using System;
using System.Diagnostics;
using Org.BouncyCastle.Math.Raw;
using Org.BouncyCastle.Utilities;
namespace Org.BouncyCastle.Math.EC
{
public abstract class ECFieldElement
{
public abstract BigInteger ToBigInteger();
public abstract string FieldName { get; }
public abstract int FieldSize { get; }
public abstract ECFieldElement Add(ECFieldElement b);
public abstract ECFieldElement AddOne();
public abstract ECFieldElement Subtract(ECFieldElement b);
public abstract ECFieldElement Multiply(ECFieldElement b);
public abstract ECFieldElement Divide(ECFieldElement b);
public abstract ECFieldElement Negate();
public abstract ECFieldElement Square();
public abstract ECFieldElement Invert();
public abstract ECFieldElement Sqrt();
public virtual int BitLength
{
get { return ToBigInteger().BitLength; }
}
public virtual bool IsOne
{
get { return BitLength == 1; }
}
public virtual bool IsZero
{
get { return 0 == ToBigInteger().SignValue; }
}
public virtual ECFieldElement MultiplyMinusProduct(ECFieldElement b, ECFieldElement x, ECFieldElement y)
{
return Multiply(b).Subtract(x.Multiply(y));
}
public virtual ECFieldElement MultiplyPlusProduct(ECFieldElement b, ECFieldElement x, ECFieldElement y)
{
return Multiply(b).Add(x.Multiply(y));
}
public virtual ECFieldElement SquareMinusProduct(ECFieldElement x, ECFieldElement y)
{
return Square().Subtract(x.Multiply(y));
}
public virtual ECFieldElement SquarePlusProduct(ECFieldElement x, ECFieldElement y)
{
return Square().Add(x.Multiply(y));
}
public virtual ECFieldElement SquarePow(int pow)
{
ECFieldElement r = this;
for (int i = 0; i < pow; ++i)
{
r = r.Square();
}
return r;
}
public virtual bool TestBitZero()
{
return ToBigInteger().TestBit(0);
}
public override bool Equals(object obj)
{
return Equals(obj as ECFieldElement);
}
public virtual bool Equals(ECFieldElement other)
{
if (this == other)
return true;
if (null == other)
return false;
return ToBigInteger().Equals(other.ToBigInteger());
}
public override int GetHashCode()
{
return ToBigInteger().GetHashCode();
}
public override string ToString()
{
return this.ToBigInteger().ToString(16);
}
public virtual byte[] GetEncoded()
{
return BigIntegers.AsUnsignedByteArray((FieldSize + 7) / 8, ToBigInteger());
}
}
public class FpFieldElement
: ECFieldElement
{
private readonly BigInteger q, r, x;
internal static BigInteger CalculateResidue(BigInteger p)
{
int bitLength = p.BitLength;
if (bitLength >= 96)
{
BigInteger firstWord = p.ShiftRight(bitLength - 64);
if (firstWord.LongValue == -1L)
{
return BigInteger.One.ShiftLeft(bitLength).Subtract(p);
}
if ((bitLength & 7) == 0)
{
return BigInteger.One.ShiftLeft(bitLength << 1).Divide(p).Negate();
}
}
return null;
}
[Obsolete("Use ECCurve.FromBigInteger to construct field elements")]
public FpFieldElement(BigInteger q, BigInteger x)
: this(q, CalculateResidue(q), x)
{
}
internal FpFieldElement(BigInteger q, BigInteger r, BigInteger x)
{
if (x == null || x.SignValue < 0 || x.CompareTo(q) >= 0)
throw new ArgumentException("value invalid in Fp field element", "x");
this.q = q;
this.r = r;
this.x = x;
}
public override BigInteger ToBigInteger()
{
return x;
}
/**
* return the field name for this field.
*
* @return the string "Fp".
*/
public override string FieldName
{
get { return "Fp"; }
}
public override int FieldSize
{
get { return q.BitLength; }
}
public BigInteger Q
{
get { return q; }
}
public override ECFieldElement Add(
ECFieldElement b)
{
return new FpFieldElement(q, r, ModAdd(x, b.ToBigInteger()));
}
public override ECFieldElement AddOne()
{
BigInteger x2 = x.Add(BigInteger.One);
if (x2.CompareTo(q) == 0)
{
x2 = BigInteger.Zero;
}
return new FpFieldElement(q, r, x2);
}
public override ECFieldElement Subtract(
ECFieldElement b)
{
return new FpFieldElement(q, r, ModSubtract(x, b.ToBigInteger()));
}
public override ECFieldElement Multiply(
ECFieldElement b)
{
return new FpFieldElement(q, r, ModMult(x, b.ToBigInteger()));
}
public override ECFieldElement MultiplyMinusProduct(ECFieldElement b, ECFieldElement x, ECFieldElement y)
{
BigInteger ax = this.x, bx = b.ToBigInteger(), xx = x.ToBigInteger(), yx = y.ToBigInteger();
BigInteger ab = ax.Multiply(bx);
BigInteger xy = xx.Multiply(yx);
return new FpFieldElement(q, r, ModReduce(ab.Subtract(xy)));
}
public override ECFieldElement MultiplyPlusProduct(ECFieldElement b, ECFieldElement x, ECFieldElement y)
{
BigInteger ax = this.x, bx = b.ToBigInteger(), xx = x.ToBigInteger(), yx = y.ToBigInteger();
BigInteger ab = ax.Multiply(bx);
BigInteger xy = xx.Multiply(yx);
BigInteger sum = ab.Add(xy);
if (r != null && r.SignValue < 0 && sum.BitLength > (q.BitLength << 1))
{
sum = sum.Subtract(q.ShiftLeft(q.BitLength));
}
return new FpFieldElement(q, r, ModReduce(sum));
}
public override ECFieldElement Divide(
ECFieldElement b)
{
return new FpFieldElement(q, r, ModMult(x, ModInverse(b.ToBigInteger())));
}
public override ECFieldElement Negate()
{
return x.SignValue == 0 ? this : new FpFieldElement(q, r, q.Subtract(x));
}
public override ECFieldElement Square()
{
return new FpFieldElement(q, r, ModMult(x, x));
}
public override ECFieldElement SquareMinusProduct(ECFieldElement x, ECFieldElement y)
{
BigInteger ax = this.x, xx = x.ToBigInteger(), yx = y.ToBigInteger();
BigInteger aa = ax.Multiply(ax);
BigInteger xy = xx.Multiply(yx);
return new FpFieldElement(q, r, ModReduce(aa.Subtract(xy)));
}
public override ECFieldElement SquarePlusProduct(ECFieldElement x, ECFieldElement y)
{
BigInteger ax = this.x, xx = x.ToBigInteger(), yx = y.ToBigInteger();
BigInteger aa = ax.Multiply(ax);
BigInteger xy = xx.Multiply(yx);
BigInteger sum = aa.Add(xy);
if (r != null && r.SignValue < 0 && sum.BitLength > (q.BitLength << 1))
{
sum = sum.Subtract(q.ShiftLeft(q.BitLength));
}
return new FpFieldElement(q, r, ModReduce(sum));
}
public override ECFieldElement Invert()
{
// TODO Modular inversion can be faster for a (Generalized) Mersenne Prime.
return new FpFieldElement(q, r, ModInverse(x));
}
/**
* return a sqrt root - the routine verifies that the calculation
* returns the right value - if none exists it returns null.
*/
public override ECFieldElement Sqrt()
{
if (IsZero || IsOne)
return this;
if (!q.TestBit(0))
throw Platform.CreateNotImplementedException("even value of q");
if (q.TestBit(1)) // q == 4m + 3
{
BigInteger e = q.ShiftRight(2).Add(BigInteger.One);
return CheckSqrt(new FpFieldElement(q, r, x.ModPow(e, q)));
}
if (q.TestBit(2)) // q == 8m + 5
{
BigInteger t1 = x.ModPow(q.ShiftRight(3), q);
BigInteger t2 = ModMult(t1, x);
BigInteger t3 = ModMult(t2, t1);
if (t3.Equals(BigInteger.One))
{
return CheckSqrt(new FpFieldElement(q, r, t2));
}
// TODO This is constant and could be precomputed
BigInteger t4 = BigInteger.Two.ModPow(q.ShiftRight(2), q);
BigInteger y = ModMult(t2, t4);
return CheckSqrt(new FpFieldElement(q, r, y));
}
// q == 8m + 1
BigInteger legendreExponent = q.ShiftRight(1);
if (!(x.ModPow(legendreExponent, q).Equals(BigInteger.One)))
return null;
BigInteger X = this.x;
BigInteger fourX = ModDouble(ModDouble(X)); ;
BigInteger k = legendreExponent.Add(BigInteger.One), qMinusOne = q.Subtract(BigInteger.One);
BigInteger U, V;
Random rand = new Random();
do
{
BigInteger P;
do
{
P = new BigInteger(q.BitLength, rand);
}
while (P.CompareTo(q) >= 0
|| !ModReduce(P.Multiply(P).Subtract(fourX)).ModPow(legendreExponent, q).Equals(qMinusOne));
BigInteger[] result = LucasSequence(P, X, k);
U = result[0];
V = result[1];
if (ModMult(V, V).Equals(fourX))
{
return new FpFieldElement(q, r, ModHalfAbs(V));
}
}
while (U.Equals(BigInteger.One) || U.Equals(qMinusOne));
return null;
}
private ECFieldElement CheckSqrt(ECFieldElement z)
{
return z.Square().Equals(this) ? z : null;
}
private BigInteger[] LucasSequence(
BigInteger P,
BigInteger Q,
BigInteger k)
{
// TODO Research and apply "common-multiplicand multiplication here"
int n = k.BitLength;
int s = k.GetLowestSetBit();
Debug.Assert(k.TestBit(s));
BigInteger Uh = BigInteger.One;
BigInteger Vl = BigInteger.Two;
BigInteger Vh = P;
BigInteger Ql = BigInteger.One;
BigInteger Qh = BigInteger.One;
for (int j = n - 1; j >= s + 1; --j)
{
Ql = ModMult(Ql, Qh);
if (k.TestBit(j))
{
Qh = ModMult(Ql, Q);
Uh = ModMult(Uh, Vh);
Vl = ModReduce(Vh.Multiply(Vl).Subtract(P.Multiply(Ql)));
Vh = ModReduce(Vh.Multiply(Vh).Subtract(Qh.ShiftLeft(1)));
}
else
{
Qh = Ql;
Uh = ModReduce(Uh.Multiply(Vl).Subtract(Ql));
Vh = ModReduce(Vh.Multiply(Vl).Subtract(P.Multiply(Ql)));
Vl = ModReduce(Vl.Multiply(Vl).Subtract(Ql.ShiftLeft(1)));
}
}
Ql = ModMult(Ql, Qh);
Qh = ModMult(Ql, Q);
Uh = ModReduce(Uh.Multiply(Vl).Subtract(Ql));
Vl = ModReduce(Vh.Multiply(Vl).Subtract(P.Multiply(Ql)));
Ql = ModMult(Ql, Qh);
for (int j = 1; j <= s; ++j)
{
Uh = ModMult(Uh, Vl);
Vl = ModReduce(Vl.Multiply(Vl).Subtract(Ql.ShiftLeft(1)));
Ql = ModMult(Ql, Ql);
}
return new BigInteger[] { Uh, Vl };
}
protected virtual BigInteger ModAdd(BigInteger x1, BigInteger x2)
{
BigInteger x3 = x1.Add(x2);
if (x3.CompareTo(q) >= 0)
{
x3 = x3.Subtract(q);
}
return x3;
}
protected virtual BigInteger ModDouble(BigInteger x)
{
BigInteger _2x = x.ShiftLeft(1);
if (_2x.CompareTo(q) >= 0)
{
_2x = _2x.Subtract(q);
}
return _2x;
}
protected virtual BigInteger ModHalf(BigInteger x)
{
if (x.TestBit(0))
{
x = q.Add(x);
}
return x.ShiftRight(1);
}
protected virtual BigInteger ModHalfAbs(BigInteger x)
{
if (x.TestBit(0))
{
x = q.Subtract(x);
}
return x.ShiftRight(1);
}
protected virtual BigInteger ModInverse(BigInteger x)
{
int bits = FieldSize;
int len = (bits + 31) >> 5;
uint[] p = Nat.FromBigInteger(bits, q);
uint[] n = Nat.FromBigInteger(bits, x);
uint[] z = Nat.Create(len);
Mod.Invert(p, n, z);
return Nat.ToBigInteger(len, z);
}
protected virtual BigInteger ModMult(BigInteger x1, BigInteger x2)
{
return ModReduce(x1.Multiply(x2));
}
protected virtual BigInteger ModReduce(BigInteger x)
{
if (r == null)
{
x = x.Mod(q);
}
else
{
bool negative = x.SignValue < 0;
if (negative)
{
x = x.Abs();
}
int qLen = q.BitLength;
if (r.SignValue > 0)
{
BigInteger qMod = BigInteger.One.ShiftLeft(qLen);
bool rIsOne = r.Equals(BigInteger.One);
while (x.BitLength > (qLen + 1))
{
BigInteger u = x.ShiftRight(qLen);
BigInteger v = x.Remainder(qMod);
if (!rIsOne)
{
u = u.Multiply(r);
}
x = u.Add(v);
}
}
else
{
int d = ((qLen - 1) & 31) + 1;
BigInteger mu = r.Negate();
BigInteger u = mu.Multiply(x.ShiftRight(qLen - d));
BigInteger quot = u.ShiftRight(qLen + d);
BigInteger v = quot.Multiply(q);
BigInteger bk1 = BigInteger.One.ShiftLeft(qLen + d);
v = v.Remainder(bk1);
x = x.Remainder(bk1);
x = x.Subtract(v);
if (x.SignValue < 0)
{
x = x.Add(bk1);
}
}
while (x.CompareTo(q) >= 0)
{
x = x.Subtract(q);
}
if (negative && x.SignValue != 0)
{
x = q.Subtract(x);
}
}
return x;
}
protected virtual BigInteger ModSubtract(BigInteger x1, BigInteger x2)
{
BigInteger x3 = x1.Subtract(x2);
if (x3.SignValue < 0)
{
x3 = x3.Add(q);
}
return x3;
}
public override bool Equals(
object obj)
{
if (obj == this)
return true;
FpFieldElement other = obj as FpFieldElement;
if (other == null)
return false;
return Equals(other);
}
public virtual bool Equals(
FpFieldElement other)
{
return q.Equals(other.q) && base.Equals(other);
}
public override int GetHashCode()
{
return q.GetHashCode() ^ base.GetHashCode();
}
}
/**
* Class representing the Elements of the finite field
* F2m
in polynomial basis (PB)
* representation. Both trinomial (Tpb) and pentanomial (Ppb) polynomial
* basis representations are supported. Gaussian normal basis (GNB)
* representation is not supported.
*/
public class F2mFieldElement
: ECFieldElement
{
/**
* Indicates gaussian normal basis representation (GNB). Number chosen
* according to X9.62. GNB is not implemented at present.
*/
public const int Gnb = 1;
/**
* Indicates trinomial basis representation (Tpb). Number chosen
* according to X9.62.
*/
public const int Tpb = 2;
/**
* Indicates pentanomial basis representation (Ppb). Number chosen
* according to X9.62.
*/
public const int Ppb = 3;
/**
* Tpb or Ppb.
*/
private int representation;
/**
* The exponent m
of F2m
.
*/
private int m;
private int[] ks;
/**
* The LongArray
holding the bits.
*/
private LongArray x;
/**
* Constructor for Ppb.
* @param m The exponent m
of
* F2m
.
* @param k1 The integer k1
where xm +
* xk3 + xk2 + xk1 + 1
* represents the reduction polynomial f(z)
.
* @param k2 The integer k2
where xm +
* xk3 + xk2 + xk1 + 1
* represents the reduction polynomial f(z)
.
* @param k3 The integer k3
where xm +
* xk3 + xk2 + xk1 + 1
* represents the reduction polynomial f(z)
.
* @param x The BigInteger representing the value of the field element.
*/
public F2mFieldElement(
int m,
int k1,
int k2,
int k3,
BigInteger x)
{
if ((k2 == 0) && (k3 == 0))
{
this.representation = Tpb;
this.ks = new int[] { k1 };
}
else
{
if (k2 >= k3)
throw new ArgumentException("k2 must be smaller than k3");
if (k2 <= 0)
throw new ArgumentException("k2 must be larger than 0");
this.representation = Ppb;
this.ks = new int[] { k1, k2, k3 };
}
this.m = m;
this.x = new LongArray(x);
}
/**
* Constructor for Tpb.
* @param m The exponent m
of
* F2m
.
* @param k The integer k
where xm +
* xk + 1
represents the reduction
* polynomial f(z)
.
* @param x The BigInteger representing the value of the field element.
*/
public F2mFieldElement(
int m,
int k,
BigInteger x)
: this(m, k, 0, 0, x)
{
// Set k1 to k, and set k2 and k3 to 0
}
private F2mFieldElement(int m, int[] ks, LongArray x)
{
this.m = m;
this.representation = (ks.Length == 1) ? Tpb : Ppb;
this.ks = ks;
this.x = x;
}
public override int BitLength
{
get { return x.Degree(); }
}
public override bool IsOne
{
get { return x.IsOne(); }
}
public override bool IsZero
{
get { return x.IsZero(); }
}
public override bool TestBitZero()
{
return x.TestBitZero();
}
public override BigInteger ToBigInteger()
{
return x.ToBigInteger();
}
public override string FieldName
{
get { return "F2m"; }
}
public override int FieldSize
{
get { return m; }
}
/**
* Checks, if the ECFieldElements a
and b
* are elements of the same field F2m
* (having the same representation).
* @param a field element.
* @param b field element to be compared.
* @throws ArgumentException if a
and b
* are not elements of the same field
* F2m
(having the same
* representation).
*/
public static void CheckFieldElements(
ECFieldElement a,
ECFieldElement b)
{
if (!(a is F2mFieldElement) || !(b is F2mFieldElement))
{
throw new ArgumentException("Field elements are not "
+ "both instances of F2mFieldElement");
}
F2mFieldElement aF2m = (F2mFieldElement)a;
F2mFieldElement bF2m = (F2mFieldElement)b;
if (aF2m.representation != bF2m.representation)
{
// Should never occur
throw new ArgumentException("One of the F2m field elements has incorrect representation");
}
if ((aF2m.m != bF2m.m) || !Arrays.AreEqual(aF2m.ks, bF2m.ks))
{
throw new ArgumentException("Field elements are not elements of the same field F2m");
}
}
public override ECFieldElement Add(
ECFieldElement b)
{
// No check performed here for performance reasons. Instead the
// elements involved are checked in ECPoint.F2m
// checkFieldElements(this, b);
LongArray iarrClone = this.x.Copy();
F2mFieldElement bF2m = (F2mFieldElement)b;
iarrClone.AddShiftedByWords(bF2m.x, 0);
return new F2mFieldElement(m, ks, iarrClone);
}
public override ECFieldElement AddOne()
{
return new F2mFieldElement(m, ks, x.AddOne());
}
public override ECFieldElement Subtract(
ECFieldElement b)
{
// Addition and subtraction are the same in F2m
return Add(b);
}
public override ECFieldElement Multiply(
ECFieldElement b)
{
// Right-to-left comb multiplication in the LongArray
// Input: Binary polynomials a(z) and b(z) of degree at most m-1
// Output: c(z) = a(z) * b(z) mod f(z)
// No check performed here for performance reasons. Instead the
// elements involved are checked in ECPoint.F2m
// checkFieldElements(this, b);
return new F2mFieldElement(m, ks, x.ModMultiply(((F2mFieldElement)b).x, m, ks));
}
public override ECFieldElement MultiplyMinusProduct(ECFieldElement b, ECFieldElement x, ECFieldElement y)
{
return MultiplyPlusProduct(b, x, y);
}
public override ECFieldElement MultiplyPlusProduct(ECFieldElement b, ECFieldElement x, ECFieldElement y)
{
LongArray ax = this.x, bx = ((F2mFieldElement)b).x, xx = ((F2mFieldElement)x).x, yx = ((F2mFieldElement)y).x;
LongArray ab = ax.Multiply(bx, m, ks);
LongArray xy = xx.Multiply(yx, m, ks);
if (ab == ax || ab == bx)
{
ab = (LongArray)ab.Copy();
}
ab.AddShiftedByWords(xy, 0);
ab.Reduce(m, ks);
return new F2mFieldElement(m, ks, ab);
}
public override ECFieldElement Divide(
ECFieldElement b)
{
// There may be more efficient implementations
ECFieldElement bInv = b.Invert();
return Multiply(bInv);
}
public override ECFieldElement Negate()
{
// -x == x holds for all x in F2m
return this;
}
public override ECFieldElement Square()
{
return new F2mFieldElement(m, ks, x.ModSquare(m, ks));
}
public override ECFieldElement SquareMinusProduct(ECFieldElement x, ECFieldElement y)
{
return SquarePlusProduct(x, y);
}
public override ECFieldElement SquarePlusProduct(ECFieldElement x, ECFieldElement y)
{
LongArray ax = this.x, xx = ((F2mFieldElement)x).x, yx = ((F2mFieldElement)y).x;
LongArray aa = ax.Square(m, ks);
LongArray xy = xx.Multiply(yx, m, ks);
if (aa == ax)
{
aa = (LongArray)aa.Copy();
}
aa.AddShiftedByWords(xy, 0);
aa.Reduce(m, ks);
return new F2mFieldElement(m, ks, aa);
}
public override ECFieldElement SquarePow(int pow)
{
return pow < 1 ? this : new F2mFieldElement(m, ks, x.ModSquareN(pow, m, ks));
}
public override ECFieldElement Invert()
{
return new F2mFieldElement(this.m, this.ks, this.x.ModInverse(m, ks));
}
public override ECFieldElement Sqrt()
{
return (x.IsZero() || x.IsOne()) ? this : SquarePow(m - 1);
}
/**
* @return the representation of the field
* F2m
, either of
* {@link F2mFieldElement.Tpb} (trinomial
* basis representation) or
* {@link F2mFieldElement.Ppb} (pentanomial
* basis representation).
*/
public int Representation
{
get { return this.representation; }
}
/**
* @return the degree m
of the reduction polynomial
* f(z)
.
*/
public int M
{
get { return this.m; }
}
/**
* @return Tpb: The integer k
where xm +
* xk + 1
represents the reduction polynomial
* f(z)
.
* Ppb: The integer k1
where xm +
* xk3 + xk2 + xk1 + 1
* represents the reduction polynomial f(z)
.
*/
public int K1
{
get { return this.ks[0]; }
}
/**
* @return Tpb: Always returns 0
* Ppb: The integer k2
where xm +
* xk3 + xk2 + xk1 + 1
* represents the reduction polynomial f(z)
.
*/
public int K2
{
get { return this.ks.Length >= 2 ? this.ks[1] : 0; }
}
/**
* @return Tpb: Always set to 0
* Ppb: The integer k3
where xm +
* xk3 + xk2 + xk1 + 1
* represents the reduction polynomial f(z)
.
*/
public int K3
{
get { return this.ks.Length >= 3 ? this.ks[2] : 0; }
}
public override bool Equals(
object obj)
{
if (obj == this)
return true;
F2mFieldElement other = obj as F2mFieldElement;
if (other == null)
return false;
return Equals(other);
}
public virtual bool Equals(
F2mFieldElement other)
{
return ((this.m == other.m)
&& (this.representation == other.representation)
&& Arrays.AreEqual(this.ks, other.ks)
&& (this.x.Equals(other.x)));
}
public override int GetHashCode()
{
return x.GetHashCode() ^ m ^ Arrays.GetHashCode(ks);
}
}
}