L2plus1 = L2.AddOne(); // TODO Delayed modular reduction for sum of products ECFieldElement A = curve.A.Add(L2plus1).Multiply(Z1Sq).Add(L1Sq).Multiply(T).Add(X1Sq.Multiply(Z1Sq)); ECFieldElement X2Z1Sq = X2.Multiply(Z1Sq); ECFieldElement B = X2Z1Sq.Add(T).Square(); if (B.IsZero) { if (A.IsZero) { return b.Twice(); } return curve.Infinity; } if (A.IsZero) { return new F2mPoint(curve, A, curve.B.Sqrt(), IsCompressed); } ECFieldElement X3 = A.Square().Multiply(X2Z1Sq); ECFieldElement Z3 = A.Multiply(B).Multiply(Z1Sq); // TODO Delayed modular reduction for sum of products ECFieldElement L3 = A.Add(B).Square().Multiply(T).Add(L2plus1.Multiply(Z3)); return new F2mPoint(curve, X3, L3, new ECFieldElement[] { Z3 }, IsCompressed); } default: { return Twice().Add(b); } } } public override ECPoint Negate() { if (this.IsInfinity) return this; ECFieldElement X = this.RawXCoord; if (X.IsZero) return this; ECCurve curve = this.Curve; int coord = curve.CoordinateSystem; switch (coord) { case ECCurve.COORD_AFFINE: { ECFieldElement Y = this.RawYCoord; return new F2mPoint(curve, X, Y.Add(X), IsCompressed); } case ECCurve.COORD_HOMOGENEOUS: { ECFieldElement Y = this.RawYCoord, Z = this.RawZCoords[0]; return new F2mPoint(curve, X, Y.Add(X), new ECFieldElement[] { Z }, IsCompressed); } case ECCurve.COORD_LAMBDA_AFFINE: { ECFieldElement L = this.RawYCoord; return new F2mPoint(curve, X, L.AddOne(), IsCompressed); } case ECCurve.COORD_LAMBDA_PROJECTIVE: { // L is actually Lambda (X + Y/X) here ECFieldElement L = this.RawYCoord, Z = this.RawZCoords[0]; return new F2mPoint(curve, X, L.Add(Z), new ECFieldElement[] { Z }, IsCompressed); } default: { throw new InvalidOperationException("unsupported coordinate system"); } } } } }