using System; using System.Collections; using Org.BouncyCastle.Math.EC.Abc; using Org.BouncyCastle.Math.EC.Multiplier; using Org.BouncyCastle.Math.Field; using Org.BouncyCastle.Utilities; namespace Org.BouncyCastle.Math.EC { /// Base class for an elliptic curve. public abstract class ECCurve { public const int COORD_AFFINE = 0; public const int COORD_HOMOGENEOUS = 1; public const int COORD_JACOBIAN = 2; public const int COORD_JACOBIAN_CHUDNOVSKY = 3; public const int COORD_JACOBIAN_MODIFIED = 4; public const int COORD_LAMBDA_AFFINE = 5; public const int COORD_LAMBDA_PROJECTIVE = 6; public const int COORD_SKEWED = 7; public static int[] GetAllCoordinateSystems() { return new int[]{ COORD_AFFINE, COORD_HOMOGENEOUS, COORD_JACOBIAN, COORD_JACOBIAN_CHUDNOVSKY, COORD_JACOBIAN_MODIFIED, COORD_LAMBDA_AFFINE, COORD_LAMBDA_PROJECTIVE, COORD_SKEWED }; } public class Config { protected ECCurve outer; protected int coord; protected ECMultiplier multiplier; internal Config(ECCurve outer, int coord, ECMultiplier multiplier) { this.outer = outer; this.coord = coord; this.multiplier = multiplier; } public Config SetCoordinateSystem(int coord) { this.coord = coord; return this; } public Config SetMultiplier(ECMultiplier multiplier) { this.multiplier = multiplier; return this; } public ECCurve Create() { if (!outer.SupportsCoordinateSystem(coord)) { throw new InvalidOperationException("unsupported coordinate system"); } ECCurve c = outer.CloneCurve(); if (c == outer) { throw new InvalidOperationException("implementation returned current curve"); } c.m_coord = coord; c.m_multiplier = multiplier; return c; } } protected IFiniteField m_field; protected ECFieldElement m_a, m_b; protected int m_coord = COORD_AFFINE; protected ECMultiplier m_multiplier = null; protected ECCurve(IFiniteField field) { this.m_field = field; } public abstract int FieldSize { get; } public abstract ECFieldElement FromBigInteger(BigInteger x); public virtual Config Configure() { return new Config(this, this.m_coord, this.m_multiplier); } public virtual ECPoint CreatePoint(BigInteger x, BigInteger y) { return CreatePoint(x, y, false); } public abstract ECPoint CreatePoint(BigInteger x, BigInteger y, bool withCompression); protected abstract ECCurve CloneCurve(); protected virtual ECMultiplier CreateDefaultMultiplier() { return new WNafMultiplier(); } public virtual bool SupportsCoordinateSystem(int coord) { return coord == COORD_AFFINE; } public virtual PreCompInfo GetPreCompInfo(ECPoint p) { CheckPoint(p); return p.m_preCompInfo; } /** * Sets the PreCompInfo for a point on this curve. Used by * ECMultipliers to save the precomputation for this ECPoint for use * by subsequent multiplication. * * @param point * The ECPoint to store precomputations for. * @param preCompInfo * The values precomputed by the ECMultiplier. */ public virtual void SetPreCompInfo(ECPoint point, PreCompInfo preCompInfo) { CheckPoint(point); point.m_preCompInfo = preCompInfo; } public virtual ECPoint ImportPoint(ECPoint p) { if (this == p.Curve) { return p; } if (p.IsInfinity) { return Infinity; } // TODO Default behaviour could be improved if the two curves have the same coordinate system by copying any Z coordinates. p = p.Normalize(); return CreatePoint(p.X.ToBigInteger(), p.Y.ToBigInteger(), p.IsCompressed); } /** * Normalization ensures that any projective coordinate is 1, and therefore that the x, y * coordinates reflect those of the equivalent point in an affine coordinate system. Where more * than one point is to be normalized, this method will generally be more efficient than * normalizing each point separately. * * @param points * An array of points that will be updated in place with their normalized versions, * where necessary */ public virtual void NormalizeAll(ECPoint[] points) { CheckPoints(points); if (this.CoordinateSystem == ECCurve.COORD_AFFINE) { return; } /* * Figure out which of the points actually need to be normalized */ ECFieldElement[] zs = new ECFieldElement[points.Length]; int[] indices = new int[points.Length]; int count = 0; for (int i = 0; i < points.Length; ++i) { ECPoint p = points[i]; if (null != p && !p.IsNormalized()) { zs[count] = p.GetZCoord(0); indices[count++] = i; } } if (count == 0) { return; } ECAlgorithms.MontgomeryTrick(zs, 0, count); for (int j = 0; j < count; ++j) { int index = indices[j]; points[index] = points[index].Normalize(zs[j]); } } public abstract ECPoint Infinity { get; } public virtual IFiniteField Field { get { return m_field; } } public virtual ECFieldElement A { get { return m_a; } } public virtual ECFieldElement B { get { return m_b; } } public virtual int CoordinateSystem { get { return m_coord; } } protected virtual void CheckPoint(ECPoint point) { if (null == point || (this != point.Curve)) throw new ArgumentException("must be non-null and on this curve", "point"); } protected virtual void CheckPoints(ECPoint[] points) { if (points == null) throw new ArgumentNullException("points"); for (int i = 0; i < points.Length; ++i) { ECPoint point = points[i]; if (null != point && this != point.Curve) throw new ArgumentException("entries must be null or on this curve", "points"); } } public virtual bool Equals(ECCurve other) { if (this == other) return true; if (null == other) return false; return Field.Equals(other.Field) && A.Equals(other.A) && B.Equals(other.B); } public override bool Equals(object obj) { return Equals(obj as ECCurve); } public override int GetHashCode() { return Field.GetHashCode() ^ Integers.RotateLeft(A.GetHashCode(), 8) ^ Integers.RotateLeft(B.GetHashCode(), 16); } protected abstract ECPoint DecompressPoint(int yTilde, BigInteger X1); /** * Sets the default ECMultiplier, unless already set. */ public virtual ECMultiplier GetMultiplier() { lock (this) { if (this.m_multiplier == null) { this.m_multiplier = CreateDefaultMultiplier(); } return this.m_multiplier; } } /** * Decode a point on this curve from its ASN.1 encoding. The different * encodings are taken account of, including point compression for * Fp (X9.62 s 4.2.1 pg 17). * @return The decoded point. */ public virtual ECPoint DecodePoint(byte[] encoded) { ECPoint p = null; int expectedLength = (FieldSize + 7) / 8; switch (encoded[0]) { case 0x00: // infinity { if (encoded.Length != 1) throw new ArgumentException("Incorrect length for infinity encoding", "encoded"); p = Infinity; break; } case 0x02: // compressed case 0x03: // compressed { if (encoded.Length != (expectedLength + 1)) throw new ArgumentException("Incorrect length for compressed encoding", "encoded"); int yTilde = encoded[0] & 1; BigInteger X1 = new BigInteger(1, encoded, 1, expectedLength); p = DecompressPoint(yTilde, X1); break; } case 0x04: // uncompressed case 0x06: // hybrid case 0x07: // hybrid { if (encoded.Length != (2 * expectedLength + 1)) throw new ArgumentException("Incorrect length for uncompressed/hybrid encoding", "encoded"); BigInteger X1 = new BigInteger(1, encoded, 1, expectedLength); BigInteger Y1 = new BigInteger(1, encoded, 1 + expectedLength, expectedLength); p = CreatePoint(X1, Y1, false); break; } default: throw new FormatException("Invalid point encoding " + encoded[0]); } return p; } } /** * Elliptic curve over Fp */ public class FpCurve : ECCurve { private const int FP_DEFAULT_COORDS = COORD_AFFINE; protected readonly BigInteger m_q, m_r; protected readonly FpPoint m_infinity; public FpCurve(BigInteger q, BigInteger a, BigInteger b) : base(FiniteFields.GetPrimeField(q)) { this.m_q = q; this.m_r = FpFieldElement.CalculateResidue(q); this.m_infinity = new FpPoint(this, null, null); this.m_a = FromBigInteger(a); this.m_b = FromBigInteger(b); this.m_coord = FP_DEFAULT_COORDS; } protected FpCurve(BigInteger q, BigInteger r, ECFieldElement a, ECFieldElement b) : base(FiniteFields.GetPrimeField(q)) { this.m_q = q; this.m_r = r; this.m_infinity = new FpPoint(this, null, null); this.m_a = a; this.m_b = b; this.m_coord = FP_DEFAULT_COORDS; } protected override ECCurve CloneCurve() { return new FpCurve(m_q, m_r, m_a, m_b); } public virtual BigInteger Q { get { return m_q; } } public override ECPoint Infinity { get { return m_infinity; } } public override int FieldSize { get { return m_q.BitLength; } } public override ECFieldElement FromBigInteger(BigInteger x) { return new FpFieldElement(this.m_q, this.m_r, x); } public override ECPoint CreatePoint( BigInteger X1, BigInteger Y1, bool withCompression) { // TODO Validation of X1, Y1? return new FpPoint( this, FromBigInteger(X1), FromBigInteger(Y1), withCompression); } protected override ECPoint DecompressPoint( int yTilde, BigInteger X1) { ECFieldElement x = FromBigInteger(X1); ECFieldElement alpha = x.Multiply(x.Square().Add(m_a)).Add(m_b); ECFieldElement beta = alpha.Sqrt(); // // if we can't find a sqrt we haven't got a point on the // curve - run! // if (beta == null) throw new ArithmeticException("Invalid point compression"); BigInteger betaValue = beta.ToBigInteger(); int bit0 = betaValue.TestBit(0) ? 1 : 0; if (bit0 != yTilde) { // Use the other root beta = beta.Negate(); } return new FpPoint(this, x, beta, true); } } /** * Elliptic curves over F2m. The Weierstrass equation is given by * y2 + xy = x3 + ax2 + b. */ public class F2mCurve : ECCurve { private const int F2M_DEFAULT_COORDS = COORD_AFFINE; private static IFiniteField BuildField(int m, int k1, int k2, int k3) { if (k1 == 0) { throw new ArgumentException("k1 must be > 0"); } if (k2 == 0) { if (k3 != 0) { throw new ArgumentException("k3 must be 0 if k2 == 0"); } return FiniteFields.GetBinaryExtensionField(new int[]{ 0, k1, m }); } if (k2 <= k1) { throw new ArgumentException("k2 must be > k1"); } if (k3 <= k2) { throw new ArgumentException("k3 must be > k2"); } return FiniteFields.GetBinaryExtensionField(new int[]{ 0, k1, k2, k3, m }); } /** * The exponent m of F2m. */ private readonly int m; /** * TPB: The integer k where xm + * xk + 1 represents the reduction polynomial * f(z).
* PPB: The integer k1 where xm + * xk3 + xk2 + xk1 + 1 * represents the reduction polynomial f(z).
*/ private readonly int k1; /** * TPB: Always set to 0
* PPB: The integer k2 where xm + * xk3 + xk2 + xk1 + 1 * represents the reduction polynomial f(z).
*/ private readonly int k2; /** * TPB: Always set to 0
* PPB: The integer k3 where xm + * xk3 + xk2 + xk1 + 1 * represents the reduction polynomial f(z).
*/ private readonly int k3; /** * The order of the base point of the curve. */ private readonly BigInteger n; /** * The cofactor of the curve. */ private readonly BigInteger h; /** * The point at infinity on this curve. */ protected readonly F2mPoint m_infinity; /** * The parameter μ of the elliptic curve if this is * a Koblitz curve. */ private sbyte mu = 0; /** * The auxiliary values s0 and * s1 used for partial modular reduction for * Koblitz curves. */ private BigInteger[] si = null; /** * Constructor for Trinomial Polynomial Basis (TPB). * @param m The exponent m of * F2m. * @param k The integer k where xm + * xk + 1 represents the reduction * polynomial f(z). * @param a The coefficient a in the Weierstrass equation * for non-supersingular elliptic curves over * F2m. * @param b The coefficient b in the Weierstrass equation * for non-supersingular elliptic curves over * F2m. */ public F2mCurve( int m, int k, BigInteger a, BigInteger b) : this(m, k, 0, 0, a, b, null, null) { } /** * Constructor for Trinomial Polynomial Basis (TPB). * @param m The exponent m of * F2m. * @param k The integer k where xm + * xk + 1 represents the reduction * polynomial f(z). * @param a The coefficient a in the Weierstrass equation * for non-supersingular elliptic curves over * F2m. * @param b The coefficient b in the Weierstrass equation * for non-supersingular elliptic curves over * F2m. * @param n The order of the main subgroup of the elliptic curve. * @param h The cofactor of the elliptic curve, i.e. * #Ea(F2m) = h * n. */ public F2mCurve( int m, int k, BigInteger a, BigInteger b, BigInteger n, BigInteger h) : this(m, k, 0, 0, a, b, n, h) { } /** * Constructor for Pentanomial Polynomial Basis (PPB). * @param m The exponent m of * F2m. * @param k1 The integer k1 where xm + * xk3 + xk2 + xk1 + 1 * represents the reduction polynomial f(z). * @param k2 The integer k2 where xm + * xk3 + xk2 + xk1 + 1 * represents the reduction polynomial f(z). * @param k3 The integer k3 where xm + * xk3 + xk2 + xk1 + 1 * represents the reduction polynomial f(z). * @param a The coefficient a in the Weierstrass equation * for non-supersingular elliptic curves over * F2m. * @param b The coefficient b in the Weierstrass equation * for non-supersingular elliptic curves over * F2m. */ public F2mCurve( int m, int k1, int k2, int k3, BigInteger a, BigInteger b) : this(m, k1, k2, k3, a, b, null, null) { } /** * Constructor for Pentanomial Polynomial Basis (PPB). * @param m The exponent m of * F2m. * @param k1 The integer k1 where xm + * xk3 + xk2 + xk1 + 1 * represents the reduction polynomial f(z). * @param k2 The integer k2 where xm + * xk3 + xk2 + xk1 + 1 * represents the reduction polynomial f(z). * @param k3 The integer k3 where xm + * xk3 + xk2 + xk1 + 1 * represents the reduction polynomial f(z). * @param a The coefficient a in the Weierstrass equation * for non-supersingular elliptic curves over * F2m. * @param b The coefficient b in the Weierstrass equation * for non-supersingular elliptic curves over * F2m. * @param n The order of the main subgroup of the elliptic curve. * @param h The cofactor of the elliptic curve, i.e. * #Ea(F2m) = h * n. */ public F2mCurve( int m, int k1, int k2, int k3, BigInteger a, BigInteger b, BigInteger n, BigInteger h) : base(BuildField(m, k1, k2, k3)) { this.m = m; this.k1 = k1; this.k2 = k2; this.k3 = k3; this.n = n; this.h = h; this.m_infinity = new F2mPoint(this, null, null); if (k1 == 0) throw new ArgumentException("k1 must be > 0"); if (k2 == 0) { if (k3 != 0) throw new ArgumentException("k3 must be 0 if k2 == 0"); } else { if (k2 <= k1) throw new ArgumentException("k2 must be > k1"); if (k3 <= k2) throw new ArgumentException("k3 must be > k2"); } this.m_a = FromBigInteger(a); this.m_b = FromBigInteger(b); this.m_coord = F2M_DEFAULT_COORDS; } protected F2mCurve(int m, int k1, int k2, int k3, ECFieldElement a, ECFieldElement b, BigInteger order, BigInteger cofactor) : base(BuildField(m, k1, k2, k3)) { this.m = m; this.k1 = k1; this.k2 = k2; this.k3 = k3; this.n = order; this.h = cofactor; this.m_infinity = new F2mPoint(this, null, null); this.m_a = a; this.m_b = b; this.m_coord = F2M_DEFAULT_COORDS; } protected override ECCurve CloneCurve() { return new F2mCurve(m, k1, k2, k3, m_a, m_b, n, h); } protected override ECMultiplier CreateDefaultMultiplier() { if (IsKoblitz) { return new WTauNafMultiplier(); } return base.CreateDefaultMultiplier(); } public override ECPoint Infinity { get { return m_infinity; } } public override int FieldSize { get { return m; } } public override ECFieldElement FromBigInteger(BigInteger x) { return new F2mFieldElement(this.m, this.k1, this.k2, this.k3, x); } /** * Returns true if this is a Koblitz curve (ABC curve). * @return true if this is a Koblitz curve (ABC curve), false otherwise */ public virtual bool IsKoblitz { get { return n != null && h != null && m_a.BitLength <= 1 && m_b.IsOne; } } /** * Returns the parameter μ of the elliptic curve. * @return μ of the elliptic curve. * @throws ArgumentException if the given ECCurve is not a * Koblitz curve. */ internal virtual sbyte GetMu() { if (mu == 0) { lock (this) { if (mu == 0) { mu = Tnaf.GetMu(this); } } } return mu; } /** * @return the auxiliary values s0 and * s1 used for partial modular reduction for * Koblitz curves. */ internal virtual BigInteger[] GetSi() { if (si == null) { lock (this) { if (si == null) { si = Tnaf.GetSi(this); } } } return si; } public override ECPoint CreatePoint( BigInteger X1, BigInteger Y1, bool withCompression) { // TODO Validation of X1, Y1? return new F2mPoint( this, FromBigInteger(X1), FromBigInteger(Y1), withCompression); } protected override ECPoint DecompressPoint( int yTilde, BigInteger X1) { ECFieldElement xp = FromBigInteger(X1); ECFieldElement yp = null; if (xp.ToBigInteger().SignValue == 0) { yp = (F2mFieldElement)m_b; for (int i = 0; i < m - 1; i++) { yp = yp.Square(); } } else { ECFieldElement beta = xp.Add(m_a).Add(m_b.Multiply(xp.Square().Invert())); ECFieldElement z = SolveQuadradicEquation(beta); if (z == null) throw new ArithmeticException("Invalid point compression"); int zBit = z.ToBigInteger().TestBit(0) ? 1 : 0; if (zBit != yTilde) { z = z.Add(FromBigInteger(BigInteger.One)); } yp = xp.Multiply(z); } return new F2mPoint(this, xp, yp, true); } /** * Solves a quadratic equation z2 + z = beta(X9.62 * D.1.6) The other solution is z + 1. * * @param beta * The value to solve the qradratic equation for. * @return the solution for z2 + z = beta or * null if no solution exists. */ private ECFieldElement SolveQuadradicEquation(ECFieldElement beta) { if (beta.IsZero) { return beta; } ECFieldElement zeroElement = FromBigInteger(BigInteger.Zero); ECFieldElement z = null; ECFieldElement gamma = null; Random rand = new Random(); do { ECFieldElement t = FromBigInteger(new BigInteger(m, rand)); z = zeroElement; ECFieldElement w = beta; for (int i = 1; i <= m - 1; i++) { ECFieldElement w2 = w.Square(); z = z.Square().Add(w2.Multiply(t)); w = w2.Add(beta); } if (!w.IsZero) { return null; } gamma = z.Square().Add(z); } while (gamma.IsZero); return z; } public int M { get { return m; } } /** * Return true if curve uses a Trinomial basis. * * @return true if curve Trinomial, false otherwise. */ public bool IsTrinomial() { return k2 == 0 && k3 == 0; } public int K1 { get { return k1; } } public int K2 { get { return k2; } } public int K3 { get { return k3; } } public BigInteger N { get { return n; } } public BigInteger H { get { return h; } } } }