using System; using Org.BouncyCastle.Math.EC.Multiplier; using Org.BouncyCastle.Math.Field; namespace Org.BouncyCastle.Math.EC { public class ECAlgorithms { public static bool IsF2mCurve(ECCurve c) { IFiniteField field = c.Field; return field.Dimension > 1 && field.Characteristic.Equals(BigInteger.Two) && field is IPolynomialExtensionField; } public static bool IsFpCurve(ECCurve c) { return c.Field.Dimension == 1; } public static ECPoint SumOfTwoMultiplies(ECPoint P, BigInteger a, ECPoint Q, BigInteger b) { ECCurve cp = P.Curve; Q = ImportPoint(cp, Q); // Point multiplication for Koblitz curves (using WTNAF) beats Shamir's trick if (cp is F2mCurve) { F2mCurve f2mCurve = (F2mCurve) cp; if (f2mCurve.IsKoblitz) { return P.Multiply(a).Add(Q.Multiply(b)); } } return ImplShamirsTrick(P, a, Q, b); } /* * "Shamir's Trick", originally due to E. G. Straus * (Addition chains of vectors. American Mathematical Monthly, * 71(7):806-808, Aug./Sept. 1964) * * Input: The points P, Q, scalar k = (km?, ... , k1, k0) * and scalar l = (lm?, ... , l1, l0). * Output: R = k * P + l * Q. * 1: Z <- P + Q * 2: R <- O * 3: for i from m-1 down to 0 do * 4: R <- R + R {point doubling} * 5: if (ki = 1) and (li = 0) then R <- R + P end if * 6: if (ki = 0) and (li = 1) then R <- R + Q end if * 7: if (ki = 1) and (li = 1) then R <- R + Z end if * 8: end for * 9: return R */ public static ECPoint ShamirsTrick(ECPoint P, BigInteger k, ECPoint Q, BigInteger l) { ECCurve cp = P.Curve; Q = ImportPoint(cp, Q); return ImplShamirsTrick(P, k, Q, l); } public static ECPoint ImportPoint(ECCurve c, ECPoint p) { ECCurve cp = p.Curve; if (!c.Equals(cp)) throw new ArgumentException("Point must be on the same curve"); return c.ImportPoint(p); } public static void MontgomeryTrick(ECFieldElement[] zs, int off, int len) { /* * Uses the "Montgomery Trick" to invert many field elements, with only a single actual * field inversion. See e.g. the paper: * "Fast Multi-scalar Multiplication Methods on Elliptic Curves with Precomputation Strategy Using Montgomery Trick" * by Katsuyuki Okeya, Kouichi Sakurai. */ ECFieldElement[] c = new ECFieldElement[len]; c[0] = zs[off]; int i = 0; while (++i < len) { c[i] = c[i - 1].Multiply(zs[off + i]); } ECFieldElement u = c[--i].Invert(); while (i > 0) { int j = off + i--; ECFieldElement tmp = zs[j]; zs[j] = c[i].Multiply(u); u = u.Multiply(tmp); } zs[off] = u; } internal static ECPoint ImplShamirsTrick(ECPoint P, BigInteger k, ECPoint Q, BigInteger l) { ECCurve curve = P.Curve; ECPoint infinity = curve.Infinity; // TODO conjugate co-Z addition (ZADDC) can return both of these ECPoint PaddQ = P.Add(Q); ECPoint PsubQ = P.Subtract(Q); ECPoint[] points = new ECPoint[] { Q, PsubQ, P, PaddQ }; curve.NormalizeAll(points); ECPoint[] table = new ECPoint[] { points[3].Negate(), points[2].Negate(), points[1].Negate(), points[0].Negate(), infinity, points[0], points[1], points[2], points[3] }; byte[] jsf = WNafUtilities.GenerateJsf(k, l); ECPoint R = infinity; int i = jsf.Length; while (--i >= 0) { int jsfi = jsf[i]; // NOTE: The shifting ensures the sign is extended correctly int kDigit = ((jsfi << 24) >> 28), lDigit = ((jsfi << 28) >> 28); int index = 4 + (kDigit * 3) + lDigit; R = R.TwicePlus(table[index]); } return R; } } }