using System; using System.Collections; using Org.BouncyCastle.Math.EC.Abc; using Org.BouncyCastle.Math.EC.Endo; using Org.BouncyCastle.Math.EC.Multiplier; using Org.BouncyCastle.Math.Field; using Org.BouncyCastle.Math.Raw; using Org.BouncyCastle.Utilities; namespace Org.BouncyCastle.Math.EC { /// Base class for an elliptic curve. public abstract class ECCurve { public const int COORD_AFFINE = 0; public const int COORD_HOMOGENEOUS = 1; public const int COORD_JACOBIAN = 2; public const int COORD_JACOBIAN_CHUDNOVSKY = 3; public const int COORD_JACOBIAN_MODIFIED = 4; public const int COORD_LAMBDA_AFFINE = 5; public const int COORD_LAMBDA_PROJECTIVE = 6; public const int COORD_SKEWED = 7; public static int[] GetAllCoordinateSystems() { return new int[]{ COORD_AFFINE, COORD_HOMOGENEOUS, COORD_JACOBIAN, COORD_JACOBIAN_CHUDNOVSKY, COORD_JACOBIAN_MODIFIED, COORD_LAMBDA_AFFINE, COORD_LAMBDA_PROJECTIVE, COORD_SKEWED }; } public class Config { protected ECCurve outer; protected int coord; protected ECEndomorphism endomorphism; protected ECMultiplier multiplier; internal Config(ECCurve outer, int coord, ECEndomorphism endomorphism, ECMultiplier multiplier) { this.outer = outer; this.coord = coord; this.endomorphism = endomorphism; this.multiplier = multiplier; } public Config SetCoordinateSystem(int coord) { this.coord = coord; return this; } public Config SetEndomorphism(ECEndomorphism endomorphism) { this.endomorphism = endomorphism; return this; } public Config SetMultiplier(ECMultiplier multiplier) { this.multiplier = multiplier; return this; } public ECCurve Create() { if (!outer.SupportsCoordinateSystem(coord)) { throw new InvalidOperationException("unsupported coordinate system"); } ECCurve c = outer.CloneCurve(); if (c == outer) { throw new InvalidOperationException("implementation returned current curve"); } c.m_coord = coord; c.m_endomorphism = endomorphism; c.m_multiplier = multiplier; return c; } } protected readonly IFiniteField m_field; protected ECFieldElement m_a, m_b; protected BigInteger m_order, m_cofactor; protected int m_coord = COORD_AFFINE; protected ECEndomorphism m_endomorphism = null; protected ECMultiplier m_multiplier = null; protected ECCurve(IFiniteField field) { this.m_field = field; } public abstract int FieldSize { get; } public abstract ECFieldElement FromBigInteger(BigInteger x); public abstract bool IsValidFieldElement(BigInteger x); public virtual Config Configure() { return new Config(this, this.m_coord, this.m_endomorphism, this.m_multiplier); } public virtual ECPoint ValidatePoint(BigInteger x, BigInteger y) { ECPoint p = CreatePoint(x, y); if (!p.IsValid()) { throw new ArgumentException("Invalid point coordinates"); } return p; } [Obsolete("Per-point compression property will be removed")] public virtual ECPoint ValidatePoint(BigInteger x, BigInteger y, bool withCompression) { ECPoint p = CreatePoint(x, y, withCompression); if (!p.IsValid()) { throw new ArgumentException("Invalid point coordinates"); } return p; } public virtual ECPoint CreatePoint(BigInteger x, BigInteger y) { return CreatePoint(x, y, false); } [Obsolete("Per-point compression property will be removed")] public virtual ECPoint CreatePoint(BigInteger x, BigInteger y, bool withCompression) { return CreateRawPoint(FromBigInteger(x), FromBigInteger(y), withCompression); } protected abstract ECCurve CloneCurve(); protected internal abstract ECPoint CreateRawPoint(ECFieldElement x, ECFieldElement y, bool withCompression); protected internal abstract ECPoint CreateRawPoint(ECFieldElement x, ECFieldElement y, ECFieldElement[] zs, bool withCompression); protected virtual ECMultiplier CreateDefaultMultiplier() { GlvEndomorphism glvEndomorphism = m_endomorphism as GlvEndomorphism; if (glvEndomorphism != null) { return new GlvMultiplier(this, glvEndomorphism); } return new WNafL2RMultiplier(); } public virtual bool SupportsCoordinateSystem(int coord) { return coord == COORD_AFFINE; } public virtual PreCompInfo GetPreCompInfo(ECPoint point, string name) { CheckPoint(point); IDictionary table; lock (point) { table = point.m_preCompTable; } if (null == table) return null; lock (table) { return (PreCompInfo)table[name]; } } /** * Compute a PreCompInfo for a point on this curve, under a given name. Used by * ECMultipliers to save the precomputation for this ECPoint for use * by subsequent multiplication. * * @param point * The ECPoint to store precomputations for. * @param name * A String used to index precomputations of different types. * @param callback * Called to calculate the PreCompInfo. */ public virtual PreCompInfo Precompute(ECPoint point, string name, IPreCompCallback callback) { CheckPoint(point); IDictionary table; lock (point) { table = point.m_preCompTable; if (null == table) { point.m_preCompTable = table = Platform.CreateHashtable(4); } } lock (table) { PreCompInfo existing = (PreCompInfo)table[name]; PreCompInfo result = callback.Precompute(existing); if (result != existing) { table[name] = result; } return result; } } public virtual ECPoint ImportPoint(ECPoint p) { if (this == p.Curve) { return p; } if (p.IsInfinity) { return Infinity; } // TODO Default behaviour could be improved if the two curves have the same coordinate system by copying any Z coordinates. p = p.Normalize(); return CreatePoint(p.XCoord.ToBigInteger(), p.YCoord.ToBigInteger(), p.IsCompressed); } /** * Normalization ensures that any projective coordinate is 1, and therefore that the x, y * coordinates reflect those of the equivalent point in an affine coordinate system. Where more * than one point is to be normalized, this method will generally be more efficient than * normalizing each point separately. * * @param points * An array of points that will be updated in place with their normalized versions, * where necessary */ public virtual void NormalizeAll(ECPoint[] points) { NormalizeAll(points, 0, points.Length, null); } /** * Normalization ensures that any projective coordinate is 1, and therefore that the x, y * coordinates reflect those of the equivalent point in an affine coordinate system. Where more * than one point is to be normalized, this method will generally be more efficient than * normalizing each point separately. An (optional) z-scaling factor can be applied; effectively * each z coordinate is scaled by this value prior to normalization (but only one * actual multiplication is needed). * * @param points * An array of points that will be updated in place with their normalized versions, * where necessary * @param off * The start of the range of points to normalize * @param len * The length of the range of points to normalize * @param iso * The (optional) z-scaling factor - can be null */ public virtual void NormalizeAll(ECPoint[] points, int off, int len, ECFieldElement iso) { CheckPoints(points, off, len); switch (this.CoordinateSystem) { case ECCurve.COORD_AFFINE: case ECCurve.COORD_LAMBDA_AFFINE: { if (iso != null) throw new ArgumentException("not valid for affine coordinates", "iso"); return; } } /* * Figure out which of the points actually need to be normalized */ ECFieldElement[] zs = new ECFieldElement[len]; int[] indices = new int[len]; int count = 0; for (int i = 0; i < len; ++i) { ECPoint p = points[off + i]; if (null != p && (iso != null || !p.IsNormalized())) { zs[count] = p.GetZCoord(0); indices[count++] = off + i; } } if (count == 0) { return; } ECAlgorithms.MontgomeryTrick(zs, 0, count, iso); for (int j = 0; j < count; ++j) { int index = indices[j]; points[index] = points[index].Normalize(zs[j]); } } public abstract ECPoint Infinity { get; } public virtual IFiniteField Field { get { return m_field; } } public virtual ECFieldElement A { get { return m_a; } } public virtual ECFieldElement B { get { return m_b; } } public virtual BigInteger Order { get { return m_order; } } public virtual BigInteger Cofactor { get { return m_cofactor; } } public virtual int CoordinateSystem { get { return m_coord; } } /** * Create a cache-safe lookup table for the specified sequence of points. All the points MUST * belong to this ECCurve instance, and MUST already be normalized. */ public virtual ECLookupTable CreateCacheSafeLookupTable(ECPoint[] points, int off, int len) { int FE_BYTES = (FieldSize + 7) / 8; byte[] table = new byte[len * FE_BYTES * 2]; { int pos = 0; for (int i = 0; i < len; ++i) { ECPoint p = points[off + i]; byte[] px = p.RawXCoord.ToBigInteger().ToByteArray(); byte[] py = p.RawYCoord.ToBigInteger().ToByteArray(); int pxStart = px.Length > FE_BYTES ? 1 : 0, pxLen = px.Length - pxStart; int pyStart = py.Length > FE_BYTES ? 1 : 0, pyLen = py.Length - pyStart; Array.Copy(px, pxStart, table, pos + FE_BYTES - pxLen, pxLen); pos += FE_BYTES; Array.Copy(py, pyStart, table, pos + FE_BYTES - pyLen, pyLen); pos += FE_BYTES; } } return new DefaultLookupTable(this, table, len); } protected virtual void CheckPoint(ECPoint point) { if (null == point || (this != point.Curve)) throw new ArgumentException("must be non-null and on this curve", "point"); } protected virtual void CheckPoints(ECPoint[] points) { CheckPoints(points, 0, points.Length); } protected virtual void CheckPoints(ECPoint[] points, int off, int len) { if (points == null) throw new ArgumentNullException("points"); if (off < 0 || len < 0 || (off > (points.Length - len))) throw new ArgumentException("invalid range specified", "points"); for (int i = 0; i < len; ++i) { ECPoint point = points[off + i]; if (null != point && this != point.Curve) throw new ArgumentException("entries must be null or on this curve", "points"); } } public virtual bool Equals(ECCurve other) { if (this == other) return true; if (null == other) return false; return Field.Equals(other.Field) && A.ToBigInteger().Equals(other.A.ToBigInteger()) && B.ToBigInteger().Equals(other.B.ToBigInteger()); } public override bool Equals(object obj) { return Equals(obj as ECCurve); } public override int GetHashCode() { return Field.GetHashCode() ^ Integers.RotateLeft(A.ToBigInteger().GetHashCode(), 8) ^ Integers.RotateLeft(B.ToBigInteger().GetHashCode(), 16); } protected abstract ECPoint DecompressPoint(int yTilde, BigInteger X1); public virtual ECEndomorphism GetEndomorphism() { return m_endomorphism; } /** * Sets the default ECMultiplier, unless already set. */ public virtual ECMultiplier GetMultiplier() { lock (this) { if (this.m_multiplier == null) { this.m_multiplier = CreateDefaultMultiplier(); } return this.m_multiplier; } } /** * Decode a point on this curve from its ASN.1 encoding. The different * encodings are taken account of, including point compression for * Fp (X9.62 s 4.2.1 pg 17). * @return The decoded point. */ public virtual ECPoint DecodePoint(byte[] encoded) { ECPoint p = null; int expectedLength = (FieldSize + 7) / 8; byte type = encoded[0]; switch (type) { case 0x00: // infinity { if (encoded.Length != 1) throw new ArgumentException("Incorrect length for infinity encoding", "encoded"); p = Infinity; break; } case 0x02: // compressed case 0x03: // compressed { if (encoded.Length != (expectedLength + 1)) throw new ArgumentException("Incorrect length for compressed encoding", "encoded"); int yTilde = type & 1; BigInteger X = new BigInteger(1, encoded, 1, expectedLength); p = DecompressPoint(yTilde, X); if (!p.ImplIsValid(true, true)) throw new ArgumentException("Invalid point"); break; } case 0x04: // uncompressed { if (encoded.Length != (2 * expectedLength + 1)) throw new ArgumentException("Incorrect length for uncompressed encoding", "encoded"); BigInteger X = new BigInteger(1, encoded, 1, expectedLength); BigInteger Y = new BigInteger(1, encoded, 1 + expectedLength, expectedLength); p = ValidatePoint(X, Y); break; } case 0x06: // hybrid case 0x07: // hybrid { if (encoded.Length != (2 * expectedLength + 1)) throw new ArgumentException("Incorrect length for hybrid encoding", "encoded"); BigInteger X = new BigInteger(1, encoded, 1, expectedLength); BigInteger Y = new BigInteger(1, encoded, 1 + expectedLength, expectedLength); if (Y.TestBit(0) != (type == 0x07)) throw new ArgumentException("Inconsistent Y coordinate in hybrid encoding", "encoded"); p = ValidatePoint(X, Y); break; } default: throw new FormatException("Invalid point encoding " + type); } if (type != 0x00 && p.IsInfinity) throw new ArgumentException("Invalid infinity encoding", "encoded"); return p; } private class DefaultLookupTable : ECLookupTable { private readonly ECCurve m_outer; private readonly byte[] m_table; private readonly int m_size; internal DefaultLookupTable(ECCurve outer, byte[] table, int size) { this.m_outer = outer; this.m_table = table; this.m_size = size; } public virtual int Size { get { return m_size; } } public virtual ECPoint Lookup(int index) { int FE_BYTES = (m_outer.FieldSize + 7) / 8; byte[] x = new byte[FE_BYTES], y = new byte[FE_BYTES]; int pos = 0; for (int i = 0; i < m_size; ++i) { byte MASK = (byte)(((i ^ index) - 1) >> 31); for (int j = 0; j < FE_BYTES; ++j) { x[j] ^= (byte)(m_table[pos + j] & MASK); y[j] ^= (byte)(m_table[pos + FE_BYTES + j] & MASK); } pos += (FE_BYTES * 2); } ECFieldElement X = m_outer.FromBigInteger(new BigInteger(1, x)); ECFieldElement Y = m_outer.FromBigInteger(new BigInteger(1, y)); return m_outer.CreateRawPoint(X, Y, false); } } } public abstract class AbstractFpCurve : ECCurve { protected AbstractFpCurve(BigInteger q) : base(FiniteFields.GetPrimeField(q)) { } public override bool IsValidFieldElement(BigInteger x) { return x != null && x.SignValue >= 0 && x.CompareTo(Field.Characteristic) < 0; } protected override ECPoint DecompressPoint(int yTilde, BigInteger X1) { ECFieldElement x = FromBigInteger(X1); ECFieldElement rhs = x.Square().Add(A).Multiply(x).Add(B); ECFieldElement y = rhs.Sqrt(); /* * If y is not a square, then we haven't got a point on the curve */ if (y == null) throw new ArgumentException("Invalid point compression"); if (y.TestBitZero() != (yTilde == 1)) { // Use the other root y = y.Negate(); } return CreateRawPoint(x, y, true); } } /** * Elliptic curve over Fp */ public class FpCurve : AbstractFpCurve { private const int FP_DEFAULT_COORDS = COORD_JACOBIAN_MODIFIED; protected readonly BigInteger m_q, m_r; protected readonly FpPoint m_infinity; [Obsolete("Use constructor taking order/cofactor")] public FpCurve(BigInteger q, BigInteger a, BigInteger b) : this(q, a, b, null, null) { } public FpCurve(BigInteger q, BigInteger a, BigInteger b, BigInteger order, BigInteger cofactor) : base(q) { this.m_q = q; this.m_r = FpFieldElement.CalculateResidue(q); this.m_infinity = new FpPoint(this, null, null, false); this.m_a = FromBigInteger(a); this.m_b = FromBigInteger(b); this.m_order = order; this.m_cofactor = cofactor; this.m_coord = FP_DEFAULT_COORDS; } [Obsolete("Use constructor taking order/cofactor")] protected FpCurve(BigInteger q, BigInteger r, ECFieldElement a, ECFieldElement b) : this(q, r, a, b, null, null) { } protected FpCurve(BigInteger q, BigInteger r, ECFieldElement a, ECFieldElement b, BigInteger order, BigInteger cofactor) : base(q) { this.m_q = q; this.m_r = r; this.m_infinity = new FpPoint(this, null, null, false); this.m_a = a; this.m_b = b; this.m_order = order; this.m_cofactor = cofactor; this.m_coord = FP_DEFAULT_COORDS; } protected override ECCurve CloneCurve() { return new FpCurve(m_q, m_r, m_a, m_b, m_order, m_cofactor); } public override bool SupportsCoordinateSystem(int coord) { switch (coord) { case COORD_AFFINE: case COORD_HOMOGENEOUS: case COORD_JACOBIAN: case COORD_JACOBIAN_MODIFIED: return true; default: return false; } } public virtual BigInteger Q { get { return m_q; } } public override ECPoint Infinity { get { return m_infinity; } } public override int FieldSize { get { return m_q.BitLength; } } public override ECFieldElement FromBigInteger(BigInteger x) { return new FpFieldElement(this.m_q, this.m_r, x); } protected internal override ECPoint CreateRawPoint(ECFieldElement x, ECFieldElement y, bool withCompression) { return new FpPoint(this, x, y, withCompression); } protected internal override ECPoint CreateRawPoint(ECFieldElement x, ECFieldElement y, ECFieldElement[] zs, bool withCompression) { return new FpPoint(this, x, y, zs, withCompression); } public override ECPoint ImportPoint(ECPoint p) { if (this != p.Curve && this.CoordinateSystem == COORD_JACOBIAN && !p.IsInfinity) { switch (p.Curve.CoordinateSystem) { case COORD_JACOBIAN: case COORD_JACOBIAN_CHUDNOVSKY: case COORD_JACOBIAN_MODIFIED: return new FpPoint(this, FromBigInteger(p.RawXCoord.ToBigInteger()), FromBigInteger(p.RawYCoord.ToBigInteger()), new ECFieldElement[] { FromBigInteger(p.GetZCoord(0).ToBigInteger()) }, p.IsCompressed); default: break; } } return base.ImportPoint(p); } } public abstract class AbstractF2mCurve : ECCurve { public static BigInteger Inverse(int m, int[] ks, BigInteger x) { return new LongArray(x).ModInverse(m, ks).ToBigInteger(); } /** * The auxiliary values s0 and * s1 used for partial modular reduction for * Koblitz curves. */ private BigInteger[] si = null; private static IFiniteField BuildField(int m, int k1, int k2, int k3) { if (k1 == 0) { throw new ArgumentException("k1 must be > 0"); } if (k2 == 0) { if (k3 != 0) { throw new ArgumentException("k3 must be 0 if k2 == 0"); } return FiniteFields.GetBinaryExtensionField(new int[]{ 0, k1, m }); } if (k2 <= k1) { throw new ArgumentException("k2 must be > k1"); } if (k3 <= k2) { throw new ArgumentException("k3 must be > k2"); } return FiniteFields.GetBinaryExtensionField(new int[]{ 0, k1, k2, k3, m }); } protected AbstractF2mCurve(int m, int k1, int k2, int k3) : base(BuildField(m, k1, k2, k3)) { } public override bool IsValidFieldElement(BigInteger x) { return x != null && x.SignValue >= 0 && x.BitLength <= FieldSize; } [Obsolete("Per-point compression property will be removed")] public override ECPoint CreatePoint(BigInteger x, BigInteger y, bool withCompression) { ECFieldElement X = FromBigInteger(x), Y = FromBigInteger(y); switch (this.CoordinateSystem) { case COORD_LAMBDA_AFFINE: case COORD_LAMBDA_PROJECTIVE: { if (X.IsZero) { if (!Y.Square().Equals(B)) throw new ArgumentException(); } else { // Y becomes Lambda (X + Y/X) here Y = Y.Divide(X).Add(X); } break; } default: { break; } } return CreateRawPoint(X, Y, withCompression); } protected override ECPoint DecompressPoint(int yTilde, BigInteger X1) { ECFieldElement xp = FromBigInteger(X1), yp = null; if (xp.IsZero) { yp = B.Sqrt(); } else { ECFieldElement beta = xp.Square().Invert().Multiply(B).Add(A).Add(xp); ECFieldElement z = SolveQuadraticEquation(beta); if (z != null) { if (z.TestBitZero() != (yTilde == 1)) { z = z.AddOne(); } switch (this.CoordinateSystem) { case COORD_LAMBDA_AFFINE: case COORD_LAMBDA_PROJECTIVE: { yp = z.Add(xp); break; } default: { yp = z.Multiply(xp); break; } } } } if (yp == null) throw new ArgumentException("Invalid point compression"); return CreateRawPoint(xp, yp, true); } /** * Solves a quadratic equation z2 + z = beta(X9.62 * D.1.6) The other solution is z + 1. * * @param beta * The value to solve the quadratic equation for. * @return the solution for z2 + z = beta or * null if no solution exists. */ internal ECFieldElement SolveQuadraticEquation(ECFieldElement beta) { if (beta.IsZero) return beta; ECFieldElement gamma, z, zeroElement = FromBigInteger(BigInteger.Zero); int m = FieldSize; do { ECFieldElement t = FromBigInteger(BigInteger.Arbitrary(m)); z = zeroElement; ECFieldElement w = beta; for (int i = 1; i < m; i++) { ECFieldElement w2 = w.Square(); z = z.Square().Add(w2.Multiply(t)); w = w2.Add(beta); } if (!w.IsZero) { return null; } gamma = z.Square().Add(z); } while (gamma.IsZero); return z; } /** * @return the auxiliary values s0 and * s1 used for partial modular reduction for * Koblitz curves. */ internal virtual BigInteger[] GetSi() { if (si == null) { lock (this) { if (si == null) { si = Tnaf.GetSi(this); } } } return si; } /** * Returns true if this is a Koblitz curve (ABC curve). * @return true if this is a Koblitz curve (ABC curve), false otherwise */ public virtual bool IsKoblitz { get { return m_order != null && m_cofactor != null && m_b.IsOne && (m_a.IsZero || m_a.IsOne); } } } /** * Elliptic curves over F2m. The Weierstrass equation is given by * y2 + xy = x3 + ax2 + b. */ public class F2mCurve : AbstractF2mCurve { private const int F2M_DEFAULT_COORDS = COORD_LAMBDA_PROJECTIVE; /** * The exponent m of F2m. */ private readonly int m; /** * TPB: The integer k where xm + * xk + 1 represents the reduction polynomial * f(z).
* PPB: The integer k1 where xm + * xk3 + xk2 + xk1 + 1 * represents the reduction polynomial f(z).
*/ private readonly int k1; /** * TPB: Always set to 0
* PPB: The integer k2 where xm + * xk3 + xk2 + xk1 + 1 * represents the reduction polynomial f(z).
*/ private readonly int k2; /** * TPB: Always set to 0
* PPB: The integer k3 where xm + * xk3 + xk2 + xk1 + 1 * represents the reduction polynomial f(z).
*/ private readonly int k3; /** * The point at infinity on this curve. */ protected readonly F2mPoint m_infinity; /** * Constructor for Trinomial Polynomial Basis (TPB). * @param m The exponent m of * F2m. * @param k The integer k where xm + * xk + 1 represents the reduction * polynomial f(z). * @param a The coefficient a in the Weierstrass equation * for non-supersingular elliptic curves over * F2m. * @param b The coefficient b in the Weierstrass equation * for non-supersingular elliptic curves over * F2m. */ [Obsolete("Use constructor taking order/cofactor")] public F2mCurve( int m, int k, BigInteger a, BigInteger b) : this(m, k, 0, 0, a, b, null, null) { } /** * Constructor for Trinomial Polynomial Basis (TPB). * @param m The exponent m of * F2m. * @param k The integer k where xm + * xk + 1 represents the reduction * polynomial f(z). * @param a The coefficient a in the Weierstrass equation * for non-supersingular elliptic curves over * F2m. * @param b The coefficient b in the Weierstrass equation * for non-supersingular elliptic curves over * F2m. * @param order The order of the main subgroup of the elliptic curve. * @param cofactor The cofactor of the elliptic curve, i.e. * #Ea(F2m) = h * n. */ public F2mCurve( int m, int k, BigInteger a, BigInteger b, BigInteger order, BigInteger cofactor) : this(m, k, 0, 0, a, b, order, cofactor) { } /** * Constructor for Pentanomial Polynomial Basis (PPB). * @param m The exponent m of * F2m. * @param k1 The integer k1 where xm + * xk3 + xk2 + xk1 + 1 * represents the reduction polynomial f(z). * @param k2 The integer k2 where xm + * xk3 + xk2 + xk1 + 1 * represents the reduction polynomial f(z). * @param k3 The integer k3 where xm + * xk3 + xk2 + xk1 + 1 * represents the reduction polynomial f(z). * @param a The coefficient a in the Weierstrass equation * for non-supersingular elliptic curves over * F2m. * @param b The coefficient b in the Weierstrass equation * for non-supersingular elliptic curves over * F2m. */ [Obsolete("Use constructor taking order/cofactor")] public F2mCurve( int m, int k1, int k2, int k3, BigInteger a, BigInteger b) : this(m, k1, k2, k3, a, b, null, null) { } /** * Constructor for Pentanomial Polynomial Basis (PPB). * @param m The exponent m of * F2m. * @param k1 The integer k1 where xm + * xk3 + xk2 + xk1 + 1 * represents the reduction polynomial f(z). * @param k2 The integer k2 where xm + * xk3 + xk2 + xk1 + 1 * represents the reduction polynomial f(z). * @param k3 The integer k3 where xm + * xk3 + xk2 + xk1 + 1 * represents the reduction polynomial f(z). * @param a The coefficient a in the Weierstrass equation * for non-supersingular elliptic curves over * F2m. * @param b The coefficient b in the Weierstrass equation * for non-supersingular elliptic curves over * F2m. * @param order The order of the main subgroup of the elliptic curve. * @param cofactor The cofactor of the elliptic curve, i.e. * #Ea(F2m) = h * n. */ public F2mCurve( int m, int k1, int k2, int k3, BigInteger a, BigInteger b, BigInteger order, BigInteger cofactor) : base(m, k1, k2, k3) { this.m = m; this.k1 = k1; this.k2 = k2; this.k3 = k3; this.m_order = order; this.m_cofactor = cofactor; this.m_infinity = new F2mPoint(this, null, null, false); if (k1 == 0) throw new ArgumentException("k1 must be > 0"); if (k2 == 0) { if (k3 != 0) throw new ArgumentException("k3 must be 0 if k2 == 0"); } else { if (k2 <= k1) throw new ArgumentException("k2 must be > k1"); if (k3 <= k2) throw new ArgumentException("k3 must be > k2"); } this.m_a = FromBigInteger(a); this.m_b = FromBigInteger(b); this.m_coord = F2M_DEFAULT_COORDS; } protected F2mCurve(int m, int k1, int k2, int k3, ECFieldElement a, ECFieldElement b, BigInteger order, BigInteger cofactor) : base(m, k1, k2, k3) { this.m = m; this.k1 = k1; this.k2 = k2; this.k3 = k3; this.m_order = order; this.m_cofactor = cofactor; this.m_infinity = new F2mPoint(this, null, null, false); this.m_a = a; this.m_b = b; this.m_coord = F2M_DEFAULT_COORDS; } protected override ECCurve CloneCurve() { return new F2mCurve(m, k1, k2, k3, m_a, m_b, m_order, m_cofactor); } public override bool SupportsCoordinateSystem(int coord) { switch (coord) { case COORD_AFFINE: case COORD_HOMOGENEOUS: case COORD_LAMBDA_PROJECTIVE: return true; default: return false; } } protected override ECMultiplier CreateDefaultMultiplier() { if (IsKoblitz) { return new WTauNafMultiplier(); } return base.CreateDefaultMultiplier(); } public override int FieldSize { get { return m; } } public override ECFieldElement FromBigInteger(BigInteger x) { return new F2mFieldElement(this.m, this.k1, this.k2, this.k3, x); } protected internal override ECPoint CreateRawPoint(ECFieldElement x, ECFieldElement y, bool withCompression) { return new F2mPoint(this, x, y, withCompression); } protected internal override ECPoint CreateRawPoint(ECFieldElement x, ECFieldElement y, ECFieldElement[] zs, bool withCompression) { return new F2mPoint(this, x, y, zs, withCompression); } public override ECPoint Infinity { get { return m_infinity; } } public int M { get { return m; } } /** * Return true if curve uses a Trinomial basis. * * @return true if curve Trinomial, false otherwise. */ public bool IsTrinomial() { return k2 == 0 && k3 == 0; } public int K1 { get { return k1; } } public int K2 { get { return k2; } } public int K3 { get { return k3; } } public override ECLookupTable CreateCacheSafeLookupTable(ECPoint[] points, int off, int len) { int FE_LONGS = (m + 63) / 64; long[] table = new long[len * FE_LONGS * 2]; { int pos = 0; for (int i = 0; i < len; ++i) { ECPoint p = points[off + i]; ((F2mFieldElement)p.RawXCoord).x.CopyTo(table, pos); pos += FE_LONGS; ((F2mFieldElement)p.RawYCoord).x.CopyTo(table, pos); pos += FE_LONGS; } } return new DefaultF2mLookupTable(this, table, len); } private class DefaultF2mLookupTable : ECLookupTable { private readonly F2mCurve m_outer; private readonly long[] m_table; private readonly int m_size; internal DefaultF2mLookupTable(F2mCurve outer, long[] table, int size) { this.m_outer = outer; this.m_table = table; this.m_size = size; } public virtual int Size { get { return m_size; } } public virtual ECPoint Lookup(int index) { int m = m_outer.m; int[] ks = m_outer.IsTrinomial() ? new int[]{ m_outer.k1 } : new int[]{ m_outer.k1, m_outer.k2, m_outer.k3 }; int FE_LONGS = (m_outer.m + 63) / 64; long[] x = new long[FE_LONGS], y = new long[FE_LONGS]; int pos = 0; for (int i = 0; i < m_size; ++i) { long MASK =((i ^ index) - 1) >> 31; for (int j = 0; j < FE_LONGS; ++j) { x[j] ^= m_table[pos + j] & MASK; y[j] ^= m_table[pos + FE_LONGS + j] & MASK; } pos += (FE_LONGS * 2); } ECFieldElement X = new F2mFieldElement(m, ks, new LongArray(x)); ECFieldElement Y = new F2mFieldElement(m, ks, new LongArray(y)); return m_outer.CreateRawPoint(X, Y, false); } } } }