using System; using Org.BouncyCastle.Crypto.Parameters; namespace Org.BouncyCastle.Crypto.Engines { /** * Serpent is a 128-bit 32-round block cipher with variable key lengths, * including 128, 192 and 256 bit keys conjectured to be at least as * secure as three-key triple-DES. *

* Serpent was designed by Ross Anderson, Eli Biham and Lars Knudsen as a * candidate algorithm for the NIST AES Quest.> *

*

* For full details see the The Serpent home page *

*/ public class SerpentEngine : IBlockCipher { private const int BLOCK_SIZE = 16; static readonly int ROUNDS = 32; static readonly int PHI = unchecked((int)0x9E3779B9); // (Sqrt(5) - 1) * 2**31 private bool encrypting; private int[] wKey; private int X0, X1, X2, X3; // registers /** * initialise a Serpent cipher. * * @param forEncryption whether or not we are for encryption. * @param parameters the parameters required to set up the cipher. * @exception ArgumentException if the parameters argument is * inappropriate. */ public void Init( bool forEncryption, ICipherParameters parameters) { if (!(parameters is KeyParameter)) throw new ArgumentException("invalid parameter passed to Serpent init - " + parameters.GetType().ToString()); this.encrypting = forEncryption; this.wKey = MakeWorkingKey(((KeyParameter)parameters).GetKey()); } public string AlgorithmName { get { return "Serpent"; } } public bool IsPartialBlockOkay { get { return false; } } public int GetBlockSize() { return BLOCK_SIZE; } /** * Process one block of input from the array in and write it to * the out array. * * @param in the array containing the input data. * @param inOff offset into the in array the data starts at. * @param out the array the output data will be copied into. * @param outOff the offset into the out array the output will start at. * @exception DataLengthException if there isn't enough data in in, or * space in out. * @exception InvalidOperationException if the cipher isn't initialised. * @return the number of bytes processed and produced. */ public int ProcessBlock( byte[] input, int inOff, byte[] output, int outOff) { if (wKey == null) throw new InvalidOperationException("Serpent not initialised"); if ((inOff + BLOCK_SIZE) > input.Length) throw new DataLengthException("input buffer too short"); if ((outOff + BLOCK_SIZE) > output.Length) throw new DataLengthException("output buffer too short"); if (encrypting) { EncryptBlock(input, inOff, output, outOff); } else { DecryptBlock(input, inOff, output, outOff); } return BLOCK_SIZE; } public void Reset() { } /** * Expand a user-supplied key material into a session key. * * @param key The user-key bytes (multiples of 4) to use. * @exception ArgumentException */ private int[] MakeWorkingKey( byte[] key) { // // pad key to 256 bits // int[] kPad = new int[16]; int off = 0; int length = 0; for (off = key.Length - 4; off > 0; off -= 4) { kPad[length++] = BytesToWord(key, off); } if (off == 0) { kPad[length++] = BytesToWord(key, 0); if (length < 8) { kPad[length] = 1; } } else { throw new ArgumentException("key must be a multiple of 4 bytes"); } // // expand the padded key up to 33 x 128 bits of key material // int amount = (ROUNDS + 1) * 4; int[] w = new int[amount]; // // compute w0 to w7 from w-8 to w-1 // for (int i = 8; i < 16; i++) { kPad[i] = RotateLeft(kPad[i - 8] ^ kPad[i - 5] ^ kPad[i - 3] ^ kPad[i - 1] ^ PHI ^ (i - 8), 11); } Array.Copy(kPad, 8, w, 0, 8); // // compute w8 to w136 // for (int i = 8; i < amount; i++) { w[i] = RotateLeft(w[i - 8] ^ w[i - 5] ^ w[i - 3] ^ w[i - 1] ^ PHI ^ i, 11); } // // create the working keys by processing w with the Sbox and IP // Sb3(w[0], w[1], w[2], w[3]); w[0] = X0; w[1] = X1; w[2] = X2; w[3] = X3; Sb2(w[4], w[5], w[6], w[7]); w[4] = X0; w[5] = X1; w[6] = X2; w[7] = X3; Sb1(w[8], w[9], w[10], w[11]); w[8] = X0; w[9] = X1; w[10] = X2; w[11] = X3; Sb0(w[12], w[13], w[14], w[15]); w[12] = X0; w[13] = X1; w[14] = X2; w[15] = X3; Sb7(w[16], w[17], w[18], w[19]); w[16] = X0; w[17] = X1; w[18] = X2; w[19] = X3; Sb6(w[20], w[21], w[22], w[23]); w[20] = X0; w[21] = X1; w[22] = X2; w[23] = X3; Sb5(w[24], w[25], w[26], w[27]); w[24] = X0; w[25] = X1; w[26] = X2; w[27] = X3; Sb4(w[28], w[29], w[30], w[31]); w[28] = X0; w[29] = X1; w[30] = X2; w[31] = X3; Sb3(w[32], w[33], w[34], w[35]); w[32] = X0; w[33] = X1; w[34] = X2; w[35] = X3; Sb2(w[36], w[37], w[38], w[39]); w[36] = X0; w[37] = X1; w[38] = X2; w[39] = X3; Sb1(w[40], w[41], w[42], w[43]); w[40] = X0; w[41] = X1; w[42] = X2; w[43] = X3; Sb0(w[44], w[45], w[46], w[47]); w[44] = X0; w[45] = X1; w[46] = X2; w[47] = X3; Sb7(w[48], w[49], w[50], w[51]); w[48] = X0; w[49] = X1; w[50] = X2; w[51] = X3; Sb6(w[52], w[53], w[54], w[55]); w[52] = X0; w[53] = X1; w[54] = X2; w[55] = X3; Sb5(w[56], w[57], w[58], w[59]); w[56] = X0; w[57] = X1; w[58] = X2; w[59] = X3; Sb4(w[60], w[61], w[62], w[63]); w[60] = X0; w[61] = X1; w[62] = X2; w[63] = X3; Sb3(w[64], w[65], w[66], w[67]); w[64] = X0; w[65] = X1; w[66] = X2; w[67] = X3; Sb2(w[68], w[69], w[70], w[71]); w[68] = X0; w[69] = X1; w[70] = X2; w[71] = X3; Sb1(w[72], w[73], w[74], w[75]); w[72] = X0; w[73] = X1; w[74] = X2; w[75] = X3; Sb0(w[76], w[77], w[78], w[79]); w[76] = X0; w[77] = X1; w[78] = X2; w[79] = X3; Sb7(w[80], w[81], w[82], w[83]); w[80] = X0; w[81] = X1; w[82] = X2; w[83] = X3; Sb6(w[84], w[85], w[86], w[87]); w[84] = X0; w[85] = X1; w[86] = X2; w[87] = X3; Sb5(w[88], w[89], w[90], w[91]); w[88] = X0; w[89] = X1; w[90] = X2; w[91] = X3; Sb4(w[92], w[93], w[94], w[95]); w[92] = X0; w[93] = X1; w[94] = X2; w[95] = X3; Sb3(w[96], w[97], w[98], w[99]); w[96] = X0; w[97] = X1; w[98] = X2; w[99] = X3; Sb2(w[100], w[101], w[102], w[103]); w[100] = X0; w[101] = X1; w[102] = X2; w[103] = X3; Sb1(w[104], w[105], w[106], w[107]); w[104] = X0; w[105] = X1; w[106] = X2; w[107] = X3; Sb0(w[108], w[109], w[110], w[111]); w[108] = X0; w[109] = X1; w[110] = X2; w[111] = X3; Sb7(w[112], w[113], w[114], w[115]); w[112] = X0; w[113] = X1; w[114] = X2; w[115] = X3; Sb6(w[116], w[117], w[118], w[119]); w[116] = X0; w[117] = X1; w[118] = X2; w[119] = X3; Sb5(w[120], w[121], w[122], w[123]); w[120] = X0; w[121] = X1; w[122] = X2; w[123] = X3; Sb4(w[124], w[125], w[126], w[127]); w[124] = X0; w[125] = X1; w[126] = X2; w[127] = X3; Sb3(w[128], w[129], w[130], w[131]); w[128] = X0; w[129] = X1; w[130] = X2; w[131] = X3; return w; } private int RotateLeft( int x, int bits) { return ((x << bits) | (int) ((uint)x >> (32 - bits))); } private int RotateRight( int x, int bits) { return ( (int)((uint)x >> bits) | (x << (32 - bits))); } private int BytesToWord( byte[] src, int srcOff) { return (((src[srcOff] & 0xff) << 24) | ((src[srcOff + 1] & 0xff) << 16) | ((src[srcOff + 2] & 0xff) << 8) | ((src[srcOff + 3] & 0xff))); } private void WordToBytes( int word, byte[] dst, int dstOff) { dst[dstOff + 3] = (byte)(word); dst[dstOff + 2] = (byte)((uint)word >> 8); dst[dstOff + 1] = (byte)((uint)word >> 16); dst[dstOff] = (byte)((uint)word >> 24); } /** * Encrypt one block of plaintext. * * @param in the array containing the input data. * @param inOff offset into the in array the data starts at. * @param out the array the output data will be copied into. * @param outOff the offset into the out array the output will start at. */ private void EncryptBlock( byte[] input, int inOff, byte[] outBytes, int outOff) { X3 = BytesToWord(input, inOff); X2 = BytesToWord(input, inOff + 4); X1 = BytesToWord(input, inOff + 8); X0 = BytesToWord(input, inOff + 12); Sb0(wKey[0] ^ X0, wKey[1] ^ X1, wKey[2] ^ X2, wKey[3] ^ X3); LT(); Sb1(wKey[4] ^ X0, wKey[5] ^ X1, wKey[6] ^ X2, wKey[7] ^ X3); LT(); Sb2(wKey[8] ^ X0, wKey[9] ^ X1, wKey[10] ^ X2, wKey[11] ^ X3); LT(); Sb3(wKey[12] ^ X0, wKey[13] ^ X1, wKey[14] ^ X2, wKey[15] ^ X3); LT(); Sb4(wKey[16] ^ X0, wKey[17] ^ X1, wKey[18] ^ X2, wKey[19] ^ X3); LT(); Sb5(wKey[20] ^ X0, wKey[21] ^ X1, wKey[22] ^ X2, wKey[23] ^ X3); LT(); Sb6(wKey[24] ^ X0, wKey[25] ^ X1, wKey[26] ^ X2, wKey[27] ^ X3); LT(); Sb7(wKey[28] ^ X0, wKey[29] ^ X1, wKey[30] ^ X2, wKey[31] ^ X3); LT(); Sb0(wKey[32] ^ X0, wKey[33] ^ X1, wKey[34] ^ X2, wKey[35] ^ X3); LT(); Sb1(wKey[36] ^ X0, wKey[37] ^ X1, wKey[38] ^ X2, wKey[39] ^ X3); LT(); Sb2(wKey[40] ^ X0, wKey[41] ^ X1, wKey[42] ^ X2, wKey[43] ^ X3); LT(); Sb3(wKey[44] ^ X0, wKey[45] ^ X1, wKey[46] ^ X2, wKey[47] ^ X3); LT(); Sb4(wKey[48] ^ X0, wKey[49] ^ X1, wKey[50] ^ X2, wKey[51] ^ X3); LT(); Sb5(wKey[52] ^ X0, wKey[53] ^ X1, wKey[54] ^ X2, wKey[55] ^ X3); LT(); Sb6(wKey[56] ^ X0, wKey[57] ^ X1, wKey[58] ^ X2, wKey[59] ^ X3); LT(); Sb7(wKey[60] ^ X0, wKey[61] ^ X1, wKey[62] ^ X2, wKey[63] ^ X3); LT(); Sb0(wKey[64] ^ X0, wKey[65] ^ X1, wKey[66] ^ X2, wKey[67] ^ X3); LT(); Sb1(wKey[68] ^ X0, wKey[69] ^ X1, wKey[70] ^ X2, wKey[71] ^ X3); LT(); Sb2(wKey[72] ^ X0, wKey[73] ^ X1, wKey[74] ^ X2, wKey[75] ^ X3); LT(); Sb3(wKey[76] ^ X0, wKey[77] ^ X1, wKey[78] ^ X2, wKey[79] ^ X3); LT(); Sb4(wKey[80] ^ X0, wKey[81] ^ X1, wKey[82] ^ X2, wKey[83] ^ X3); LT(); Sb5(wKey[84] ^ X0, wKey[85] ^ X1, wKey[86] ^ X2, wKey[87] ^ X3); LT(); Sb6(wKey[88] ^ X0, wKey[89] ^ X1, wKey[90] ^ X2, wKey[91] ^ X3); LT(); Sb7(wKey[92] ^ X0, wKey[93] ^ X1, wKey[94] ^ X2, wKey[95] ^ X3); LT(); Sb0(wKey[96] ^ X0, wKey[97] ^ X1, wKey[98] ^ X2, wKey[99] ^ X3); LT(); Sb1(wKey[100] ^ X0, wKey[101] ^ X1, wKey[102] ^ X2, wKey[103] ^ X3); LT(); Sb2(wKey[104] ^ X0, wKey[105] ^ X1, wKey[106] ^ X2, wKey[107] ^ X3); LT(); Sb3(wKey[108] ^ X0, wKey[109] ^ X1, wKey[110] ^ X2, wKey[111] ^ X3); LT(); Sb4(wKey[112] ^ X0, wKey[113] ^ X1, wKey[114] ^ X2, wKey[115] ^ X3); LT(); Sb5(wKey[116] ^ X0, wKey[117] ^ X1, wKey[118] ^ X2, wKey[119] ^ X3); LT(); Sb6(wKey[120] ^ X0, wKey[121] ^ X1, wKey[122] ^ X2, wKey[123] ^ X3); LT(); Sb7(wKey[124] ^ X0, wKey[125] ^ X1, wKey[126] ^ X2, wKey[127] ^ X3); WordToBytes(wKey[131] ^ X3, outBytes, outOff); WordToBytes(wKey[130] ^ X2, outBytes, outOff + 4); WordToBytes(wKey[129] ^ X1, outBytes, outOff + 8); WordToBytes(wKey[128] ^ X0, outBytes, outOff + 12); } /** * Decrypt one block of ciphertext. * * @param in the array containing the input data. * @param inOff offset into the in array the data starts at. * @param out the array the output data will be copied into. * @param outOff the offset into the out array the output will start at. */ private void DecryptBlock( byte[] input, int inOff, byte[] outBytes, int outOff) { X3 = wKey[131] ^ BytesToWord(input, inOff); X2 = wKey[130] ^ BytesToWord(input, inOff + 4); X1 = wKey[129] ^ BytesToWord(input, inOff + 8); X0 = wKey[128] ^ BytesToWord(input, inOff + 12); Ib7(X0, X1, X2, X3); X0 ^= wKey[124]; X1 ^= wKey[125]; X2 ^= wKey[126]; X3 ^= wKey[127]; InverseLT(); Ib6(X0, X1, X2, X3); X0 ^= wKey[120]; X1 ^= wKey[121]; X2 ^= wKey[122]; X3 ^= wKey[123]; InverseLT(); Ib5(X0, X1, X2, X3); X0 ^= wKey[116]; X1 ^= wKey[117]; X2 ^= wKey[118]; X3 ^= wKey[119]; InverseLT(); Ib4(X0, X1, X2, X3); X0 ^= wKey[112]; X1 ^= wKey[113]; X2 ^= wKey[114]; X3 ^= wKey[115]; InverseLT(); Ib3(X0, X1, X2, X3); X0 ^= wKey[108]; X1 ^= wKey[109]; X2 ^= wKey[110]; X3 ^= wKey[111]; InverseLT(); Ib2(X0, X1, X2, X3); X0 ^= wKey[104]; X1 ^= wKey[105]; X2 ^= wKey[106]; X3 ^= wKey[107]; InverseLT(); Ib1(X0, X1, X2, X3); X0 ^= wKey[100]; X1 ^= wKey[101]; X2 ^= wKey[102]; X3 ^= wKey[103]; InverseLT(); Ib0(X0, X1, X2, X3); X0 ^= wKey[96]; X1 ^= wKey[97]; X2 ^= wKey[98]; X3 ^= wKey[99]; InverseLT(); Ib7(X0, X1, X2, X3); X0 ^= wKey[92]; X1 ^= wKey[93]; X2 ^= wKey[94]; X3 ^= wKey[95]; InverseLT(); Ib6(X0, X1, X2, X3); X0 ^= wKey[88]; X1 ^= wKey[89]; X2 ^= wKey[90]; X3 ^= wKey[91]; InverseLT(); Ib5(X0, X1, X2, X3); X0 ^= wKey[84]; X1 ^= wKey[85]; X2 ^= wKey[86]; X3 ^= wKey[87]; InverseLT(); Ib4(X0, X1, X2, X3); X0 ^= wKey[80]; X1 ^= wKey[81]; X2 ^= wKey[82]; X3 ^= wKey[83]; InverseLT(); Ib3(X0, X1, X2, X3); X0 ^= wKey[76]; X1 ^= wKey[77]; X2 ^= wKey[78]; X3 ^= wKey[79]; InverseLT(); Ib2(X0, X1, X2, X3); X0 ^= wKey[72]; X1 ^= wKey[73]; X2 ^= wKey[74]; X3 ^= wKey[75]; InverseLT(); Ib1(X0, X1, X2, X3); X0 ^= wKey[68]; X1 ^= wKey[69]; X2 ^= wKey[70]; X3 ^= wKey[71]; InverseLT(); Ib0(X0, X1, X2, X3); X0 ^= wKey[64]; X1 ^= wKey[65]; X2 ^= wKey[66]; X3 ^= wKey[67]; InverseLT(); Ib7(X0, X1, X2, X3); X0 ^= wKey[60]; X1 ^= wKey[61]; X2 ^= wKey[62]; X3 ^= wKey[63]; InverseLT(); Ib6(X0, X1, X2, X3); X0 ^= wKey[56]; X1 ^= wKey[57]; X2 ^= wKey[58]; X3 ^= wKey[59]; InverseLT(); Ib5(X0, X1, X2, X3); X0 ^= wKey[52]; X1 ^= wKey[53]; X2 ^= wKey[54]; X3 ^= wKey[55]; InverseLT(); Ib4(X0, X1, X2, X3); X0 ^= wKey[48]; X1 ^= wKey[49]; X2 ^= wKey[50]; X3 ^= wKey[51]; InverseLT(); Ib3(X0, X1, X2, X3); X0 ^= wKey[44]; X1 ^= wKey[45]; X2 ^= wKey[46]; X3 ^= wKey[47]; InverseLT(); Ib2(X0, X1, X2, X3); X0 ^= wKey[40]; X1 ^= wKey[41]; X2 ^= wKey[42]; X3 ^= wKey[43]; InverseLT(); Ib1(X0, X1, X2, X3); X0 ^= wKey[36]; X1 ^= wKey[37]; X2 ^= wKey[38]; X3 ^= wKey[39]; InverseLT(); Ib0(X0, X1, X2, X3); X0 ^= wKey[32]; X1 ^= wKey[33]; X2 ^= wKey[34]; X3 ^= wKey[35]; InverseLT(); Ib7(X0, X1, X2, X3); X0 ^= wKey[28]; X1 ^= wKey[29]; X2 ^= wKey[30]; X3 ^= wKey[31]; InverseLT(); Ib6(X0, X1, X2, X3); X0 ^= wKey[24]; X1 ^= wKey[25]; X2 ^= wKey[26]; X3 ^= wKey[27]; InverseLT(); Ib5(X0, X1, X2, X3); X0 ^= wKey[20]; X1 ^= wKey[21]; X2 ^= wKey[22]; X3 ^= wKey[23]; InverseLT(); Ib4(X0, X1, X2, X3); X0 ^= wKey[16]; X1 ^= wKey[17]; X2 ^= wKey[18]; X3 ^= wKey[19]; InverseLT(); Ib3(X0, X1, X2, X3); X0 ^= wKey[12]; X1 ^= wKey[13]; X2 ^= wKey[14]; X3 ^= wKey[15]; InverseLT(); Ib2(X0, X1, X2, X3); X0 ^= wKey[8]; X1 ^= wKey[9]; X2 ^= wKey[10]; X3 ^= wKey[11]; InverseLT(); Ib1(X0, X1, X2, X3); X0 ^= wKey[4]; X1 ^= wKey[5]; X2 ^= wKey[6]; X3 ^= wKey[7]; InverseLT(); Ib0(X0, X1, X2, X3); WordToBytes(X3 ^ wKey[3], outBytes, outOff); WordToBytes(X2 ^ wKey[2], outBytes, outOff + 4); WordToBytes(X1 ^ wKey[1], outBytes, outOff + 8); WordToBytes(X0 ^ wKey[0], outBytes, outOff + 12); } /* * The sboxes below are based on the work of Brian Gladman and * Sam Simpson, whose original notice appears below. *

* For further details see: * http://fp.gladman.plus.com/cryptography_technology/serpent/ *

*/ /* Partially optimised Serpent S Box bool functions derived */ /* using a recursive descent analyser but without a full search */ /* of all subtrees. This set of S boxes is the result of work */ /* by Sam Simpson and Brian Gladman using the spare time on a */ /* cluster of high capacity servers to search for S boxes with */ /* this customised search engine. There are now an average of */ /* 15.375 terms per S box. */ /* */ /* Copyright: Dr B. R Gladman (gladman@seven77.demon.co.uk) */ /* and Sam Simpson (s.simpson@mia.co.uk) */ /* 17th December 1998 */ /* */ /* We hereby give permission for information in this file to be */ /* used freely subject only to acknowledgement of its origin. */ /** * S0 - { 3, 8,15, 1,10, 6, 5,11,14,13, 4, 2, 7, 0, 9,12 } - 15 terms. */ private void Sb0(int a, int b, int c, int d) { int t1 = a ^ d; int t3 = c ^ t1; int t4 = b ^ t3; X3 = (a & d) ^ t4; int t7 = a ^ (b & t1); X2 = t4 ^ (c | t7); int t12 = X3 & (t3 ^ t7); X1 = (~t3) ^ t12; X0 = t12 ^ (~t7); } /** * InvSO - {13, 3,11, 0,10, 6, 5,12, 1,14, 4, 7,15, 9, 8, 2 } - 15 terms. */ private void Ib0(int a, int b, int c, int d) { int t1 = ~a; int t2 = a ^ b; int t4 = d ^ (t1 | t2); int t5 = c ^ t4; X2 = t2 ^ t5; int t8 = t1 ^ (d & t2); X1 = t4 ^ (X2 & t8); X3 = (a & t4) ^ (t5 | X1); X0 = X3 ^ (t5 ^ t8); } /** * S1 - {15,12, 2, 7, 9, 0, 5,10, 1,11,14, 8, 6,13, 3, 4 } - 14 terms. */ private void Sb1(int a, int b, int c, int d) { int t2 = b ^ (~a); int t5 = c ^ (a | t2); X2 = d ^ t5; int t7 = b ^ (d | t2); int t8 = t2 ^ X2; X3 = t8 ^ (t5 & t7); int t11 = t5 ^ t7; X1 = X3 ^ t11; X0 = t5 ^ (t8 & t11); } /** * InvS1 - { 5, 8, 2,14,15, 6,12, 3,11, 4, 7, 9, 1,13,10, 0 } - 14 steps. */ private void Ib1(int a, int b, int c, int d) { int t1 = b ^ d; int t3 = a ^ (b & t1); int t4 = t1 ^ t3; X3 = c ^ t4; int t7 = b ^ (t1 & t3); int t8 = X3 | t7; X1 = t3 ^ t8; int t10 = ~X1; int t11 = X3 ^ t7; X0 = t10 ^ t11; X2 = t4 ^ (t10 | t11); } /** * S2 - { 8, 6, 7, 9, 3,12,10,15,13, 1,14, 4, 0,11, 5, 2 } - 16 terms. */ private void Sb2(int a, int b, int c, int d) { int t1 = ~a; int t2 = b ^ d; int t3 = c & t1; X0 = t2 ^ t3; int t5 = c ^ t1; int t6 = c ^ X0; int t7 = b & t6; X3 = t5 ^ t7; X2 = a ^ ((d | t7) & (X0 | t5)); X1 = (t2 ^ X3) ^ (X2 ^ (d | t1)); } /** * InvS2 - {12, 9,15, 4,11,14, 1, 2, 0, 3, 6,13, 5, 8,10, 7 } - 16 steps. */ private void Ib2(int a, int b, int c, int d) { int t1 = b ^ d; int t2 = ~t1; int t3 = a ^ c; int t4 = c ^ t1; int t5 = b & t4; X0 = t3 ^ t5; int t7 = a | t2; int t8 = d ^ t7; int t9 = t3 | t8; X3 = t1 ^ t9; int t11 = ~t4; int t12 = X0 | X3; X1 = t11 ^ t12; X2 = (d & t11) ^ (t3 ^ t12); } /** * S3 - { 0,15,11, 8,12, 9, 6, 3,13, 1, 2, 4,10, 7, 5,14 } - 16 terms. */ private void Sb3(int a, int b, int c, int d) { int t1 = a ^ b; int t2 = a & c; int t3 = a | d; int t4 = c ^ d; int t5 = t1 & t3; int t6 = t2 | t5; X2 = t4 ^ t6; int t8 = b ^ t3; int t9 = t6 ^ t8; int t10 = t4 & t9; X0 = t1 ^ t10; int t12 = X2 & X0; X1 = t9 ^ t12; X3 = (b | d) ^ (t4 ^ t12); } /** * InvS3 - { 0, 9,10, 7,11,14, 6,13, 3, 5,12, 2, 4, 8,15, 1 } - 15 terms */ private void Ib3(int a, int b, int c, int d) { int t1 = a | b; int t2 = b ^ c; int t3 = b & t2; int t4 = a ^ t3; int t5 = c ^ t4; int t6 = d | t4; X0 = t2 ^ t6; int t8 = t2 | t6; int t9 = d ^ t8; X2 = t5 ^ t9; int t11 = t1 ^ t9; int t12 = X0 & t11; X3 = t4 ^ t12; X1 = X3 ^ (X0 ^ t11); } /** * S4 - { 1,15, 8, 3,12, 0,11, 6, 2, 5, 4,10, 9,14, 7,13 } - 15 terms. */ private void Sb4(int a, int b, int c, int d) { int t1 = a ^ d; int t2 = d & t1; int t3 = c ^ t2; int t4 = b | t3; X3 = t1 ^ t4; int t6 = ~b; int t7 = t1 | t6; X0 = t3 ^ t7; int t9 = a & X0; int t10 = t1 ^ t6; int t11 = t4 & t10; X2 = t9 ^ t11; X1 = (a ^ t3) ^ (t10 & X2); } /** * InvS4 - { 5, 0, 8, 3,10, 9, 7,14, 2,12,11, 6, 4,15,13, 1 } - 15 terms. */ private void Ib4(int a, int b, int c, int d) { int t1 = c | d; int t2 = a & t1; int t3 = b ^ t2; int t4 = a & t3; int t5 = c ^ t4; X1 = d ^ t5; int t7 = ~a; int t8 = t5 & X1; X3 = t3 ^ t8; int t10 = X1 | t7; int t11 = d ^ t10; X0 = X3 ^ t11; X2 = (t3 & t11) ^ (X1 ^ t7); } /** * S5 - {15, 5, 2,11, 4,10, 9,12, 0, 3,14, 8,13, 6, 7, 1 } - 16 terms. */ private void Sb5(int a, int b, int c, int d) { int t1 = ~a; int t2 = a ^ b; int t3 = a ^ d; int t4 = c ^ t1; int t5 = t2 | t3; X0 = t4 ^ t5; int t7 = d & X0; int t8 = t2 ^ X0; X1 = t7 ^ t8; int t10 = t1 | X0; int t11 = t2 | t7; int t12 = t3 ^ t10; X2 = t11 ^ t12; X3 = (b ^ t7) ^ (X1 & t12); } /** * InvS5 - { 8,15, 2, 9, 4, 1,13,14,11, 6, 5, 3, 7,12,10, 0 } - 16 terms. */ private void Ib5(int a, int b, int c, int d) { int t1 = ~c; int t2 = b & t1; int t3 = d ^ t2; int t4 = a & t3; int t5 = b ^ t1; X3 = t4 ^ t5; int t7 = b | X3; int t8 = a & t7; X1 = t3 ^ t8; int t10 = a | d; int t11 = t1 ^ t7; X0 = t10 ^ t11; X2 = (b & t10) ^ (t4 | (a ^ c)); } /** * S6 - { 7, 2,12, 5, 8, 4, 6,11,14, 9, 1,15,13, 3,10, 0 } - 15 terms. */ private void Sb6(int a, int b, int c, int d) { int t1 = ~a; int t2 = a ^ d; int t3 = b ^ t2; int t4 = t1 | t2; int t5 = c ^ t4; X1 = b ^ t5; int t7 = t2 | X1; int t8 = d ^ t7; int t9 = t5 & t8; X2 = t3 ^ t9; int t11 = t5 ^ t8; X0 = X2 ^ t11; X3 = (~t5) ^ (t3 & t11); } /** * InvS6 - {15,10, 1,13, 5, 3, 6, 0, 4, 9,14, 7, 2,12, 8,11 } - 15 terms. */ private void Ib6(int a, int b, int c, int d) { int t1 = ~a; int t2 = a ^ b; int t3 = c ^ t2; int t4 = c | t1; int t5 = d ^ t4; X1 = t3 ^ t5; int t7 = t3 & t5; int t8 = t2 ^ t7; int t9 = b | t8; X3 = t5 ^ t9; int t11 = b | X3; X0 = t8 ^ t11; X2 = (d & t1) ^ (t3 ^ t11); } /** * S7 - { 1,13,15, 0,14, 8, 2,11, 7, 4,12,10, 9, 3, 5, 6 } - 16 terms. */ private void Sb7(int a, int b, int c, int d) { int t1 = b ^ c; int t2 = c & t1; int t3 = d ^ t2; int t4 = a ^ t3; int t5 = d | t1; int t6 = t4 & t5; X1 = b ^ t6; int t8 = t3 | X1; int t9 = a & t4; X3 = t1 ^ t9; int t11 = t4 ^ t8; int t12 = X3 & t11; X2 = t3 ^ t12; X0 = (~t11) ^ (X3 & X2); } /** * InvS7 - { 3, 0, 6,13, 9,14,15, 8, 5,12,11, 7,10, 1, 4, 2 } - 17 terms. */ private void Ib7(int a, int b, int c, int d) { int t3 = c | (a & b); int t4 = d & (a | b); X3 = t3 ^ t4; int t6 = ~d; int t7 = b ^ t4; int t9 = t7 | (X3 ^ t6); X1 = a ^ t9; X0 = (c ^ t7) ^ (d | X1); X2 = (t3 ^ X1) ^ (X0 ^ (a & X3)); } /** * Apply the linear transformation to the register set. */ private void LT() { int x0 = RotateLeft(X0, 13); int x2 = RotateLeft(X2, 3); int x1 = X1 ^ x0 ^ x2 ; int x3 = X3 ^ x2 ^ x0 << 3; X1 = RotateLeft(x1, 1); X3 = RotateLeft(x3, 7); X0 = RotateLeft(x0 ^ X1 ^ X3, 5); X2 = RotateLeft(x2 ^ X3 ^ (X1 << 7), 22); } /** * Apply the inverse of the linear transformation to the register set. */ private void InverseLT() { int x2 = RotateRight(X2, 22) ^ X3 ^ (X1 << 7); int x0 = RotateRight(X0, 5) ^ X1 ^ X3; int x3 = RotateRight(X3, 7); int x1 = RotateRight(X1, 1); X3 = x3 ^ x2 ^ x0 << 3; X1 = x1 ^ x0 ^ x2; X2 = RotateRight(x2, 3); X0 = RotateRight(x0, 13); } } }