using System;
using Org.BouncyCastle.Crypto;
using Org.BouncyCastle.Crypto.Utilities;
using Org.BouncyCastle.Security;
using Org.BouncyCastle.Utilities;
namespace Org.BouncyCastle.Math
{
/// Utility methods for generating primes and testing for primality.
public static class Primes
{
public static readonly int SmallFactorLimit = 211;
private static readonly BigInteger One = BigInteger.One;
private static readonly BigInteger Two = BigInteger.Two;
private static readonly BigInteger Three = BigInteger.Three;
/// Used to return the output from the
///
/// Enhanced Miller-Rabin Probabilistic Primality Test
public sealed class MROutput
{
internal static MROutput ProbablyPrime()
{
return new MROutput(false, null);
}
internal static MROutput ProvablyCompositeWithFactor(BigInteger factor)
{
return new MROutput(true, factor);
}
internal static MROutput ProvablyCompositeNotPrimePower()
{
return new MROutput(true, null);
}
private readonly bool m_provablyComposite;
private readonly BigInteger m_factor;
private MROutput(bool provablyComposite, BigInteger factor)
{
m_provablyComposite = provablyComposite;
m_factor = factor;
}
public BigInteger Factor => m_factor;
public bool IsProvablyComposite => m_provablyComposite;
public bool IsNotPrimePower => m_provablyComposite && m_factor == null;
}
/// Used to return the output from the
/// Shawe-Taylor Random_Prime Routine
public sealed class STOutput
{
private readonly BigInteger m_prime;
private readonly byte[] m_primeSeed;
private readonly int m_primeGenCounter;
internal STOutput(BigInteger prime, byte[] primeSeed, int primeGenCounter)
{
m_prime = prime;
m_primeSeed = primeSeed;
m_primeGenCounter = primeGenCounter;
}
public BigInteger Prime => m_prime;
public byte[] PrimeSeed => m_primeSeed;
public int PrimeGenCounter => m_primeGenCounter;
}
/// FIPS 186-4 C.6 Shawe-Taylor Random_Prime Routine.
/// Construct a provable prime number using a hash function.
/// The instance to use (as "Hash()"). Cannot be null.
/// The length (in bits) of the prime to be generated. Must be at least 2.
/// The seed to be used for the generation of the requested prime. Cannot be null or
/// empty.
/// An instance containing the requested prime.
public static STOutput GenerateSTRandomPrime(IDigest hash, int length, byte[] inputSeed)
{
if (hash == null)
throw new ArgumentNullException(nameof(hash));
if (length < 2)
throw new ArgumentException("must be >= 2", nameof(length));
if (inputSeed == null)
throw new ArgumentNullException(nameof(inputSeed));
if (inputSeed.Length == 0)
throw new ArgumentException("cannot be empty", nameof(inputSeed));
return ImplSTRandomPrime(hash, length, Arrays.Clone(inputSeed));
}
/// FIPS 186-4 C.3.2 Enhanced Miller-Rabin Probabilistic Primality Test.
///
/// Run several iterations of the Miller-Rabin algorithm with randomly-chosen bases. This is an alternative to
/// that provides more information about a
/// composite candidate, which may be useful when generating or validating RSA moduli.
///
/// The instance to test for primality.
/// The source of randomness to use to choose bases.
/// The number of randomly-chosen bases to perform the test for.
/// An instance that can be further queried for details.
public static MROutput EnhancedMRProbablePrimeTest(BigInteger candidate, SecureRandom random, int iterations)
{
CheckCandidate(candidate, nameof(candidate));
if (random == null)
throw new ArgumentNullException(nameof(random));
if (iterations < 1)
throw new ArgumentException("must be > 0", nameof(iterations));
if (candidate.BitLength == 2)
return MROutput.ProbablyPrime();
if (!candidate.TestBit(0))
return MROutput.ProvablyCompositeWithFactor(Two);
BigInteger w = candidate;
BigInteger wSubOne = candidate.Subtract(One);
BigInteger wSubTwo = candidate.Subtract(Two);
int a = wSubOne.GetLowestSetBit();
BigInteger m = wSubOne.ShiftRight(a);
for (int i = 0; i < iterations; ++i)
{
BigInteger b = BigIntegers.CreateRandomInRange(Two, wSubTwo, random);
BigInteger g = b.Gcd(w);
if (g.CompareTo(One) > 0)
return MROutput.ProvablyCompositeWithFactor(g);
BigInteger z = b.ModPow(m, w);
if (z.Equals(One) || z.Equals(wSubOne))
continue;
bool primeToBase = false;
BigInteger x = z;
for (int j = 1; j < a; ++j)
{
z = z.Square().Mod(w);
if (z.Equals(wSubOne))
{
primeToBase = true;
break;
}
if (z.Equals(One))
break;
x = z;
}
if (!primeToBase)
{
if (!z.Equals(One))
{
x = z;
z = z.Square().Mod(w);
if (!z.Equals(One))
{
x = z;
}
}
g = x.Subtract(One).Gcd(w);
if (g.CompareTo(One) > 0)
return MROutput.ProvablyCompositeWithFactor(g);
return MROutput.ProvablyCompositeNotPrimePower();
}
}
return MROutput.ProbablyPrime();
}
/// A fast check for small divisors, up to some implementation-specific limit.
/// The instance to test for division by small factors.
/// true if the candidate is found to have any small factors, false otherwise.
public static bool HasAnySmallFactors(BigInteger candidate)
{
CheckCandidate(candidate, nameof(candidate));
return ImplHasAnySmallFactors(candidate);
}
/// FIPS 186-4 C.3.1 Miller-Rabin Probabilistic Primality Test.
/// Run several iterations of the Miller-Rabin algorithm with randomly-chosen bases.
/// The instance to test for primality.
/// The source of randomness to use to choose bases.
/// The number of randomly-chosen bases to perform the test for.
///
/// false if any witness to compositeness is found amongst the chosen bases (so
/// is definitely NOT prime), or else true (indicating primality with some
/// probability dependent on the number of iterations that were performed).
///
public static bool IsMRProbablePrime(BigInteger candidate, SecureRandom random, int iterations)
{
CheckCandidate(candidate, nameof(candidate));
if (random == null)
throw new ArgumentException("cannot be null", nameof(random));
if (iterations < 1)
throw new ArgumentException("must be > 0", nameof(iterations));
if (candidate.BitLength == 2)
return true;
if (!candidate.TestBit(0))
return false;
BigInteger w = candidate;
BigInteger wSubOne = candidate.Subtract(One);
BigInteger wSubTwo = candidate.Subtract(Two);
int a = wSubOne.GetLowestSetBit();
BigInteger m = wSubOne.ShiftRight(a);
for (int i = 0; i < iterations; ++i)
{
BigInteger b = BigIntegers.CreateRandomInRange(Two, wSubTwo, random);
if (!ImplMRProbablePrimeToBase(w, wSubOne, m, a, b))
return false;
}
return true;
}
/// FIPS 186-4 C.3.1 Miller-Rabin Probabilistic Primality Test (to a fixed base).
/// Run a single iteration of the Miller-Rabin algorithm against the specified base.
/// The instance to test for primality.
/// The base value to use for this iteration.
/// false if is a witness to compositeness (so
/// is definitely NOT prime), or else true.
public static bool IsMRProbablePrimeToBase(BigInteger candidate, BigInteger baseValue)
{
CheckCandidate(candidate, nameof(candidate));
CheckCandidate(baseValue, nameof(baseValue));
if (baseValue.CompareTo(candidate.Subtract(One)) >= 0)
throw new ArgumentException("must be < ('candidate' - 1)", nameof(baseValue));
if (candidate.BitLength == 2)
return true;
BigInteger w = candidate;
BigInteger wSubOne = candidate.Subtract(One);
int a = wSubOne.GetLowestSetBit();
BigInteger m = wSubOne.ShiftRight(a);
return ImplMRProbablePrimeToBase(w, wSubOne, m, a, baseValue);
}
private static void CheckCandidate(BigInteger n, string name)
{
if (n == null || n.SignValue < 1 || n.BitLength < 2)
throw new ArgumentException("must be non-null and >= 2", name);
}
private static bool ImplHasAnySmallFactors(BigInteger x)
{
/*
* Bundle trial divisors into ~32-bit moduli then use fast tests on the ~32-bit remainders.
*/
int m = 2 * 3 * 5 * 7 * 11 * 13 * 17 * 19 * 23;
int r = x.Mod(BigInteger.ValueOf(m)).IntValue;
if ((r % 2) == 0 || (r % 3) == 0 || (r % 5) == 0 || (r % 7) == 0 || (r % 11) == 0 || (r % 13) == 0
|| (r % 17) == 0 || (r % 19) == 0 || (r % 23) == 0)
{
return true;
}
m = 29 * 31 * 37 * 41 * 43;
r = x.Mod(BigInteger.ValueOf(m)).IntValue;
if ((r % 29) == 0 || (r % 31) == 0 || (r % 37) == 0 || (r % 41) == 0 || (r % 43) == 0)
{
return true;
}
m = 47 * 53 * 59 * 61 * 67;
r = x.Mod(BigInteger.ValueOf(m)).IntValue;
if ((r % 47) == 0 || (r % 53) == 0 || (r % 59) == 0 || (r % 61) == 0 || (r % 67) == 0)
{
return true;
}
m = 71 * 73 * 79 * 83;
r = x.Mod(BigInteger.ValueOf(m)).IntValue;
if ((r % 71) == 0 || (r % 73) == 0 || (r % 79) == 0 || (r % 83) == 0)
{
return true;
}
m = 89 * 97 * 101 * 103;
r = x.Mod(BigInteger.ValueOf(m)).IntValue;
if ((r % 89) == 0 || (r % 97) == 0 || (r % 101) == 0 || (r % 103) == 0)
{
return true;
}
m = 107 * 109 * 113 * 127;
r = x.Mod(BigInteger.ValueOf(m)).IntValue;
if ((r % 107) == 0 || (r % 109) == 0 || (r % 113) == 0 || (r % 127) == 0)
{
return true;
}
m = 131 * 137 * 139 * 149;
r = x.Mod(BigInteger.ValueOf(m)).IntValue;
if ((r % 131) == 0 || (r % 137) == 0 || (r % 139) == 0 || (r % 149) == 0)
{
return true;
}
m = 151 * 157 * 163 * 167;
r = x.Mod(BigInteger.ValueOf(m)).IntValue;
if ((r % 151) == 0 || (r % 157) == 0 || (r % 163) == 0 || (r % 167) == 0)
{
return true;
}
m = 173 * 179 * 181 * 191;
r = x.Mod(BigInteger.ValueOf(m)).IntValue;
if ((r % 173) == 0 || (r % 179) == 0 || (r % 181) == 0 || (r % 191) == 0)
{
return true;
}
m = 193 * 197 * 199 * 211;
r = x.Mod(BigInteger.ValueOf(m)).IntValue;
if ((r % 193) == 0 || (r % 197) == 0 || (r % 199) == 0 || (r % 211) == 0)
{
return true;
}
/*
* NOTE: Unit tests depend on SMALL_FACTOR_LIMIT matching the
* highest small factor tested here.
*/
return false;
}
private static bool ImplMRProbablePrimeToBase(BigInteger w, BigInteger wSubOne, BigInteger m, int a, BigInteger b)
{
BigInteger z = b.ModPow(m, w);
if (z.Equals(One) || z.Equals(wSubOne))
return true;
for (int j = 1; j < a; ++j)
{
z = z.Square().Mod(w);
if (z.Equals(wSubOne))
return true;
if (z.Equals(One))
return false;
}
return false;
}
private static STOutput ImplSTRandomPrime(IDigest d, int length, byte[] primeSeed)
{
int dLen = d.GetDigestSize();
int cLen = System.Math.Max(4, dLen);
if (length < 33)
{
int primeGenCounter = 0;
byte[] c0 = new byte[cLen];
byte[] c1 = new byte[cLen];
for (;;)
{
Hash(d, primeSeed, c0, cLen - dLen);
Inc(primeSeed, 1);
Hash(d, primeSeed, c1, cLen - dLen);
Inc(primeSeed, 1);
uint c = Pack.BE_To_UInt32(c0, cLen - 4)
^ Pack.BE_To_UInt32(c1, cLen - 4);
c &= uint.MaxValue >> (32 - length);
c |= (1U << (length - 1)) | 1U;
++primeGenCounter;
if (IsPrime32(c))
return new STOutput(BigInteger.ValueOf(c), primeSeed, primeGenCounter);
if (primeGenCounter > (4 * length))
throw new InvalidOperationException("Too many iterations in Shawe-Taylor Random_Prime Routine");
}
}
STOutput rec = ImplSTRandomPrime(d, (length + 3)/2, primeSeed);
{
BigInteger c0 = rec.Prime;
primeSeed = rec.PrimeSeed;
int primeGenCounter = rec.PrimeGenCounter;
int outlen = 8 * dLen;
int iterations = (length - 1)/outlen;
int oldCounter = primeGenCounter;
BigInteger x = HashGen(d, primeSeed, iterations + 1);
x = x.Mod(One.ShiftLeft(length - 1)).SetBit(length - 1);
BigInteger c0x2 = c0.ShiftLeft(1);
BigInteger tx2 = x.Subtract(One).Divide(c0x2).Add(One).ShiftLeft(1);
int dt = 0;
BigInteger c = tx2.Multiply(c0).Add(One);
/*
* TODO Since the candidate primes are generated by constant steps ('c0x2'),
* sieving could be used here in place of the 'HasAnySmallFactors' approach.
*/
for (;;)
{
if (c.BitLength > length)
{
tx2 = One.ShiftLeft(length - 1).Subtract(One).Divide(c0x2).Add(One).ShiftLeft(1);
c = tx2.Multiply(c0).Add(One);
}
++primeGenCounter;
/*
* This is an optimization of the original algorithm, using trial division to screen out
* many non-primes quickly.
*
* NOTE: 'primeSeed' is still incremented as if we performed the full check!
*/
if (ImplHasAnySmallFactors(c))
{
Inc(primeSeed, iterations + 1);
}
else
{
BigInteger a = HashGen(d, primeSeed, iterations + 1);
a = a.Mod(c.Subtract(Three)).Add(Two);
tx2 = tx2.Add(BigInteger.ValueOf(dt));
dt = 0;
BigInteger z = a.ModPow(tx2, c);
if (c.Gcd(z.Subtract(One)).Equals(One) && z.ModPow(c0, c).Equals(One))
return new STOutput(c, primeSeed, primeGenCounter);
}
if (primeGenCounter >= ((4 * length) + oldCounter))
throw new InvalidOperationException("Too many iterations in Shawe-Taylor Random_Prime Routine");
dt += 2;
c = c.Add(c0x2);
}
}
}
private static void Hash(IDigest d, byte[] input, byte[] output, int outPos)
{
d.BlockUpdate(input, 0, input.Length);
d.DoFinal(output, outPos);
}
private static BigInteger HashGen(IDigest d, byte[] seed, int count)
{
int dLen = d.GetDigestSize();
int pos = count * dLen;
byte[] buf = new byte[pos];
for (int i = 0; i < count; ++i)
{
pos -= dLen;
Hash(d, seed, buf, pos);
Inc(seed, 1);
}
return new BigInteger(1, buf);
}
private static void Inc(byte[] seed, int c)
{
int pos = seed.Length;
while (c > 0 && --pos >= 0)
{
c += seed[pos];
seed[pos] = (byte)c;
c >>= 8;
}
}
private static bool IsPrime32(uint x)
{
/*
* Use wheel factorization with 2, 3, 5 to select trial divisors.
*/
if (x < 32)
return ((1 << (int)x) & 0b0010_0000_1000_1010_0010_1000_1010_1100) != 0;
if (((1 << (int)(x % 30U)) & 0b1010_0000_1000_1010_0010_1000_1000_0010U) == 0)
return false;
uint[] ds = new uint[]{ 1, 7, 11, 13, 17, 19, 23, 29 };
uint b = 0;
for (int pos = 1;; pos = 0)
{
/*
* Trial division by wheel-selected divisors
*/
while (pos < ds.Length)
{
uint d = b + ds[pos];
if (x % d == 0)
return false;
++pos;
}
b += 30;
if ((b >> 16 != 0) || (b * b >= x))
return true;
}
}
}
}