From 2bb4400d228fd41191bc7aac4f1529c9c02a4e83 Mon Sep 17 00:00:00 2001 From: Peter Dettman Date: Sat, 17 Oct 2015 14:35:17 +0700 Subject: Various JPAKE changes to fit existing code conventions - Update project file with new entries - Tests moved to crypto/agreement/test --- .../src/crypto/agreement/jpake/JPAKEParticipant.cs | 162 ++++----- .../crypto/agreement/jpake/JPAKEPrimeOrderGroup.cs | 45 +-- .../agreement/jpake/JPAKEPrimeOrderGroups.cs | 10 +- .../crypto/agreement/jpake/JPAKERound1Payload.cs | 28 +- .../crypto/agreement/jpake/JPAKERound2Payload.cs | 20 +- .../crypto/agreement/jpake/JPAKERound3Payload.cs | 12 +- crypto/src/crypto/agreement/jpake/JPAKEUtil.cs | 404 --------------------- .../src/crypto/agreement/jpake/JPakeUtilities.cs | 391 ++++++++++++++++++++ 8 files changed, 513 insertions(+), 559 deletions(-) delete mode 100755 crypto/src/crypto/agreement/jpake/JPAKEUtil.cs create mode 100644 crypto/src/crypto/agreement/jpake/JPakeUtilities.cs (limited to 'crypto/src') diff --git a/crypto/src/crypto/agreement/jpake/JPAKEParticipant.cs b/crypto/src/crypto/agreement/jpake/JPAKEParticipant.cs index 0874f3d83..f8ca2cd41 100755 --- a/crypto/src/crypto/agreement/jpake/JPAKEParticipant.cs +++ b/crypto/src/crypto/agreement/jpake/JPAKEParticipant.cs @@ -5,7 +5,7 @@ using Org.BouncyCastle.Crypto.Digests; using Org.BouncyCastle.Math; using Org.BouncyCastle.Security; -namespace Org.BouncyCastle.Crypto.Agreement.Jpake +namespace Org.BouncyCastle.Crypto.Agreement.JPake { /// /// A participant in a Password Authenticated Key Exchange by Juggling (J-PAKE) exchange. @@ -16,20 +16,20 @@ namespace Org.BouncyCastle.Crypto.Agreement.Jpake /// /// The J-PAKE protocol is symmetric. /// There is no notion of a client or server, but rather just two participants. - /// An instance of JPAKEParticipant represents one participant, and + /// An instance of JPakeParticipant represents one participant, and /// is the primary interface for executing the exchange. /// - /// To execute an exchange, construct a JPAKEParticipant on each end, + /// To execute an exchange, construct a JPakeParticipant on each end, /// and call the following 7 methods /// (once and only once, in the given order, for each participant, sending messages between them as described): /// /// CreateRound1PayloadToSend() - and send the payload to the other participant - /// ValidateRound1PayloadReceived(JPAKERound1Payload) - use the payload received from the other participant + /// ValidateRound1PayloadReceived(JPakeRound1Payload) - use the payload received from the other participant /// CreateRound2PayloadToSend() - and send the payload to the other participant - /// ValidateRound2PayloadReceived(JPAKERound2Payload) - use the payload received from the other participant + /// ValidateRound2PayloadReceived(JPakeRound2Payload) - use the payload received from the other participant /// CalculateKeyingMaterial() /// CreateRound3PayloadToSend(BigInteger) - and send the payload to the other participant - /// ValidateRound3PayloadReceived(JPAKERound3Payload, BigInteger) - use the payload received from the other participant + /// ValidateRound3PayloadReceived(JPakeRound3Payload, BigInteger) - use the payload received from the other participant /// /// Each side should derive a session key from the keying material returned by CalculateKeyingMaterial(). /// The caller is responsible for deriving the session key using a secure key derivation function (KDF). @@ -51,9 +51,9 @@ namespace Org.BouncyCastle.Crypto.Agreement.Jpake /// /// This class is stateful and NOT threadsafe. /// Each instance should only be used for ONE complete J-PAKE exchange - /// (i.e. a new JPAKEParticipant should be constructed for each new J-PAKE exchange). + /// (i.e. a new JPakeParticipant should be constructed for each new J-PAKE exchange). /// - public class JPAKEParticipant + public class JPakeParticipant { // Possible internal states. Used for state checking. public static readonly int STATE_INITIALIZED = 0; @@ -109,8 +109,8 @@ namespace Org.BouncyCastle.Crypto.Agreement.Jpake private int state; /// - /// Convenience constructor for a new JPAKEParticipant that uses - /// the JPAKEPrimeOrderGroups#NIST_3072 prime order group, + /// Convenience constructor for a new JPakeParticipant that uses + /// the JPakePrimeOrderGroups#NIST_3072 prime order group, /// a SHA-256 digest, and a default SecureRandom implementation. /// /// After construction, the State state will be STATE_INITIALIZED. @@ -123,11 +123,11 @@ namespace Org.BouncyCastle.Crypto.Agreement.Jpake /// Shared secret. /// A defensive copy of this array is made (and cleared once CalculateKeyingMaterial() is called). /// Caller should clear the input password as soon as possible. - public JPAKEParticipant(string participantId, char[] password) - : this(participantId, password, JPAKEPrimeOrderGroups.NIST_3072) { } + public JPakeParticipant(string participantId, char[] password) + : this(participantId, password, JPakePrimeOrderGroups.NIST_3072) { } /// - /// Convenience constructor for a new JPAKEParticipant that uses + /// Convenience constructor for a new JPakeParticipant that uses /// a SHA-256 digest, and a default SecureRandom implementation. /// /// After construction, the State state will be STATE_INITIALIZED. @@ -140,13 +140,13 @@ namespace Org.BouncyCastle.Crypto.Agreement.Jpake /// Shared secret. /// A defensive copy of this array is made (and cleared once CalculateKeyingMaterial() is called). /// Caller should clear the input password as soon as possible. - /// Prime order group. See JPAKEPrimeOrderGroups for standard groups. - public JPAKEParticipant(string participantId, char[] password, JPAKEPrimeOrderGroup group) + /// Prime order group. See JPakePrimeOrderGroups for standard groups. + public JPakeParticipant(string participantId, char[] password, JPakePrimeOrderGroup group) : this(participantId, password, group, new Sha256Digest(), new SecureRandom()) { } /// - /// Constructor for a new JPAKEParticipant. + /// Constructor for a new JPakeParticipant. /// /// After construction, the State state will be STATE_INITIALIZED. /// @@ -158,17 +158,17 @@ namespace Org.BouncyCastle.Crypto.Agreement.Jpake /// Shared secret. /// A defensive copy of this array is made (and cleared once CalculateKeyingMaterial() is called). /// Caller should clear the input password as soon as possible. - /// Prime order group. See JPAKEPrimeOrderGroups for standard groups. + /// Prime order group. See JPakePrimeOrderGroups for standard groups. /// Digest to use during zero knowledge proofs and key confirmation /// (SHA-256 or stronger preferred). /// Source of secure random data for x1 and x2, and for the zero knowledge proofs. - public JPAKEParticipant(string participantId, char[] password, JPAKEPrimeOrderGroup group, IDigest digest, SecureRandom random) + public JPakeParticipant(string participantId, char[] password, JPakePrimeOrderGroup group, IDigest digest, SecureRandom random) { - JPAKEUtil.ValidateNotNull(participantId, "participantId"); - JPAKEUtil.ValidateNotNull(password, "password"); - JPAKEUtil.ValidateNotNull(group, "p"); - JPAKEUtil.ValidateNotNull(digest, "digest"); - JPAKEUtil.ValidateNotNull(random, "random"); + JPakeUtilities.ValidateNotNull(participantId, "participantId"); + JPakeUtilities.ValidateNotNull(password, "password"); + JPakeUtilities.ValidateNotNull(group, "p"); + JPakeUtilities.ValidateNotNull(digest, "digest"); + JPakeUtilities.ValidateNotNull(random, "random"); if (password.Length == 0) { @@ -204,7 +204,7 @@ namespace Org.BouncyCastle.Crypto.Agreement.Jpake /// Gets the current state of this participant. /// See the STATE_* constants for possible values. /// - public int State + public virtual int State { get { return state; } } @@ -215,24 +215,22 @@ namespace Org.BouncyCastle.Crypto.Agreement.Jpake /// /// After execution, the State state} will be STATE_ROUND_1_CREATED}. /// - public JPAKERound1Payload CreateRound1PayloadToSend() + public virtual JPakeRound1Payload CreateRound1PayloadToSend() { if (this.state >= STATE_ROUND_1_CREATED) - { throw new InvalidOperationException("Round 1 payload already created for " + this.participantId); - } - this.x1 = JPAKEUtil.GenerateX1(q, random); - this.x2 = JPAKEUtil.GenerateX2(q, random); + this.x1 = JPakeUtilities.GenerateX1(q, random); + this.x2 = JPakeUtilities.GenerateX2(q, random); - this.gx1 = JPAKEUtil.CalculateGx(p, g, x1); - this.gx2 = JPAKEUtil.CalculateGx(p, g, x2); - BigInteger[] knowledgeProofForX1 = JPAKEUtil.CalculateZeroKnowledgeProof(p, q, g, gx1, x1, participantId, digest, random); - BigInteger[] knowledgeProofForX2 = JPAKEUtil.CalculateZeroKnowledgeProof(p, q, g, gx2, x2, participantId, digest, random); + this.gx1 = JPakeUtilities.CalculateGx(p, g, x1); + this.gx2 = JPakeUtilities.CalculateGx(p, g, x2); + BigInteger[] knowledgeProofForX1 = JPakeUtilities.CalculateZeroKnowledgeProof(p, q, g, gx1, x1, participantId, digest, random); + BigInteger[] knowledgeProofForX2 = JPakeUtilities.CalculateZeroKnowledgeProof(p, q, g, gx2, x2, participantId, digest, random); this.state = STATE_ROUND_1_CREATED; - return new JPAKERound1Payload(participantId, gx1, gx2, knowledgeProofForX1, knowledgeProofForX2); + return new JPakeRound1Payload(participantId, gx1, gx2, knowledgeProofForX1, knowledgeProofForX2); } /// @@ -245,12 +243,10 @@ namespace Org.BouncyCastle.Crypto.Agreement.Jpake /// Throws CryptoException if validation fails. Throws InvalidOperationException /// if called multiple times. /// - public void ValidateRound1PayloadReceived(JPAKERound1Payload round1PayloadReceived) + public virtual void ValidateRound1PayloadReceived(JPakeRound1Payload round1PayloadReceived) { if (this.state >= STATE_ROUND_1_VALIDATED) - { throw new InvalidOperationException("Validation already attempted for round 1 payload for " + this.participantId); - } this.partnerParticipantId = round1PayloadReceived.ParticipantId; this.gx3 = round1PayloadReceived.Gx1; @@ -259,42 +255,38 @@ namespace Org.BouncyCastle.Crypto.Agreement.Jpake BigInteger[] knowledgeProofForX3 = round1PayloadReceived.KnowledgeProofForX1; BigInteger[] knowledgeProofForX4 = round1PayloadReceived.KnowledgeProofForX2; - JPAKEUtil.ValidateParticipantIdsDiffer(participantId, round1PayloadReceived.ParticipantId); - JPAKEUtil.ValidateGx4(gx4); - JPAKEUtil.ValidateZeroKnowledgeProof(p, q, g, gx3, knowledgeProofForX3, round1PayloadReceived.ParticipantId, digest); - JPAKEUtil.ValidateZeroKnowledgeProof(p, q, g, gx4, knowledgeProofForX4, round1PayloadReceived.ParticipantId, digest); + JPakeUtilities.ValidateParticipantIdsDiffer(participantId, round1PayloadReceived.ParticipantId); + JPakeUtilities.ValidateGx4(gx4); + JPakeUtilities.ValidateZeroKnowledgeProof(p, q, g, gx3, knowledgeProofForX3, round1PayloadReceived.ParticipantId, digest); + JPakeUtilities.ValidateZeroKnowledgeProof(p, q, g, gx4, knowledgeProofForX4, round1PayloadReceived.ParticipantId, digest); this.state = STATE_ROUND_1_VALIDATED; } /// /// Creates and returns the payload to send to the other participant during round 2. /// - /// ValidateRound1PayloadReceived(JPAKERound1Payload) must be called prior to this method. + /// ValidateRound1PayloadReceived(JPakeRound1Payload) must be called prior to this method. /// /// After execution, the State state will be STATE_ROUND_2_CREATED. /// - /// Throws InvalidOperationException if called prior to ValidateRound1PayloadReceived(JPAKERound1Payload), or multiple times + /// Throws InvalidOperationException if called prior to ValidateRound1PayloadReceived(JPakeRound1Payload), or multiple times /// - public JPAKERound2Payload CreateRound2PayloadToSend() + public virtual JPakeRound2Payload CreateRound2PayloadToSend() { if (this.state >= STATE_ROUND_2_CREATED) - { throw new InvalidOperationException("Round 2 payload already created for " + this.participantId); - } if (this.state < STATE_ROUND_1_VALIDATED) - { throw new InvalidOperationException("Round 1 payload must be validated prior to creating round 2 payload for " + this.participantId); - } - BigInteger gA = JPAKEUtil.CalculateGA(p, gx1, gx3, gx4); - BigInteger s = JPAKEUtil.CalculateS(password); - BigInteger x2s = JPAKEUtil.CalculateX2s(q, x2, s); - BigInteger A = JPAKEUtil.CalculateA(p, q, gA, x2s); - BigInteger[] knowledgeProofForX2s = JPAKEUtil.CalculateZeroKnowledgeProof(p, q, gA, A, x2s, participantId, digest, random); + BigInteger gA = JPakeUtilities.CalculateGA(p, gx1, gx3, gx4); + BigInteger s = JPakeUtilities.CalculateS(password); + BigInteger x2s = JPakeUtilities.CalculateX2s(q, x2, s); + BigInteger A = JPakeUtilities.CalculateA(p, q, gA, x2s); + BigInteger[] knowledgeProofForX2s = JPakeUtilities.CalculateZeroKnowledgeProof(p, q, gA, A, x2s, participantId, digest, random); this.state = STATE_ROUND_2_CREATED; - return new JPAKERound2Payload(participantId, A, knowledgeProofForX2s); + return new JPakeRound2Payload(participantId, A, knowledgeProofForX2s); } /// @@ -308,27 +300,23 @@ namespace Org.BouncyCastle.Crypto.Agreement.Jpake /// After execution, the State state will be STATE_ROUND_2_VALIDATED. /// /// Throws CryptoException if validation fails. Throws - /// InvalidOperationException if called prior to ValidateRound1PayloadReceived(JPAKERound1Payload), or multiple times + /// InvalidOperationException if called prior to ValidateRound1PayloadReceived(JPakeRound1Payload), or multiple times /// - public void ValidateRound2PayloadReceived(JPAKERound2Payload round2PayloadReceived) + public virtual void ValidateRound2PayloadReceived(JPakeRound2Payload round2PayloadReceived) { if (this.state >= STATE_ROUND_2_VALIDATED) - { throw new InvalidOperationException("Validation already attempted for round 2 payload for " + this.participantId); - } if (this.state < STATE_ROUND_1_VALIDATED) - { throw new InvalidOperationException("Round 1 payload must be validated prior to validation round 2 payload for " + this.participantId); - } - BigInteger gB = JPAKEUtil.CalculateGA(p, gx3, gx1, gx2); + BigInteger gB = JPakeUtilities.CalculateGA(p, gx3, gx1, gx2); this.b = round2PayloadReceived.A; BigInteger[] knowledgeProofForX4s = round2PayloadReceived.KnowledgeProofForX2s; - JPAKEUtil.ValidateParticipantIdsDiffer(participantId, round2PayloadReceived.ParticipantId); - JPAKEUtil.ValidateParticipantIdsEqual(this.partnerParticipantId, round2PayloadReceived.ParticipantId); - JPAKEUtil.ValidateGa(gB); - JPAKEUtil.ValidateZeroKnowledgeProof(p, q, gB, b, knowledgeProofForX4s, round2PayloadReceived.ParticipantId, digest); + JPakeUtilities.ValidateParticipantIdsDiffer(participantId, round2PayloadReceived.ParticipantId); + JPakeUtilities.ValidateParticipantIdsEqual(this.partnerParticipantId, round2PayloadReceived.ParticipantId); + JPakeUtilities.ValidateGa(gB); + JPakeUtilities.ValidateZeroKnowledgeProof(p, q, gB, b, knowledgeProofForX4s, round2PayloadReceived.ParticipantId, digest); this.state = STATE_ROUND_2_VALIDATED; } @@ -336,7 +324,7 @@ namespace Org.BouncyCastle.Crypto.Agreement.Jpake /// /// Calculates and returns the key material. /// A session key must be derived from this key material using a secure key derivation function (KDF). - /// The KDF used to derive the key is handled externally (i.e. not by JPAKEParticipant). + /// The KDF used to derive the key is handled externally (i.e. not by JPakeParticipant). /// /// The keying material will be identical for each participant if and only if /// each participant's password is the same. i.e. If the participants do not @@ -344,39 +332,35 @@ namespace Org.BouncyCastle.Crypto.Agreement.Jpake /// Therefore, if you immediately start using a key derived from /// the keying material, then you must handle detection of incorrect keys. /// If you want to handle this detection explicitly, you can optionally perform - /// rounds 3 and 4. See JPAKEParticipant for details on how to execute + /// rounds 3 and 4. See JPakeParticipant for details on how to execute /// rounds 3 and 4. /// /// The keying material will be in the range [0, p-1]. /// - /// ValidateRound2PayloadReceived(JPAKERound2Payload) must be called prior to this method. + /// ValidateRound2PayloadReceived(JPakeRound2Payload) must be called prior to this method. /// /// As a side effect, the internal password array is cleared, since it is no longer needed. /// /// After execution, the State state will be STATE_KEY_CALCULATED. /// - /// Throws InvalidOperationException if called prior to ValidateRound2PayloadReceived(JPAKERound2Payload), + /// Throws InvalidOperationException if called prior to ValidateRound2PayloadReceived(JPakeRound2Payload), /// or if called multiple times. /// - public BigInteger CalculateKeyingMaterial() + public virtual BigInteger CalculateKeyingMaterial() { if (this.state >= STATE_KEY_CALCULATED) - { throw new InvalidOperationException("Key already calculated for " + participantId); - } if (this.state < STATE_ROUND_2_VALIDATED) - { throw new InvalidOperationException("Round 2 payload must be validated prior to creating key for " + participantId); - } - BigInteger s = JPAKEUtil.CalculateS(password); + BigInteger s = JPakeUtilities.CalculateS(password); // Clear the password array from memory, since we don't need it anymore. // Also set the field to null as a flag to indicate that the key has already been calculated. Array.Clear(password, 0, password.Length); this.password = null; - BigInteger keyingMaterial = JPAKEUtil.CalculateKeyingMaterial(p, q, gx4, x2, s, b); + BigInteger keyingMaterial = JPakeUtilities.CalculateKeyingMaterial(p, q, gx4, x2, s, b); // Clear the ephemeral private key fields as well. // Note that we're relying on the garbage collector to do its job to clean these up. @@ -398,25 +382,21 @@ namespace Org.BouncyCastle.Crypto.Agreement.Jpake /// /// Creates and returns the payload to send to the other participant during round 3. /// - /// See JPAKEParticipant for more details on round 3. + /// See JPakeParticipant for more details on round 3. /// /// After execution, the State state} will be STATE_ROUND_3_CREATED. /// Throws InvalidOperationException if called prior to CalculateKeyingMaterial, or multiple /// times. /// /// The keying material as returned from CalculateKeyingMaterial(). - public JPAKERound3Payload CreateRound3PayloadToSend(BigInteger keyingMaterial) + public virtual JPakeRound3Payload CreateRound3PayloadToSend(BigInteger keyingMaterial) { if (this.state >= STATE_ROUND_3_CREATED) - { throw new InvalidOperationException("Round 3 payload already created for " + this.participantId); - } if (this.state < STATE_KEY_CALCULATED) - { throw new InvalidOperationException("Keying material must be calculated prior to creating round 3 payload for " + this.participantId); - } - BigInteger macTag = JPAKEUtil.CalculateMacTag( + BigInteger macTag = JPakeUtilities.CalculateMacTag( this.participantId, this.partnerParticipantId, this.gx1, @@ -428,13 +408,13 @@ namespace Org.BouncyCastle.Crypto.Agreement.Jpake this.state = STATE_ROUND_3_CREATED; - return new JPAKERound3Payload(participantId, macTag); + return new JPakeRound3Payload(participantId, macTag); } /// /// Validates the payload received from the other participant during round 3. /// - /// See JPAKEParticipant for more details on round 3. + /// See JPakeParticipant for more details on round 3. /// /// After execution, the State state will be STATE_ROUND_3_VALIDATED. /// @@ -442,21 +422,17 @@ namespace Org.BouncyCastle.Crypto.Agreement.Jpake /// CalculateKeyingMaterial or multiple times /// /// The keying material as returned from CalculateKeyingMaterial(). - public void ValidateRound3PayloadReceived(JPAKERound3Payload round3PayloadReceived, BigInteger keyingMaterial) + public virtual void ValidateRound3PayloadReceived(JPakeRound3Payload round3PayloadReceived, BigInteger keyingMaterial) { if (this.state >= STATE_ROUND_3_VALIDATED) - { throw new InvalidOperationException("Validation already attempted for round 3 payload for " + this.participantId); - } if (this.state < STATE_KEY_CALCULATED) - { throw new InvalidOperationException("Keying material must be calculated prior to validating round 3 payload for " + this.participantId); - } - JPAKEUtil.ValidateParticipantIdsDiffer(participantId, round3PayloadReceived.ParticipantId); - JPAKEUtil.ValidateParticipantIdsEqual(this.partnerParticipantId, round3PayloadReceived.ParticipantId); + JPakeUtilities.ValidateParticipantIdsDiffer(participantId, round3PayloadReceived.ParticipantId); + JPakeUtilities.ValidateParticipantIdsEqual(this.partnerParticipantId, round3PayloadReceived.ParticipantId); - JPAKEUtil.ValidateMacTag( + JPakeUtilities.ValidateMacTag( this.participantId, this.partnerParticipantId, this.gx1, diff --git a/crypto/src/crypto/agreement/jpake/JPAKEPrimeOrderGroup.cs b/crypto/src/crypto/agreement/jpake/JPAKEPrimeOrderGroup.cs index 3a142f713..08ffe1a55 100755 --- a/crypto/src/crypto/agreement/jpake/JPAKEPrimeOrderGroup.cs +++ b/crypto/src/crypto/agreement/jpake/JPAKEPrimeOrderGroup.cs @@ -2,7 +2,7 @@ using Org.BouncyCastle.Math; -namespace Org.BouncyCastle.Crypto.Agreement.Jpake +namespace Org.BouncyCastle.Crypto.Agreement.JPake { /// /// A pre-computed prime order group for use during a J-PAKE exchange. @@ -10,22 +10,22 @@ namespace Org.BouncyCastle.Crypto.Agreement.Jpake /// Typically a Schnorr group is used. In general, J-PAKE can use any prime order group /// that is suitable for public key cryptography, including elliptic curve cryptography. /// - /// See JPAKEPrimeOrderGroups for convenient standard groups. + /// See JPakePrimeOrderGroups for convenient standard groups. /// /// NIST publishes /// many groups that can be used for the desired level of security. /// - public class JPAKEPrimeOrderGroup + public class JPakePrimeOrderGroup { private readonly BigInteger p; private readonly BigInteger q; private readonly BigInteger g; /// - /// Constructs a new JPAKEPrimeOrderGroup. + /// Constructs a new JPakePrimeOrderGroup. /// /// In general, you should use one of the pre-approved groups from - /// JPAKEPrimeOrderGroups, rather than manually constructing one. + /// JPakePrimeOrderGroups, rather than manually constructing one. /// /// The following basic checks are performed: /// @@ -46,47 +46,38 @@ namespace Org.BouncyCastle.Crypto.Agreement.Jpake /// Throws NullReferenceException if any argument is null. Throws /// InvalidOperationException is any of the above validations fail. /// - public JPAKEPrimeOrderGroup(BigInteger p, BigInteger q, BigInteger g) + public JPakePrimeOrderGroup(BigInteger p, BigInteger q, BigInteger g) : this(p, q, g, false) { // Don't skip the checks on user-specified groups. } /// - /// Constructor used by the pre-approved groups in JPAKEPrimeOrderGroups. + /// Constructor used by the pre-approved groups in JPakePrimeOrderGroups. /// These pre-approved groups can avoid the expensive checks. /// User-specified groups should not use this constructor. /// - public JPAKEPrimeOrderGroup(BigInteger p, BigInteger q, BigInteger g, bool skipChecks) + public JPakePrimeOrderGroup(BigInteger p, BigInteger q, BigInteger g, bool skipChecks) { - JPAKEUtil.ValidateNotNull(p, "p"); - JPAKEUtil.ValidateNotNull(q, "q"); - JPAKEUtil.ValidateNotNull(g, "g"); + JPakeUtilities.ValidateNotNull(p, "p"); + JPakeUtilities.ValidateNotNull(q, "q"); + JPakeUtilities.ValidateNotNull(g, "g"); if (!skipChecks) { - if (!p.Subtract(JPAKEUtil.ONE).Mod(q).Equals(JPAKEUtil.ZERO)) - { + if (!p.Subtract(JPakeUtilities.One).Mod(q).Equals(JPakeUtilities.Zero)) throw new ArgumentException("p-1 must be evenly divisible by q"); - } - if (g.CompareTo(BigInteger.ValueOf(2)) == -1 || g.CompareTo(p.Subtract(JPAKEUtil.ONE)) == 1) - { + if (g.CompareTo(BigInteger.Two) == -1 || g.CompareTo(p.Subtract(JPakeUtilities.One)) == 1) throw new ArgumentException("g must be in [2, p-1]"); - } - if (!g.ModPow(q, p).Equals(JPAKEUtil.ONE)) - { + if (!g.ModPow(q, p).Equals(JPakeUtilities.One)) throw new ArgumentException("g^q mod p must equal 1"); - } + // Note these checks do not guarantee that p and q are prime. // We just have reasonable certainty that they are prime. if (!p.IsProbablePrime(20)) - { throw new ArgumentException("p must be prime"); - } if (!q.IsProbablePrime(20)) - { throw new ArgumentException("q must be prime"); - } } this.p = p; @@ -94,17 +85,17 @@ namespace Org.BouncyCastle.Crypto.Agreement.Jpake this.g = g; } - public BigInteger P + public virtual BigInteger P { get { return p; } } - public BigInteger Q + public virtual BigInteger Q { get { return q; } } - public BigInteger G + public virtual BigInteger G { get { return g; } } diff --git a/crypto/src/crypto/agreement/jpake/JPAKEPrimeOrderGroups.cs b/crypto/src/crypto/agreement/jpake/JPAKEPrimeOrderGroups.cs index aeaff6f72..33640845a 100755 --- a/crypto/src/crypto/agreement/jpake/JPAKEPrimeOrderGroups.cs +++ b/crypto/src/crypto/agreement/jpake/JPAKEPrimeOrderGroups.cs @@ -1,6 +1,6 @@ using Org.BouncyCastle.Math; -namespace Org.BouncyCastle.Crypto.Agreement.Jpake +namespace Org.BouncyCastle.Crypto.Agreement.JPake { /// /// Standard pre-computed prime order groups for use by J-PAKE. @@ -13,13 +13,13 @@ namespace Org.BouncyCastle.Crypto.Agreement.Jpake /// and from the prime order groups /// published by NIST. /// - public class JPAKEPrimeOrderGroups + public class JPakePrimeOrderGroups { /// /// From Sun's JDK JavaDoc (docs/guide/security/CryptoSpec.html#AppB) /// 1024-bit p, 160-bit q and 1024-bit g for 80-bit security. /// - public static readonly JPAKEPrimeOrderGroup SUN_JCE_1024 = new JPAKEPrimeOrderGroup( + public static readonly JPakePrimeOrderGroup SUN_JCE_1024 = new JPakePrimeOrderGroup( // p new BigInteger( "fd7f53811d75122952df4a9c2eece4e7f611b7523cef4400c31e3f80b6512669" + @@ -41,7 +41,7 @@ namespace Org.BouncyCastle.Crypto.Agreement.Jpake /// From NIST. /// 2048-bit p, 224-bit q and 2048-bit g for 112-bit security. /// - public static readonly JPAKEPrimeOrderGroup NIST_2048 = new JPAKEPrimeOrderGroup( + public static readonly JPakePrimeOrderGroup NIST_2048 = new JPakePrimeOrderGroup( // p new BigInteger( "C196BA05AC29E1F9C3C72D56DFFC6154A033F1477AC88EC37F09BE6C5BB95F51" + @@ -71,7 +71,7 @@ namespace Org.BouncyCastle.Crypto.Agreement.Jpake /// From NIST. /// 3072-bit p, 256-bit q and 3072-bit g for 128-bit security. /// - public static readonly JPAKEPrimeOrderGroup NIST_3072 = new JPAKEPrimeOrderGroup( + public static readonly JPakePrimeOrderGroup NIST_3072 = new JPakePrimeOrderGroup( // p new BigInteger( "90066455B5CFC38F9CAA4A48B4281F292C260FEEF01FD61037E56258A7795A1C" + diff --git a/crypto/src/crypto/agreement/jpake/JPAKERound1Payload.cs b/crypto/src/crypto/agreement/jpake/JPAKERound1Payload.cs index 7b638dabd..9e4ab7a5f 100755 --- a/crypto/src/crypto/agreement/jpake/JPAKERound1Payload.cs +++ b/crypto/src/crypto/agreement/jpake/JPAKERound1Payload.cs @@ -2,7 +2,7 @@ using Org.BouncyCastle.Math; -namespace Org.BouncyCastle.Crypto.Agreement.Jpake +namespace Org.BouncyCastle.Crypto.Agreement.JPake { /// /// The payload sent/received during the first round of a J-PAKE exchange. @@ -13,9 +13,9 @@ namespace Org.BouncyCastle.Crypto.Agreement.Jpake /// /// Each participant must also validate the payload received from the other. /// The received payload should be validated via - /// JPAKEParticipant.ValidateRound1PayloadReceived(JPAKERound1Payload). + /// JPAKEParticipant.ValidateRound1PayloadReceived(JPakeRound1Payload). /// - public class JPAKERound1Payload + public class JPakeRound1Payload { /// /// The id of the JPAKEParticipant who created/sent this payload. @@ -46,13 +46,13 @@ namespace Org.BouncyCastle.Crypto.Agreement.Jpake /// private readonly BigInteger[] knowledgeProofForX2; - public JPAKERound1Payload(string participantId, BigInteger gx1, BigInteger gx2, BigInteger[] knowledgeProofForX1, BigInteger[] knowledgeProofForX2) + public JPakeRound1Payload(string participantId, BigInteger gx1, BigInteger gx2, BigInteger[] knowledgeProofForX1, BigInteger[] knowledgeProofForX2) { - JPAKEUtil.ValidateNotNull(participantId, "participantId"); - JPAKEUtil.ValidateNotNull(gx1, "gx1"); - JPAKEUtil.ValidateNotNull(gx2, "gx2"); - JPAKEUtil.ValidateNotNull(knowledgeProofForX1, "knowledgeProofForX1"); - JPAKEUtil.ValidateNotNull(knowledgeProofForX2, "knowledgeProofForX2"); + JPakeUtilities.ValidateNotNull(participantId, "participantId"); + JPakeUtilities.ValidateNotNull(gx1, "gx1"); + JPakeUtilities.ValidateNotNull(gx2, "gx2"); + JPakeUtilities.ValidateNotNull(knowledgeProofForX1, "knowledgeProofForX1"); + JPakeUtilities.ValidateNotNull(knowledgeProofForX2, "knowledgeProofForX2"); this.participantId = participantId; this.gx1 = gx1; @@ -63,22 +63,22 @@ namespace Org.BouncyCastle.Crypto.Agreement.Jpake Array.Copy(knowledgeProofForX2, this.knowledgeProofForX2, knowledgeProofForX2.Length); } - public string ParticipantId + public virtual string ParticipantId { get { return participantId; } } - public BigInteger Gx1 + public virtual BigInteger Gx1 { get { return gx1; } } - public BigInteger Gx2 + public virtual BigInteger Gx2 { get { return gx2; } } - public BigInteger[] KnowledgeProofForX1 + public virtual BigInteger[] KnowledgeProofForX1 { get { @@ -88,7 +88,7 @@ namespace Org.BouncyCastle.Crypto.Agreement.Jpake } } - public BigInteger[] KnowledgeProofForX2 + public virtual BigInteger[] KnowledgeProofForX2 { get { diff --git a/crypto/src/crypto/agreement/jpake/JPAKERound2Payload.cs b/crypto/src/crypto/agreement/jpake/JPAKERound2Payload.cs index cf1a8575e..47962cb3f 100755 --- a/crypto/src/crypto/agreement/jpake/JPAKERound2Payload.cs +++ b/crypto/src/crypto/agreement/jpake/JPAKERound2Payload.cs @@ -3,7 +3,7 @@ using Org.BouncyCastle.Math; using Org.BouncyCastle.Utilities; -namespace Org.BouncyCastle.Crypto.Agreement.Jpake +namespace Org.BouncyCastle.Crypto.Agreement.JPake { /// /// The payload sent/received during the second round of a J-PAKE exchange. @@ -16,9 +16,9 @@ namespace Org.BouncyCastle.Crypto.Agreement.Jpake /// Each JPAKEParticipant must also validate the payload /// received from the other JPAKEParticipant. /// The received payload should be validated via - /// JPAKEParticipant#validateRound2PayloadReceived(JPAKERound2Payload) + /// JPAKEParticipant#validateRound2PayloadReceived(JPakeRound2Payload) /// - public class JPAKERound2Payload + public class JPakeRound2Payload { /// /// The id of the JPAKEParticipant who created/sent this payload. @@ -37,11 +37,11 @@ namespace Org.BouncyCastle.Crypto.Agreement.Jpake /// private readonly BigInteger[] knowledgeProofForX2s; - public JPAKERound2Payload(string participantId, BigInteger a, BigInteger[] knowledgeProofForX2s) + public JPakeRound2Payload(string participantId, BigInteger a, BigInteger[] knowledgeProofForX2s) { - JPAKEUtil.ValidateNotNull(participantId, "participantId"); - JPAKEUtil.ValidateNotNull(a, "a"); - JPAKEUtil.ValidateNotNull(knowledgeProofForX2s, "knowledgeProofForX2s"); + JPakeUtilities.ValidateNotNull(participantId, "participantId"); + JPakeUtilities.ValidateNotNull(a, "a"); + JPakeUtilities.ValidateNotNull(knowledgeProofForX2s, "knowledgeProofForX2s"); this.participantId = participantId; this.a = a; @@ -49,17 +49,17 @@ namespace Org.BouncyCastle.Crypto.Agreement.Jpake knowledgeProofForX2s.CopyTo(this.knowledgeProofForX2s, 0); } - public string ParticipantId + public virtual string ParticipantId { get { return participantId; } } - public BigInteger A + public virtual BigInteger A { get { return a; } } - public BigInteger[] KnowledgeProofForX2s + public virtual BigInteger[] KnowledgeProofForX2s { get { diff --git a/crypto/src/crypto/agreement/jpake/JPAKERound3Payload.cs b/crypto/src/crypto/agreement/jpake/JPAKERound3Payload.cs index 95e0f24ce..767702f23 100755 --- a/crypto/src/crypto/agreement/jpake/JPAKERound3Payload.cs +++ b/crypto/src/crypto/agreement/jpake/JPAKERound3Payload.cs @@ -2,7 +2,7 @@ using Org.BouncyCastle.Math; -namespace Org.BouncyCastle.Crypto.Agreement.Jpake +namespace Org.BouncyCastle.Crypto.Agreement.JPake { /// /// The payload sent/received during the optional third round of a J-PAKE exchange, @@ -16,9 +16,9 @@ namespace Org.BouncyCastle.Crypto.Agreement.Jpake /// Eeach JPAKEParticipant must also validate the payload /// received from the other JPAKEParticipant. /// The received payload should be validated via - /// JPAKEParticipant#validateRound3PayloadReceived(JPAKERound3Payload, BigInteger) + /// JPAKEParticipant#validateRound3PayloadReceived(JPakeRound3Payload, BigInteger) /// - public class JPAKERound3Payload + public class JPakeRound3Payload { /// /// The id of the {@link JPAKEParticipant} who created/sent this payload. @@ -32,18 +32,18 @@ namespace Org.BouncyCastle.Crypto.Agreement.Jpake /// private readonly BigInteger macTag; - public JPAKERound3Payload(string participantId, BigInteger magTag) + public JPakeRound3Payload(string participantId, BigInteger magTag) { this.participantId = participantId; this.macTag = magTag; } - public string ParticipantId + public virtual string ParticipantId { get { return participantId; } } - public BigInteger MacTag + public virtual BigInteger MacTag { get { return macTag; } } diff --git a/crypto/src/crypto/agreement/jpake/JPAKEUtil.cs b/crypto/src/crypto/agreement/jpake/JPAKEUtil.cs deleted file mode 100755 index 34f8c2685..000000000 --- a/crypto/src/crypto/agreement/jpake/JPAKEUtil.cs +++ /dev/null @@ -1,404 +0,0 @@ -using System; -using System.Text; - -using Org.BouncyCastle.Crypto; -using Org.BouncyCastle.Crypto.Macs; -using Org.BouncyCastle.Crypto.Parameters; -using Org.BouncyCastle.Math; -using Org.BouncyCastle.Security; -using Org.BouncyCastle.Utilities; - -namespace Org.BouncyCastle.Crypto.Agreement.Jpake -{ - /// - /// Primitives needed for a J-PAKE exchange. - /// - /// The recommended way to perform a J-PAKE exchange is by using - /// two JPAKEParticipants. Internally, those participants - /// call these primitive operations in JPAKEUtil. - /// - /// The primitives, however, can be used without a JPAKEParticipant if needed. - /// - public class JPAKEUtil - { - public static BigInteger ZERO = BigInteger.ValueOf(0); - public static BigInteger ONE = BigInteger.ValueOf(1); - - /// - /// Return a value that can be used as x1 or x3 during round 1. - /// The returned value is a random value in the range [0, q-1]. - /// - public static BigInteger GenerateX1(BigInteger q, SecureRandom random) - { - BigInteger min = ZERO; - BigInteger max = q.Subtract(ONE); - return BigIntegers.CreateRandomInRange(min, max, random); - } - - /// - /// Return a value that can be used as x2 or x4 during round 1. - /// The returned value is a random value in the range [1, q-1]. - /// - public static BigInteger GenerateX2(BigInteger q, SecureRandom random) - { - BigInteger min = ONE; - BigInteger max = q.Subtract(ONE); - return BigIntegers.CreateRandomInRange(min, max, random); - } - - /// - /// Converts the given password to a BigInteger - /// for use in arithmetic calculations. - /// - public static BigInteger CalculateS(char[] password) - { - return new BigInteger(Strings.ToUtf8ByteArray(password)); - } - - /// - /// Calculate g^x mod p as done in round 1. - /// - public static BigInteger CalculateGx(BigInteger p, BigInteger g, BigInteger x) - { - return g.ModPow(x, p); - } - - /// - /// Calculate ga as done in round 2. - /// - public static BigInteger CalculateGA(BigInteger p, BigInteger gx1, BigInteger gx3, BigInteger gx4) - { - // ga = g^(x1+x3+x4) = g^x1 * g^x3 * g^x4 - return gx1.Multiply(gx3).Multiply(gx4).Mod(p); - } - - /// - /// Calculate x2 * s as done in round 2. - /// - public static BigInteger CalculateX2s(BigInteger q, BigInteger x2, BigInteger s) - { - return x2.Multiply(s).Mod(q); - } - - /// - /// Calculate A as done in round 2. - /// - public static BigInteger CalculateA(BigInteger p, BigInteger q, BigInteger gA, BigInteger x2s) - { - // A = ga^(x*s) - return gA.ModPow(x2s, p); - } - - /// - /// Calculate a zero knowledge proof of x using Schnorr's signature. - /// The returned array has two elements {g^v, r = v-x*h} for x. - /// - public static BigInteger[] CalculateZeroKnowledgeProof(BigInteger p, BigInteger q, BigInteger g, - BigInteger gx, BigInteger x, string participantId, IDigest digest, SecureRandom random) - { - BigInteger[] zeroKnowledgeProof = new BigInteger[2]; - - /* Generate a random v, and compute g^v */ - BigInteger vMin = ZERO; - BigInteger vMax = q.Subtract(ONE); - BigInteger v = BigIntegers.CreateRandomInRange(vMin, vMax, random); - - BigInteger gv = g.ModPow(v, p); - BigInteger h = CalculateHashForZeroKnowledgeProof(g, gv, gx, participantId, digest); // h - - zeroKnowledgeProof[0] = gv; - zeroKnowledgeProof[1] = v.Subtract(x.Multiply(h)).Mod(q); // r = v-x*h - - return zeroKnowledgeProof; - } - - private static BigInteger CalculateHashForZeroKnowledgeProof(BigInteger g, BigInteger gr, BigInteger gx, - string participantId, IDigest digest) - { - digest.Reset(); - - UpdateDigestIncludingSize(digest, g); - - UpdateDigestIncludingSize(digest, gr); - - UpdateDigestIncludingSize(digest, gx); - - UpdateDigestIncludingSize(digest, participantId); - - byte[] output = new byte[digest.GetDigestSize()]; - digest.DoFinal(output, 0); - - return new BigInteger(output); - } - - /// - /// Validates that g^x4 is not 1. - /// throws CryptoException if g^x4 is 1 - /// - public static void ValidateGx4(BigInteger gx4) - { - if (gx4.Equals(ONE)) - { - throw new CryptoException("g^x validation failed. g^x should not be 1."); - } - } - - /// - /// Validates that ga is not 1. - /// - /// As described by Feng Hao... - /// Alice could simply check ga != 1 to ensure it is a generator. - /// In fact, as we will explain in Section 3, (x1 + x3 + x4 ) is random over Zq even in the face of active attacks. - /// Hence, the probability for ga = 1 is extremely small - on the order of 2^160 for 160-bit q. - /// - /// throws CryptoException if ga is 1 - /// - public static void ValidateGa(BigInteger ga) - { - if (ga.Equals(ONE)) - { - throw new CryptoException("ga is equal to 1. It should not be. The chances of this happening are on the order of 2^160 for a 160-bit q. Try again."); - } - } - - /// - /// Validates the zero knowledge proof (generated by - /// calculateZeroKnowledgeProof(BigInteger, BigInteger, BigInteger, BigInteger, BigInteger, string, Digest, SecureRandom) - /// is correct. - /// - /// throws CryptoException if the zero knowledge proof is not correct - /// - public static void ValidateZeroKnowledgeProof(BigInteger p, BigInteger q, BigInteger g, - BigInteger gx, BigInteger[] zeroKnowledgeProof, string participantId, IDigest digest) - { - /* sig={g^v,r} */ - BigInteger gv = zeroKnowledgeProof[0]; - BigInteger r = zeroKnowledgeProof[1]; - - BigInteger h = CalculateHashForZeroKnowledgeProof(g, gv, gx, participantId, digest); - if (!(gx.CompareTo(ZERO) == 1 && // g^x > 0 - gx.CompareTo(p) == -1 && // g^x < p - gx.ModPow(q, p).CompareTo(ONE) == 0 && // g^x^q mod q = 1 - /* - * Below, I took a straightforward way to compute g^r * g^x^h, - * which needs 2 exp. Using a simultaneous computation technique - * would only need 1 exp. - */ - g.ModPow(r, p).Multiply(gx.ModPow(h, p)).Mod(p).CompareTo(gv) == 0)) // g^v=g^r * g^x^h - { - throw new CryptoException("Zero-knowledge proof validation failed"); - } - } - - /// - /// Calculates the keying material, which can be done after round 2 has completed. - /// A session key must be derived from this key material using a secure key derivation function (KDF). - /// The KDF used to derive the key is handled externally (i.e. not by JPAKEParticipant). - /// - /// KeyingMaterial = (B/g^{x2*x4*s})^x2 - /// - public static BigInteger CalculateKeyingMaterial(BigInteger p, BigInteger q, - BigInteger gx4, BigInteger x2, BigInteger s, BigInteger B) - { - return gx4.ModPow(x2.Multiply(s).Negate().Mod(q), p).Multiply(B).ModPow(x2, p); - } - - /// - /// Validates that the given participant ids are not equal. - /// (For the J-PAKE exchange, each participant must use a unique id.) - /// - /// Throws CryptoException if the participantId strings are equal. - /// - public static void ValidateParticipantIdsDiffer(string participantId1, string participantId2) - { - if (participantId1.Equals(participantId2)) - { - throw new CryptoException( - "Both participants are using the same participantId (" - + participantId1 - + "). This is not allowed. " - + "Each participant must use a unique participantId."); - } - } - - /// - /// Validates that the given participant ids are equal. - /// This is used to ensure that the payloads received from - /// each round all come from the same participant. - /// - public static void ValidateParticipantIdsEqual(string expectedParticipantId, string actualParticipantId) - { - if (!expectedParticipantId.Equals(actualParticipantId)) - { - throw new CryptoException( - "Received payload from incorrect partner (" - + actualParticipantId - + "). Expected to receive payload from " - + expectedParticipantId - + "."); - } - } - - /// - /// Validates that the given object is not null. - /// throws NullReferenceException if the object is null. - /// - /// object in question - /// name of the object (to be used in exception message) - public static void ValidateNotNull(Object obj, string description) - { - if (obj == null) - { - throw new NullReferenceException(description + " must not be null"); - } - } - - /// - /// Calculates the MacTag (to be used for key confirmation), as defined by - /// NIST SP 800-56A Revision 1, - /// Section 8.2 Unilateral Key Confirmation for Key Agreement Schemes. - /// - /// MacTag = HMAC(MacKey, MacLen, MacData) - /// MacKey = H(K || "JPAKE_KC") - /// MacData = "KC_1_U" || participantId || partnerParticipantId || gx1 || gx2 || gx3 || gx4 - /// - /// Note that both participants use "KC_1_U" because the sender of the round 3 message - /// is always the initiator for key confirmation. - /// - /// HMAC = {@link HMac} used with the given {@link Digest} - /// H = The given {@link Digest} - /// MacLen = length of MacTag - /// - public static BigInteger CalculateMacTag(string participantId, string partnerParticipantId, - BigInteger gx1, BigInteger gx2, BigInteger gx3, BigInteger gx4, BigInteger keyingMaterial, IDigest digest) - { - byte[] macKey = CalculateMacKey(keyingMaterial, digest); - - HMac mac = new HMac(digest); - byte[] macOutput = new byte[mac.GetMacSize()]; - mac.Init(new KeyParameter(macKey)); - - /* - * MacData = "KC_1_U" || participantId_Alice || participantId_Bob || gx1 || gx2 || gx3 || gx4. - */ - UpdateMac(mac, "KC_1_U"); - UpdateMac(mac, participantId); - UpdateMac(mac, partnerParticipantId); - UpdateMac(mac, gx1); - UpdateMac(mac, gx2); - UpdateMac(mac, gx3); - UpdateMac(mac, gx4); - - mac.DoFinal(macOutput, 0); - - Arrays.Fill(macKey, (byte)0); - - return new BigInteger(macOutput); - } - - /// - /// Calculates the MacKey (i.e. the key to use when calculating the MagTag for key confirmation). - /// - /// MacKey = H(K || "JPAKE_KC") - /// - private static byte[] CalculateMacKey(BigInteger keyingMaterial, IDigest digest) - { - digest.Reset(); - - UpdateDigest(digest, keyingMaterial); - /* - * This constant is used to ensure that the macKey is NOT the same as the derived key. - */ - UpdateDigest(digest, "JPAKE_KC"); - - byte[] output = new byte[digest.GetDigestSize()]; - digest.DoFinal(output, 0); - - return output; - } - - /// - /// Validates the MacTag received from the partner participant. - /// - /// throws CryptoException if the participantId strings are equal. - /// - /// the MacTag received from the partner - public static void ValidateMacTag(string participantId, string partnerParticipantId, - BigInteger gx1, BigInteger gx2, BigInteger gx3, BigInteger gx4, - BigInteger keyingMaterial, IDigest digest, BigInteger partnerMacTag) - { - /* - * Calculate the expected MacTag using the parameters as the partner - * would have used when the partner called calculateMacTag. - * - * i.e. basically all the parameters are reversed. - * participantId <-> partnerParticipantId - * x1 <-> x3 - * x2 <-> x4 - */ - BigInteger expectedMacTag = CalculateMacTag(partnerParticipantId, participantId, gx3, gx4, gx1, gx2, keyingMaterial, digest); - - if (!expectedMacTag.Equals(partnerMacTag)) - { - throw new CryptoException( - "Partner MacTag validation failed. " - + "Therefore, the password, MAC, or digest algorithm of each participant does not match."); - } - } - - private static void UpdateDigest(IDigest digest, BigInteger bigInteger) - { - byte[] byteArray = BigIntegers.AsUnsignedByteArray(bigInteger); - digest.BlockUpdate(byteArray, 0, byteArray.Length); - Arrays.Fill(byteArray, (byte)0); - } - - private static void UpdateDigestIncludingSize(IDigest digest, BigInteger bigInteger) - { - byte[] byteArray = BigIntegers.AsUnsignedByteArray(bigInteger); - digest.BlockUpdate(IntToByteArray(byteArray.Length), 0, 4); - digest.BlockUpdate(byteArray, 0, byteArray.Length); - Arrays.Fill(byteArray, (byte)0); - } - - private static void UpdateDigest(IDigest digest, string str) - { - byte[] byteArray = Encoding.UTF8.GetBytes(str); - digest.BlockUpdate(byteArray, 0, byteArray.Length); - Arrays.Fill(byteArray, (byte)0); - } - - private static void UpdateDigestIncludingSize(IDigest digest, string str) - { - byte[] byteArray = Encoding.UTF8.GetBytes(str); - digest.BlockUpdate(IntToByteArray(byteArray.Length), 0, 4); - digest.BlockUpdate(byteArray, 0, byteArray.Length); - Arrays.Fill(byteArray, (byte)0); - } - - private static void UpdateMac(IMac mac, BigInteger bigInteger) - { - byte[] byteArray = BigIntegers.AsUnsignedByteArray(bigInteger); - mac.BlockUpdate(byteArray, 0, byteArray.Length); - Arrays.Fill(byteArray, (byte)0); - } - - private static void UpdateMac(IMac mac, string str) - { - byte[] byteArray = Encoding.UTF8.GetBytes(str); - mac.BlockUpdate(byteArray, 0, byteArray.Length); - Arrays.Fill(byteArray, (byte)0); - } - - private static byte[] IntToByteArray(int value) - { - return new byte[]{ - (byte)((uint)value >> 24), - (byte)((uint)value >> 16), - (byte)((uint)value >> 8), - (byte)value - }; - } - - } -} diff --git a/crypto/src/crypto/agreement/jpake/JPakeUtilities.cs b/crypto/src/crypto/agreement/jpake/JPakeUtilities.cs new file mode 100644 index 000000000..eaf8af676 --- /dev/null +++ b/crypto/src/crypto/agreement/jpake/JPakeUtilities.cs @@ -0,0 +1,391 @@ +using System; +using System.Text; + +using Org.BouncyCastle.Crypto; +using Org.BouncyCastle.Crypto.Macs; +using Org.BouncyCastle.Crypto.Parameters; +using Org.BouncyCastle.Crypto.Utilities; +using Org.BouncyCastle.Math; +using Org.BouncyCastle.Security; +using Org.BouncyCastle.Utilities; + +namespace Org.BouncyCastle.Crypto.Agreement.JPake +{ + /// + /// Primitives needed for a J-PAKE exchange. + /// + /// The recommended way to perform a J-PAKE exchange is by using + /// two JPAKEParticipants. Internally, those participants + /// call these primitive operations in JPakeUtilities. + /// + /// The primitives, however, can be used without a JPAKEParticipant if needed. + /// + public abstract class JPakeUtilities + { + public static readonly BigInteger Zero = BigInteger.Zero; + public static readonly BigInteger One = BigInteger.One; + + /// + /// Return a value that can be used as x1 or x3 during round 1. + /// The returned value is a random value in the range [0, q-1]. + /// + public static BigInteger GenerateX1(BigInteger q, SecureRandom random) + { + BigInteger min = Zero; + BigInteger max = q.Subtract(One); + return BigIntegers.CreateRandomInRange(min, max, random); + } + + /// + /// Return a value that can be used as x2 or x4 during round 1. + /// The returned value is a random value in the range [1, q-1]. + /// + public static BigInteger GenerateX2(BigInteger q, SecureRandom random) + { + BigInteger min = One; + BigInteger max = q.Subtract(One); + return BigIntegers.CreateRandomInRange(min, max, random); + } + + /// + /// Converts the given password to a BigInteger + /// for use in arithmetic calculations. + /// + public static BigInteger CalculateS(char[] password) + { + return new BigInteger(Encoding.UTF8.GetBytes(password)); + } + + /// + /// Calculate g^x mod p as done in round 1. + /// + public static BigInteger CalculateGx(BigInteger p, BigInteger g, BigInteger x) + { + return g.ModPow(x, p); + } + + /// + /// Calculate ga as done in round 2. + /// + public static BigInteger CalculateGA(BigInteger p, BigInteger gx1, BigInteger gx3, BigInteger gx4) + { + // ga = g^(x1+x3+x4) = g^x1 * g^x3 * g^x4 + return gx1.Multiply(gx3).Multiply(gx4).Mod(p); + } + + /// + /// Calculate x2 * s as done in round 2. + /// + public static BigInteger CalculateX2s(BigInteger q, BigInteger x2, BigInteger s) + { + return x2.Multiply(s).Mod(q); + } + + /// + /// Calculate A as done in round 2. + /// + public static BigInteger CalculateA(BigInteger p, BigInteger q, BigInteger gA, BigInteger x2s) + { + // A = ga^(x*s) + return gA.ModPow(x2s, p); + } + + /// + /// Calculate a zero knowledge proof of x using Schnorr's signature. + /// The returned array has two elements {g^v, r = v-x*h} for x. + /// + public static BigInteger[] CalculateZeroKnowledgeProof(BigInteger p, BigInteger q, BigInteger g, + BigInteger gx, BigInteger x, string participantId, IDigest digest, SecureRandom random) + { + /* Generate a random v, and compute g^v */ + BigInteger vMin = Zero; + BigInteger vMax = q.Subtract(One); + BigInteger v = BigIntegers.CreateRandomInRange(vMin, vMax, random); + + BigInteger gv = g.ModPow(v, p); + BigInteger h = CalculateHashForZeroKnowledgeProof(g, gv, gx, participantId, digest); // h + + return new BigInteger[] + { + gv, + v.Subtract(x.Multiply(h)).Mod(q) // r = v-x*h + }; + } + + private static BigInteger CalculateHashForZeroKnowledgeProof(BigInteger g, BigInteger gr, BigInteger gx, + string participantId, IDigest digest) + { + digest.Reset(); + + UpdateDigestIncludingSize(digest, g); + + UpdateDigestIncludingSize(digest, gr); + + UpdateDigestIncludingSize(digest, gx); + + UpdateDigestIncludingSize(digest, participantId); + + byte[] output = DigestUtilities.DoFinal(digest); + + return new BigInteger(output); + } + + /// + /// Validates that g^x4 is not 1. + /// throws CryptoException if g^x4 is 1 + /// + public static void ValidateGx4(BigInteger gx4) + { + if (gx4.Equals(One)) + throw new CryptoException("g^x validation failed. g^x should not be 1."); + } + + /// + /// Validates that ga is not 1. + /// + /// As described by Feng Hao... + /// Alice could simply check ga != 1 to ensure it is a generator. + /// In fact, as we will explain in Section 3, (x1 + x3 + x4 ) is random over Zq even in the face of active attacks. + /// Hence, the probability for ga = 1 is extremely small - on the order of 2^160 for 160-bit q. + /// + /// throws CryptoException if ga is 1 + /// + public static void ValidateGa(BigInteger ga) + { + if (ga.Equals(One)) + throw new CryptoException("ga is equal to 1. It should not be. The chances of this happening are on the order of 2^160 for a 160-bit q. Try again."); + } + + /// + /// Validates the zero knowledge proof (generated by + /// calculateZeroKnowledgeProof(BigInteger, BigInteger, BigInteger, BigInteger, BigInteger, string, Digest, SecureRandom) + /// is correct. + /// + /// throws CryptoException if the zero knowledge proof is not correct + /// + public static void ValidateZeroKnowledgeProof(BigInteger p, BigInteger q, BigInteger g, + BigInteger gx, BigInteger[] zeroKnowledgeProof, string participantId, IDigest digest) + { + /* sig={g^v,r} */ + BigInteger gv = zeroKnowledgeProof[0]; + BigInteger r = zeroKnowledgeProof[1]; + + BigInteger h = CalculateHashForZeroKnowledgeProof(g, gv, gx, participantId, digest); + if (!(gx.CompareTo(Zero) == 1 && // g^x > 0 + gx.CompareTo(p) == -1 && // g^x < p + gx.ModPow(q, p).CompareTo(One) == 0 && // g^x^q mod q = 1 + /* + * Below, I took a straightforward way to compute g^r * g^x^h, + * which needs 2 exp. Using a simultaneous computation technique + * would only need 1 exp. + */ + g.ModPow(r, p).Multiply(gx.ModPow(h, p)).Mod(p).CompareTo(gv) == 0)) // g^v=g^r * g^x^h + { + throw new CryptoException("Zero-knowledge proof validation failed"); + } + } + + /// + /// Calculates the keying material, which can be done after round 2 has completed. + /// A session key must be derived from this key material using a secure key derivation function (KDF). + /// The KDF used to derive the key is handled externally (i.e. not by JPAKEParticipant). + /// + /// KeyingMaterial = (B/g^{x2*x4*s})^x2 + /// + public static BigInteger CalculateKeyingMaterial(BigInteger p, BigInteger q, + BigInteger gx4, BigInteger x2, BigInteger s, BigInteger B) + { + return gx4.ModPow(x2.Multiply(s).Negate().Mod(q), p).Multiply(B).ModPow(x2, p); + } + + /// + /// Validates that the given participant ids are not equal. + /// (For the J-PAKE exchange, each participant must use a unique id.) + /// + /// Throws CryptoException if the participantId strings are equal. + /// + public static void ValidateParticipantIdsDiffer(string participantId1, string participantId2) + { + if (participantId1.Equals(participantId2)) + { + throw new CryptoException( + "Both participants are using the same participantId (" + + participantId1 + + "). This is not allowed. " + + "Each participant must use a unique participantId."); + } + } + + /// + /// Validates that the given participant ids are equal. + /// This is used to ensure that the payloads received from + /// each round all come from the same participant. + /// + public static void ValidateParticipantIdsEqual(string expectedParticipantId, string actualParticipantId) + { + if (!expectedParticipantId.Equals(actualParticipantId)) + { + throw new CryptoException( + "Received payload from incorrect partner (" + + actualParticipantId + + "). Expected to receive payload from " + + expectedParticipantId + + "."); + } + } + + /// + /// Validates that the given object is not null. + /// throws NullReferenceException if the object is null. + /// + /// object in question + /// name of the object (to be used in exception message) + public static void ValidateNotNull(object obj, string description) + { + if (obj == null) + throw new ArgumentNullException(description); + } + + /// + /// Calculates the MacTag (to be used for key confirmation), as defined by + /// NIST SP 800-56A Revision 1, + /// Section 8.2 Unilateral Key Confirmation for Key Agreement Schemes. + /// + /// MacTag = HMAC(MacKey, MacLen, MacData) + /// MacKey = H(K || "JPAKE_KC") + /// MacData = "KC_1_U" || participantId || partnerParticipantId || gx1 || gx2 || gx3 || gx4 + /// + /// Note that both participants use "KC_1_U" because the sender of the round 3 message + /// is always the initiator for key confirmation. + /// + /// HMAC = {@link HMac} used with the given {@link Digest} + /// H = The given {@link Digest} + /// MacLen = length of MacTag + /// + public static BigInteger CalculateMacTag(string participantId, string partnerParticipantId, + BigInteger gx1, BigInteger gx2, BigInteger gx3, BigInteger gx4, BigInteger keyingMaterial, IDigest digest) + { + byte[] macKey = CalculateMacKey(keyingMaterial, digest); + + HMac mac = new HMac(digest); + mac.Init(new KeyParameter(macKey)); + Arrays.Fill(macKey, (byte)0); + + /* + * MacData = "KC_1_U" || participantId_Alice || participantId_Bob || gx1 || gx2 || gx3 || gx4. + */ + UpdateMac(mac, "KC_1_U"); + UpdateMac(mac, participantId); + UpdateMac(mac, partnerParticipantId); + UpdateMac(mac, gx1); + UpdateMac(mac, gx2); + UpdateMac(mac, gx3); + UpdateMac(mac, gx4); + + byte[] macOutput = MacUtilities.DoFinal(mac); + + return new BigInteger(macOutput); + } + + /// + /// Calculates the MacKey (i.e. the key to use when calculating the MagTag for key confirmation). + /// + /// MacKey = H(K || "JPAKE_KC") + /// + private static byte[] CalculateMacKey(BigInteger keyingMaterial, IDigest digest) + { + digest.Reset(); + + UpdateDigest(digest, keyingMaterial); + /* + * This constant is used to ensure that the macKey is NOT the same as the derived key. + */ + UpdateDigest(digest, "JPAKE_KC"); + + return DigestUtilities.DoFinal(digest); + } + + /// + /// Validates the MacTag received from the partner participant. + /// + /// throws CryptoException if the participantId strings are equal. + /// + /// the MacTag received from the partner + public static void ValidateMacTag(string participantId, string partnerParticipantId, + BigInteger gx1, BigInteger gx2, BigInteger gx3, BigInteger gx4, + BigInteger keyingMaterial, IDigest digest, BigInteger partnerMacTag) + { + /* + * Calculate the expected MacTag using the parameters as the partner + * would have used when the partner called calculateMacTag. + * + * i.e. basically all the parameters are reversed. + * participantId <-> partnerParticipantId + * x1 <-> x3 + * x2 <-> x4 + */ + BigInteger expectedMacTag = CalculateMacTag(partnerParticipantId, participantId, gx3, gx4, gx1, gx2, keyingMaterial, digest); + + if (!expectedMacTag.Equals(partnerMacTag)) + { + throw new CryptoException( + "Partner MacTag validation failed. " + + "Therefore, the password, MAC, or digest algorithm of each participant does not match."); + } + } + + private static void UpdateDigest(IDigest digest, BigInteger bigInteger) + { + UpdateDigest(digest, BigIntegers.AsUnsignedByteArray(bigInteger)); + } + + private static void UpdateDigest(IDigest digest, string str) + { + UpdateDigest(digest, Encoding.UTF8.GetBytes(str)); + } + + private static void UpdateDigest(IDigest digest, byte[] bytes) + { + digest.BlockUpdate(bytes, 0, bytes.Length); + Arrays.Fill(bytes, (byte)0); + } + + private static void UpdateDigestIncludingSize(IDigest digest, BigInteger bigInteger) + { + UpdateDigestIncludingSize(digest, BigIntegers.AsUnsignedByteArray(bigInteger)); + } + + private static void UpdateDigestIncludingSize(IDigest digest, string str) + { + UpdateDigestIncludingSize(digest, Encoding.UTF8.GetBytes(str)); + } + + private static void UpdateDigestIncludingSize(IDigest digest, byte[] bytes) + { + digest.BlockUpdate(IntToByteArray(bytes.Length), 0, 4); + digest.BlockUpdate(bytes, 0, bytes.Length); + Arrays.Fill(bytes, (byte)0); + } + + private static void UpdateMac(IMac mac, BigInteger bigInteger) + { + UpdateMac(mac, BigIntegers.AsUnsignedByteArray(bigInteger)); + } + + private static void UpdateMac(IMac mac, string str) + { + UpdateMac(mac, Encoding.UTF8.GetBytes(str)); + } + + private static void UpdateMac(IMac mac, byte[] bytes) + { + mac.BlockUpdate(bytes, 0, bytes.Length); + Arrays.Fill(bytes, (byte)0); + } + + private static byte[] IntToByteArray(int value) + { + return Pack.UInt32_To_BE((uint)value); + } + } +} -- cgit 1.5.1