using System;
using Org.BouncyCastle.Math;
using Org.BouncyCastle.Utilities;
namespace Org.BouncyCastle.Bcpg
{
/// Base class for an RSA secret (or priate) key.
public class RsaSecretBcpgKey
: BcpgObject, IBcpgKey
{
private readonly MPInteger d, p, q, u;
private readonly BigInteger expP, expQ, crt;
public RsaSecretBcpgKey(
BcpgInputStream bcpgIn)
{
this.d = new MPInteger(bcpgIn);
this.p = new MPInteger(bcpgIn);
this.q = new MPInteger(bcpgIn);
this.u = new MPInteger(bcpgIn);
this.expP = d.Value.Remainder(p.Value.Subtract(BigInteger.One));
this.expQ = d.Value.Remainder(q.Value.Subtract(BigInteger.One));
this.crt = BigIntegers.ModOddInverse(p.Value, q.Value);
}
public RsaSecretBcpgKey(
BigInteger d,
BigInteger p,
BigInteger q)
{
// PGP requires (p < q)
int cmp = p.CompareTo(q);
if (cmp >= 0)
{
if (cmp == 0)
throw new ArgumentException("p and q cannot be equal");
BigInteger tmp = p;
p = q;
q = tmp;
}
this.d = new MPInteger(d);
this.p = new MPInteger(p);
this.q = new MPInteger(q);
this.u = new MPInteger(BigIntegers.ModOddInverse(q, p));
this.expP = d.Remainder(p.Subtract(BigInteger.One));
this.expQ = d.Remainder(q.Subtract(BigInteger.One));
this.crt = BigIntegers.ModOddInverse(p, q);
}
public BigInteger Modulus
{
get { return p.Value.Multiply(q.Value); }
}
public BigInteger PrivateExponent
{
get { return d.Value; }
}
public BigInteger PrimeP
{
get { return p.Value; }
}
public BigInteger PrimeQ
{
get { return q.Value; }
}
public BigInteger PrimeExponentP
{
get { return expP; }
}
public BigInteger PrimeExponentQ
{
get { return expQ; }
}
public BigInteger CrtCoefficient
{
get { return crt; }
}
/// The format, as a string, always "PGP".
public string Format
{
get { return "PGP"; }
}
/// Return the standard PGP encoding of the key.
public override byte[] GetEncoded()
{
try
{
return base.GetEncoded();
}
catch (Exception)
{
return null;
}
}
public override void Encode(
BcpgOutputStream bcpgOut)
{
bcpgOut.WriteObjects(d, p, q, u);
}
}
}