using System; using Org.BouncyCastle.Math; using Org.BouncyCastle.Math.EC; using Org.BouncyCastle.Security; using Org.BouncyCastle.Crypto; using Org.BouncyCastle.Crypto.Parameters; namespace Org.BouncyCastle.Crypto.Agreement { /** * P1363 7.2.2 ECSVDP-DHC * * ECSVDP-DHC is Elliptic Curve Secret Value Derivation Primitive, * Diffie-Hellman version with cofactor multiplication. It is based on * the work of [DH76], [Mil86], [Kob87], [LMQ98] and [Kal98a]. This * primitive derives a shared secret value from one party's private key * and another party's public key, where both have the same set of EC * domain parameters. If two parties correctly execute this primitive, * they will produce the same output. This primitive can be invoked by a * scheme to derive a shared secret key; specifically, it may be used * with the schemes ECKAS-DH1 and DL/ECKAS-DH2. It does not assume the * validity of the input public key (see also Section 7.2.1). *
* Note: As stated P1363 compatibility mode with ECDH can be preset, and * in this case the implementation doesn't have a ECDH compatibility mode * (if you want that just use ECDHBasicAgreement and note they both implement * BasicAgreement!).
*/ public class ECDHCBasicAgreement : IBasicAgreement { private ECPrivateKeyParameters key; public void Init( ICipherParameters parameters) { if (parameters is ParametersWithRandom) { parameters = ((ParametersWithRandom) parameters).Parameters; } this.key = (ECPrivateKeyParameters)parameters; } public BigInteger CalculateAgreement( ICipherParameters pubKey) { ECPublicKeyParameters pub = (ECPublicKeyParameters) pubKey; ECDomainParameters parameters = pub.Parameters; ECPoint P = pub.Q.Multiply(parameters.H.Multiply(key.D)); // if ( p.IsInfinity ) throw new Exception("Invalid public key"); return P.X.ToBigInteger(); } } }