diff --git a/crypto/src/crypto/agreement/jpake/JPAKEParticipant.cs b/crypto/src/crypto/agreement/jpake/JPAKEParticipant.cs
new file mode 100755
index 000000000..0874f3d83
--- /dev/null
+++ b/crypto/src/crypto/agreement/jpake/JPAKEParticipant.cs
@@ -0,0 +1,479 @@
+using System;
+
+using Org.BouncyCastle.Crypto;
+using Org.BouncyCastle.Crypto.Digests;
+using Org.BouncyCastle.Math;
+using Org.BouncyCastle.Security;
+
+namespace Org.BouncyCastle.Crypto.Agreement.Jpake
+{
+ /// <summary>
+ /// A participant in a Password Authenticated Key Exchange by Juggling (J-PAKE) exchange.
+ ///
+ /// The J-PAKE exchange is defined by Feng Hao and Peter Ryan in the paper
+ /// <a href="http://grouper.ieee.org/groups/1363/Research/contributions/hao-ryan-2008.pdf">
+ /// "Password Authenticated Key Exchange by Juggling, 2008."</a>
+ ///
+ /// The J-PAKE protocol is symmetric.
+ /// There is no notion of a <i>client</i> or <i>server</i>, but rather just two <i>participants</i>.
+ /// An instance of JPAKEParticipant represents one participant, and
+ /// is the primary interface for executing the exchange.
+ ///
+ /// To execute an exchange, construct a JPAKEParticipant on each end,
+ /// and call the following 7 methods
+ /// (once and only once, in the given order, for each participant, sending messages between them as described):
+ ///
+ /// CreateRound1PayloadToSend() - and send the payload to the other participant
+ /// ValidateRound1PayloadReceived(JPAKERound1Payload) - use the payload received from the other participant
+ /// CreateRound2PayloadToSend() - and send the payload to the other participant
+ /// ValidateRound2PayloadReceived(JPAKERound2Payload) - use the payload received from the other participant
+ /// CalculateKeyingMaterial()
+ /// CreateRound3PayloadToSend(BigInteger) - and send the payload to the other participant
+ /// ValidateRound3PayloadReceived(JPAKERound3Payload, BigInteger) - use the payload received from the other participant
+ ///
+ /// Each side should derive a session key from the keying material returned by CalculateKeyingMaterial().
+ /// The caller is responsible for deriving the session key using a secure key derivation function (KDF).
+ ///
+ /// Round 3 is an optional key confirmation process.
+ /// If you do not execute round 3, then there is no assurance that both participants are using the same key.
+ /// (i.e. if the participants used different passwords, then their session keys will differ.)
+ ///
+ /// If the round 3 validation succeeds, then the keys are guaranteed to be the same on both sides.
+ ///
+ /// The symmetric design can easily support the asymmetric cases when one party initiates the communication.
+ /// e.g. Sometimes the round1 payload and round2 payload may be sent in one pass.
+ /// Also, in some cases, the key confirmation payload can be sent together with the round2 payload.
+ /// These are the trivial techniques to optimize the communication.
+ ///
+ /// The key confirmation process is implemented as specified in
+ /// <a href="http://csrc.nist.gov/publications/nistpubs/800-56A/SP800-56A_Revision1_Mar08-2007.pdf">NIST SP 800-56A Revision 1</a>,
+ /// Section 8.2 Unilateral Key Confirmation for Key Agreement Schemes.
+ ///
+ /// This class is stateful and NOT threadsafe.
+ /// Each instance should only be used for ONE complete J-PAKE exchange
+ /// (i.e. a new JPAKEParticipant should be constructed for each new J-PAKE exchange).
+ /// </summary>
+ public class JPAKEParticipant
+ {
+ // Possible internal states. Used for state checking.
+ public static readonly int STATE_INITIALIZED = 0;
+ public static readonly int STATE_ROUND_1_CREATED = 10;
+ public static readonly int STATE_ROUND_1_VALIDATED = 20;
+ public static readonly int STATE_ROUND_2_CREATED = 30;
+ public static readonly int STATE_ROUND_2_VALIDATED = 40;
+ public static readonly int STATE_KEY_CALCULATED = 50;
+ public static readonly int STATE_ROUND_3_CREATED = 60;
+ public static readonly int STATE_ROUND_3_VALIDATED = 70;
+
+ // Unique identifier of this participant.
+ // The two participants in the exchange must NOT share the same id.
+ private string participantId;
+
+ // Shared secret. This only contains the secret between construction
+ // and the call to CalculateKeyingMaterial().
+ //
+ // i.e. When CalculateKeyingMaterial() is called, this buffer overwritten with 0's,
+ // and the field is set to null.
+ private char[] password;
+
+ // Digest to use during calculations.
+ private IDigest digest;
+
+ // Source of secure random data.
+ private readonly SecureRandom random;
+
+ private readonly BigInteger p;
+ private readonly BigInteger q;
+ private readonly BigInteger g;
+
+ // The participantId of the other participant in this exchange.
+ private string partnerParticipantId;
+
+ // Alice's x1 or Bob's x3.
+ private BigInteger x1;
+ // Alice's x2 or Bob's x4.
+ private BigInteger x2;
+ // Alice's g^x1 or Bob's g^x3.
+ private BigInteger gx1;
+ // Alice's g^x2 or Bob's g^x4.
+ private BigInteger gx2;
+ // Alice's g^x3 or Bob's g^x1.
+ private BigInteger gx3;
+ // Alice's g^x4 or Bob's g^x2.
+ private BigInteger gx4;
+ // Alice's B or Bob's A.
+ private BigInteger b;
+
+ // The current state.
+ // See the <tt>STATE_*</tt> constants for possible values.
+ private int state;
+
+ /// <summary>
+ /// Convenience constructor for a new JPAKEParticipant that uses
+ /// the JPAKEPrimeOrderGroups#NIST_3072 prime order group,
+ /// a SHA-256 digest, and a default SecureRandom implementation.
+ ///
+ /// After construction, the State state will be STATE_INITIALIZED.
+ ///
+ /// Throws NullReferenceException if any argument is null. Throws
+ /// ArgumentException if password is empty.
+ /// </summary>
+ /// <param name="participantId">Unique identifier of this participant.
+ /// The two participants in the exchange must NOT share the same id.</param>
+ /// <param name="password">Shared secret.
+ /// A defensive copy of this array is made (and cleared once CalculateKeyingMaterial() is called).
+ /// Caller should clear the input password as soon as possible.</param>
+ public JPAKEParticipant(string participantId, char[] password)
+ : this(participantId, password, JPAKEPrimeOrderGroups.NIST_3072) { }
+
+ /// <summary>
+ /// Convenience constructor for a new JPAKEParticipant that uses
+ /// a SHA-256 digest, and a default SecureRandom implementation.
+ ///
+ /// After construction, the State state will be STATE_INITIALIZED.
+ ///
+ /// Throws NullReferenceException if any argument is null. Throws
+ /// ArgumentException if password is empty.
+ /// </summary>
+ /// <param name="participantId">Unique identifier of this participant.
+ /// The two participants in the exchange must NOT share the same id.</param>
+ /// <param name="password">Shared secret.
+ /// A defensive copy of this array is made (and cleared once CalculateKeyingMaterial() is called).
+ /// Caller should clear the input password as soon as possible.</param>
+ /// <param name="group">Prime order group. See JPAKEPrimeOrderGroups for standard groups.</param>
+ public JPAKEParticipant(string participantId, char[] password, JPAKEPrimeOrderGroup group)
+ : this(participantId, password, group, new Sha256Digest(), new SecureRandom()) { }
+
+
+ /// <summary>
+ /// Constructor for a new JPAKEParticipant.
+ ///
+ /// After construction, the State state will be STATE_INITIALIZED.
+ ///
+ /// Throws NullReferenceException if any argument is null. Throws
+ /// ArgumentException if password is empty.
+ /// </summary>
+ /// <param name="participantId">Unique identifier of this participant.
+ /// The two participants in the exchange must NOT share the same id.</param>
+ /// <param name="password">Shared secret.
+ /// A defensive copy of this array is made (and cleared once CalculateKeyingMaterial() is called).
+ /// Caller should clear the input password as soon as possible.</param>
+ /// <param name="group">Prime order group. See JPAKEPrimeOrderGroups for standard groups.</param>
+ /// <param name="digest">Digest to use during zero knowledge proofs and key confirmation
+ /// (SHA-256 or stronger preferred).</param>
+ /// <param name="random">Source of secure random data for x1 and x2, and for the zero knowledge proofs.</param>
+ public JPAKEParticipant(string participantId, char[] password, JPAKEPrimeOrderGroup group, IDigest digest, SecureRandom random)
+ {
+ JPAKEUtil.ValidateNotNull(participantId, "participantId");
+ JPAKEUtil.ValidateNotNull(password, "password");
+ JPAKEUtil.ValidateNotNull(group, "p");
+ JPAKEUtil.ValidateNotNull(digest, "digest");
+ JPAKEUtil.ValidateNotNull(random, "random");
+
+ if (password.Length == 0)
+ {
+ throw new ArgumentException("Password must not be empty.");
+ }
+
+ this.participantId = participantId;
+
+ // Create a defensive copy so as to fully encapsulate the password.
+ //
+ // This array will contain the password for the lifetime of this
+ // participant BEFORE CalculateKeyingMaterial() is called.
+ //
+ // i.e. When CalculateKeyingMaterial() is called, the array will be cleared
+ // in order to remove the password from memory.
+ //
+ // The caller is responsible for clearing the original password array
+ // given as input to this constructor.
+ this.password = new char[password.Length];
+ Array.Copy(password, this.password, password.Length);
+
+ this.p = group.P;
+ this.q = group.Q;
+ this.g = group.G;
+
+ this.digest = digest;
+ this.random = random;
+
+ this.state = STATE_INITIALIZED;
+ }
+
+ /// <summary>
+ /// Gets the current state of this participant.
+ /// See the <tt>STATE_*</tt> constants for possible values.
+ /// </summary>
+ public int State
+ {
+ get { return state; }
+ }
+
+
+ /// <summary>
+ /// Creates and returns the payload to send to the other participant during round 1.
+ ///
+ /// After execution, the State state} will be STATE_ROUND_1_CREATED}.
+ /// </summary>
+ public JPAKERound1Payload CreateRound1PayloadToSend()
+ {
+ if (this.state >= STATE_ROUND_1_CREATED)
+ {
+ throw new InvalidOperationException("Round 1 payload already created for " + this.participantId);
+ }
+
+ this.x1 = JPAKEUtil.GenerateX1(q, random);
+ this.x2 = JPAKEUtil.GenerateX2(q, random);
+
+ this.gx1 = JPAKEUtil.CalculateGx(p, g, x1);
+ this.gx2 = JPAKEUtil.CalculateGx(p, g, x2);
+ BigInteger[] knowledgeProofForX1 = JPAKEUtil.CalculateZeroKnowledgeProof(p, q, g, gx1, x1, participantId, digest, random);
+ BigInteger[] knowledgeProofForX2 = JPAKEUtil.CalculateZeroKnowledgeProof(p, q, g, gx2, x2, participantId, digest, random);
+
+ this.state = STATE_ROUND_1_CREATED;
+
+ return new JPAKERound1Payload(participantId, gx1, gx2, knowledgeProofForX1, knowledgeProofForX2);
+ }
+
+ /// <summary>
+ /// Validates the payload received from the other participant during round 1.
+ ///
+ /// Must be called prior to CreateRound2PayloadToSend().
+ ///
+ /// After execution, the State state will be STATE_ROUND_1_VALIDATED.
+ ///
+ /// Throws CryptoException if validation fails. Throws InvalidOperationException
+ /// if called multiple times.
+ /// </summary>
+ public void ValidateRound1PayloadReceived(JPAKERound1Payload round1PayloadReceived)
+ {
+ if (this.state >= STATE_ROUND_1_VALIDATED)
+ {
+ throw new InvalidOperationException("Validation already attempted for round 1 payload for " + this.participantId);
+ }
+
+ this.partnerParticipantId = round1PayloadReceived.ParticipantId;
+ this.gx3 = round1PayloadReceived.Gx1;
+ this.gx4 = round1PayloadReceived.Gx2;
+
+ BigInteger[] knowledgeProofForX3 = round1PayloadReceived.KnowledgeProofForX1;
+ BigInteger[] knowledgeProofForX4 = round1PayloadReceived.KnowledgeProofForX2;
+
+ JPAKEUtil.ValidateParticipantIdsDiffer(participantId, round1PayloadReceived.ParticipantId);
+ JPAKEUtil.ValidateGx4(gx4);
+ JPAKEUtil.ValidateZeroKnowledgeProof(p, q, g, gx3, knowledgeProofForX3, round1PayloadReceived.ParticipantId, digest);
+ JPAKEUtil.ValidateZeroKnowledgeProof(p, q, g, gx4, knowledgeProofForX4, round1PayloadReceived.ParticipantId, digest);
+ this.state = STATE_ROUND_1_VALIDATED;
+ }
+
+ /// <summary>
+ /// Creates and returns the payload to send to the other participant during round 2.
+ ///
+ /// ValidateRound1PayloadReceived(JPAKERound1Payload) must be called prior to this method.
+ ///
+ /// After execution, the State state will be STATE_ROUND_2_CREATED.
+ ///
+ /// Throws InvalidOperationException if called prior to ValidateRound1PayloadReceived(JPAKERound1Payload), or multiple times
+ /// </summary>
+ public JPAKERound2Payload CreateRound2PayloadToSend()
+ {
+ if (this.state >= STATE_ROUND_2_CREATED)
+ {
+ throw new InvalidOperationException("Round 2 payload already created for " + this.participantId);
+ }
+ if (this.state < STATE_ROUND_1_VALIDATED)
+ {
+ throw new InvalidOperationException("Round 1 payload must be validated prior to creating round 2 payload for " + this.participantId);
+ }
+
+ BigInteger gA = JPAKEUtil.CalculateGA(p, gx1, gx3, gx4);
+ BigInteger s = JPAKEUtil.CalculateS(password);
+ BigInteger x2s = JPAKEUtil.CalculateX2s(q, x2, s);
+ BigInteger A = JPAKEUtil.CalculateA(p, q, gA, x2s);
+ BigInteger[] knowledgeProofForX2s = JPAKEUtil.CalculateZeroKnowledgeProof(p, q, gA, A, x2s, participantId, digest, random);
+
+ this.state = STATE_ROUND_2_CREATED;
+
+ return new JPAKERound2Payload(participantId, A, knowledgeProofForX2s);
+ }
+
+ /// <summary>
+ /// Validates the payload received from the other participant during round 2.
+ /// Note that this DOES NOT detect a non-common password.
+ /// The only indication of a non-common password is through derivation
+ /// of different keys (which can be detected explicitly by executing round 3 and round 4)
+ ///
+ /// Must be called prior to CalculateKeyingMaterial().
+ ///
+ /// After execution, the State state will be STATE_ROUND_2_VALIDATED.
+ ///
+ /// Throws CryptoException if validation fails. Throws
+ /// InvalidOperationException if called prior to ValidateRound1PayloadReceived(JPAKERound1Payload), or multiple times
+ /// </summary>
+ public void ValidateRound2PayloadReceived(JPAKERound2Payload round2PayloadReceived)
+ {
+ if (this.state >= STATE_ROUND_2_VALIDATED)
+ {
+ throw new InvalidOperationException("Validation already attempted for round 2 payload for " + this.participantId);
+ }
+ if (this.state < STATE_ROUND_1_VALIDATED)
+ {
+ throw new InvalidOperationException("Round 1 payload must be validated prior to validation round 2 payload for " + this.participantId);
+ }
+
+ BigInteger gB = JPAKEUtil.CalculateGA(p, gx3, gx1, gx2);
+ this.b = round2PayloadReceived.A;
+ BigInteger[] knowledgeProofForX4s = round2PayloadReceived.KnowledgeProofForX2s;
+
+ JPAKEUtil.ValidateParticipantIdsDiffer(participantId, round2PayloadReceived.ParticipantId);
+ JPAKEUtil.ValidateParticipantIdsEqual(this.partnerParticipantId, round2PayloadReceived.ParticipantId);
+ JPAKEUtil.ValidateGa(gB);
+ JPAKEUtil.ValidateZeroKnowledgeProof(p, q, gB, b, knowledgeProofForX4s, round2PayloadReceived.ParticipantId, digest);
+
+ this.state = STATE_ROUND_2_VALIDATED;
+ }
+
+ /// <summary>
+ /// Calculates and returns the key material.
+ /// A session key must be derived from this key material using a secure key derivation function (KDF).
+ /// The KDF used to derive the key is handled externally (i.e. not by JPAKEParticipant).
+ ///
+ /// The keying material will be identical for each participant if and only if
+ /// each participant's password is the same. i.e. If the participants do not
+ /// share the same password, then each participant will derive a different key.
+ /// Therefore, if you immediately start using a key derived from
+ /// the keying material, then you must handle detection of incorrect keys.
+ /// If you want to handle this detection explicitly, you can optionally perform
+ /// rounds 3 and 4. See JPAKEParticipant for details on how to execute
+ /// rounds 3 and 4.
+ ///
+ /// The keying material will be in the range <tt>[0, p-1]</tt>.
+ ///
+ /// ValidateRound2PayloadReceived(JPAKERound2Payload) must be called prior to this method.
+ ///
+ /// As a side effect, the internal password array is cleared, since it is no longer needed.
+ ///
+ /// After execution, the State state will be STATE_KEY_CALCULATED.
+ ///
+ /// Throws InvalidOperationException if called prior to ValidateRound2PayloadReceived(JPAKERound2Payload),
+ /// or if called multiple times.
+ /// </summary>
+ public BigInteger CalculateKeyingMaterial()
+ {
+ if (this.state >= STATE_KEY_CALCULATED)
+ {
+ throw new InvalidOperationException("Key already calculated for " + participantId);
+ }
+ if (this.state < STATE_ROUND_2_VALIDATED)
+ {
+ throw new InvalidOperationException("Round 2 payload must be validated prior to creating key for " + participantId);
+ }
+
+ BigInteger s = JPAKEUtil.CalculateS(password);
+
+ // Clear the password array from memory, since we don't need it anymore.
+ // Also set the field to null as a flag to indicate that the key has already been calculated.
+ Array.Clear(password, 0, password.Length);
+ this.password = null;
+
+ BigInteger keyingMaterial = JPAKEUtil.CalculateKeyingMaterial(p, q, gx4, x2, s, b);
+
+ // Clear the ephemeral private key fields as well.
+ // Note that we're relying on the garbage collector to do its job to clean these up.
+ // The old objects will hang around in memory until the garbage collector destroys them.
+ //
+ // If the ephemeral private keys x1 and x2 are leaked,
+ // the attacker might be able to brute-force the password.
+ this.x1 = null;
+ this.x2 = null;
+ this.b = null;
+
+ // Do not clear gx* yet, since those are needed by round 3.
+
+ this.state = STATE_KEY_CALCULATED;
+
+ return keyingMaterial;
+ }
+
+ /// <summary>
+ /// Creates and returns the payload to send to the other participant during round 3.
+ ///
+ /// See JPAKEParticipant for more details on round 3.
+ ///
+ /// After execution, the State state} will be STATE_ROUND_3_CREATED.
+ /// Throws InvalidOperationException if called prior to CalculateKeyingMaterial, or multiple
+ /// times.
+ /// </summary>
+ /// <param name="keyingMaterial">The keying material as returned from CalculateKeyingMaterial().</param>
+ public JPAKERound3Payload CreateRound3PayloadToSend(BigInteger keyingMaterial)
+ {
+ if (this.state >= STATE_ROUND_3_CREATED)
+ {
+ throw new InvalidOperationException("Round 3 payload already created for " + this.participantId);
+ }
+ if (this.state < STATE_KEY_CALCULATED)
+ {
+ throw new InvalidOperationException("Keying material must be calculated prior to creating round 3 payload for " + this.participantId);
+ }
+
+ BigInteger macTag = JPAKEUtil.CalculateMacTag(
+ this.participantId,
+ this.partnerParticipantId,
+ this.gx1,
+ this.gx2,
+ this.gx3,
+ this.gx4,
+ keyingMaterial,
+ this.digest);
+
+ this.state = STATE_ROUND_3_CREATED;
+
+ return new JPAKERound3Payload(participantId, macTag);
+ }
+
+ /// <summary>
+ /// Validates the payload received from the other participant during round 3.
+ ///
+ /// See JPAKEParticipant for more details on round 3.
+ ///
+ /// After execution, the State state will be STATE_ROUND_3_VALIDATED.
+ ///
+ /// Throws CryptoException if validation fails. Throws InvalidOperationException if called prior to
+ /// CalculateKeyingMaterial or multiple times
+ /// </summary>
+ /// <param name="keyingMaterial">The keying material as returned from CalculateKeyingMaterial().</param>
+ public void ValidateRound3PayloadReceived(JPAKERound3Payload round3PayloadReceived, BigInteger keyingMaterial)
+ {
+ if (this.state >= STATE_ROUND_3_VALIDATED)
+ {
+ throw new InvalidOperationException("Validation already attempted for round 3 payload for " + this.participantId);
+ }
+ if (this.state < STATE_KEY_CALCULATED)
+ {
+ throw new InvalidOperationException("Keying material must be calculated prior to validating round 3 payload for " + this.participantId);
+ }
+
+ JPAKEUtil.ValidateParticipantIdsDiffer(participantId, round3PayloadReceived.ParticipantId);
+ JPAKEUtil.ValidateParticipantIdsEqual(this.partnerParticipantId, round3PayloadReceived.ParticipantId);
+
+ JPAKEUtil.ValidateMacTag(
+ this.participantId,
+ this.partnerParticipantId,
+ this.gx1,
+ this.gx2,
+ this.gx3,
+ this.gx4,
+ keyingMaterial,
+ this.digest,
+ round3PayloadReceived.MacTag);
+
+ // Clear the rest of the fields.
+ this.gx1 = null;
+ this.gx2 = null;
+ this.gx3 = null;
+ this.gx4 = null;
+
+ this.state = STATE_ROUND_3_VALIDATED;
+ }
+ }
+}
diff --git a/crypto/src/crypto/agreement/jpake/JPAKEPrimeOrderGroup.cs b/crypto/src/crypto/agreement/jpake/JPAKEPrimeOrderGroup.cs
new file mode 100755
index 000000000..3a142f713
--- /dev/null
+++ b/crypto/src/crypto/agreement/jpake/JPAKEPrimeOrderGroup.cs
@@ -0,0 +1,112 @@
+using System;
+
+using Org.BouncyCastle.Math;
+
+namespace Org.BouncyCastle.Crypto.Agreement.Jpake
+{
+ /// <summary>
+ /// A pre-computed prime order group for use during a J-PAKE exchange.
+ ///
+ /// Typically a Schnorr group is used. In general, J-PAKE can use any prime order group
+ /// that is suitable for public key cryptography, including elliptic curve cryptography.
+ ///
+ /// See JPAKEPrimeOrderGroups for convenient standard groups.
+ ///
+ /// NIST <a href="http://csrc.nist.gov/groups/ST/toolkit/documents/Examples/DSA2_All.pdf">publishes</a>
+ /// many groups that can be used for the desired level of security.
+ /// </summary>
+ public class JPAKEPrimeOrderGroup
+ {
+ private readonly BigInteger p;
+ private readonly BigInteger q;
+ private readonly BigInteger g;
+
+ /// <summary>
+ /// Constructs a new JPAKEPrimeOrderGroup.
+ ///
+ /// In general, you should use one of the pre-approved groups from
+ /// JPAKEPrimeOrderGroups, rather than manually constructing one.
+ ///
+ /// The following basic checks are performed:
+ ///
+ /// p-1 must be evenly divisible by q
+ /// g must be in [2, p-1]
+ /// g^q mod p must equal 1
+ /// p must be prime (within reasonably certainty)
+ /// q must be prime (within reasonably certainty)
+ ///
+ /// The prime checks are performed using BigInteger#isProbablePrime(int),
+ /// and are therefore subject to the same probability guarantees.
+ ///
+ /// These checks prevent trivial mistakes.
+ /// However, due to the small uncertainties if p and q are not prime,
+ /// advanced attacks are not prevented.
+ /// Use it at your own risk.
+ ///
+ /// Throws NullReferenceException if any argument is null. Throws
+ /// InvalidOperationException is any of the above validations fail.
+ /// </summary>
+ public JPAKEPrimeOrderGroup(BigInteger p, BigInteger q, BigInteger g)
+ : this(p, q, g, false)
+ {
+ // Don't skip the checks on user-specified groups.
+ }
+
+ /// <summary>
+ /// Constructor used by the pre-approved groups in JPAKEPrimeOrderGroups.
+ /// These pre-approved groups can avoid the expensive checks.
+ /// User-specified groups should not use this constructor.
+ /// </summary>
+ public JPAKEPrimeOrderGroup(BigInteger p, BigInteger q, BigInteger g, bool skipChecks)
+ {
+ JPAKEUtil.ValidateNotNull(p, "p");
+ JPAKEUtil.ValidateNotNull(q, "q");
+ JPAKEUtil.ValidateNotNull(g, "g");
+
+ if (!skipChecks)
+ {
+ if (!p.Subtract(JPAKEUtil.ONE).Mod(q).Equals(JPAKEUtil.ZERO))
+ {
+ throw new ArgumentException("p-1 must be evenly divisible by q");
+ }
+ if (g.CompareTo(BigInteger.ValueOf(2)) == -1 || g.CompareTo(p.Subtract(JPAKEUtil.ONE)) == 1)
+ {
+ throw new ArgumentException("g must be in [2, p-1]");
+ }
+ if (!g.ModPow(q, p).Equals(JPAKEUtil.ONE))
+ {
+ throw new ArgumentException("g^q mod p must equal 1");
+ }
+ // Note these checks do not guarantee that p and q are prime.
+ // We just have reasonable certainty that they are prime.
+ if (!p.IsProbablePrime(20))
+ {
+ throw new ArgumentException("p must be prime");
+ }
+ if (!q.IsProbablePrime(20))
+ {
+ throw new ArgumentException("q must be prime");
+ }
+ }
+
+ this.p = p;
+ this.q = q;
+ this.g = g;
+ }
+
+ public BigInteger P
+ {
+ get { return p; }
+ }
+
+ public BigInteger Q
+ {
+ get { return q; }
+ }
+
+ public BigInteger G
+ {
+ get { return g; }
+ }
+ }
+}
diff --git a/crypto/src/crypto/agreement/jpake/JPAKEPrimeOrderGroups.cs b/crypto/src/crypto/agreement/jpake/JPAKEPrimeOrderGroups.cs
new file mode 100755
index 000000000..aeaff6f72
--- /dev/null
+++ b/crypto/src/crypto/agreement/jpake/JPAKEPrimeOrderGroups.cs
@@ -0,0 +1,108 @@
+using Org.BouncyCastle.Math;
+
+namespace Org.BouncyCastle.Crypto.Agreement.Jpake
+{
+ /// <summary>
+ /// Standard pre-computed prime order groups for use by J-PAKE.
+ /// (J-PAKE can use pre-computed prime order groups, same as DSA and Diffie-Hellman.)
+ /// <p>
+ /// This class contains some convenient constants for use as input for
+ /// constructing {@link JPAKEParticipant}s.
+ /// <p>
+ /// The prime order groups below are taken from Sun's JDK JavaDoc (docs/guide/security/CryptoSpec.html#AppB),
+ /// and from the prime order groups
+ /// <a href="http://csrc.nist.gov/groups/ST/toolkit/documents/Examples/DSA2_All.pdf">published by NIST</a>.
+ /// </summary>
+ public class JPAKEPrimeOrderGroups
+ {
+ /// <summary>
+ /// From Sun's JDK JavaDoc (docs/guide/security/CryptoSpec.html#AppB)
+ /// 1024-bit p, 160-bit q and 1024-bit g for 80-bit security.
+ /// </summary>
+ public static readonly JPAKEPrimeOrderGroup SUN_JCE_1024 = new JPAKEPrimeOrderGroup(
+ // p
+ new BigInteger(
+ "fd7f53811d75122952df4a9c2eece4e7f611b7523cef4400c31e3f80b6512669" +
+ "455d402251fb593d8d58fabfc5f5ba30f6cb9b556cd7813b801d346ff26660b7" +
+ "6b9950a5a49f9fe8047b1022c24fbba9d7feb7c61bf83b57e7c6a8a6150f04fb" +
+ "83f6d3c51ec3023554135a169132f675f3ae2b61d72aeff22203199dd14801c7", 16),
+ // q
+ new BigInteger("9760508f15230bccb292b982a2eb840bf0581cf5", 16),
+ // g
+ new BigInteger(
+ "f7e1a085d69b3ddecbbcab5c36b857b97994afbbfa3aea82f9574c0b3d078267" +
+ "5159578ebad4594fe67107108180b449167123e84c281613b7cf09328cc8a6e1" +
+ "3c167a8b547c8d28e0a3ae1e2bb3a675916ea37f0bfa213562f1fb627a01243b" +
+ "cca4f1bea8519089a883dfe15ae59f06928b665e807b552564014c3bfecf492a", 16),
+ true
+ );
+
+ /// <summary>
+ /// From NIST.
+ /// 2048-bit p, 224-bit q and 2048-bit g for 112-bit security.
+ /// </summary>
+ public static readonly JPAKEPrimeOrderGroup NIST_2048 = new JPAKEPrimeOrderGroup(
+ // p
+ new BigInteger(
+ "C196BA05AC29E1F9C3C72D56DFFC6154A033F1477AC88EC37F09BE6C5BB95F51" +
+ "C296DD20D1A28A067CCC4D4316A4BD1DCA55ED1066D438C35AEBAABF57E7DAE4" +
+ "28782A95ECA1C143DB701FD48533A3C18F0FE23557EA7AE619ECACC7E0B51652" +
+ "A8776D02A425567DED36EABD90CA33A1E8D988F0BBB92D02D1D20290113BB562" +
+ "CE1FC856EEB7CDD92D33EEA6F410859B179E7E789A8F75F645FAE2E136D252BF" +
+ "FAFF89528945C1ABE705A38DBC2D364AADE99BE0D0AAD82E5320121496DC65B3" +
+ "930E38047294FF877831A16D5228418DE8AB275D7D75651CEFED65F78AFC3EA7" +
+ "FE4D79B35F62A0402A1117599ADAC7B269A59F353CF450E6982D3B1702D9CA83", 16),
+ // q
+ new BigInteger("90EAF4D1AF0708B1B612FF35E0A2997EB9E9D263C9CE659528945C0D", 16),
+ // g
+ new BigInteger(
+ "A59A749A11242C58C894E9E5A91804E8FA0AC64B56288F8D47D51B1EDC4D6544" +
+ "4FECA0111D78F35FC9FDD4CB1F1B79A3BA9CBEE83A3F811012503C8117F98E50" +
+ "48B089E387AF6949BF8784EBD9EF45876F2E6A5A495BE64B6E770409494B7FEE" +
+ "1DBB1E4B2BC2A53D4F893D418B7159592E4FFFDF6969E91D770DAEBD0B5CB14C" +
+ "00AD68EC7DC1E5745EA55C706C4A1C5C88964E34D09DEB753AD418C1AD0F4FDF" +
+ "D049A955E5D78491C0B7A2F1575A008CCD727AB376DB6E695515B05BD412F5B8" +
+ "C2F4C77EE10DA48ABD53F5DD498927EE7B692BBBCDA2FB23A516C5B4533D7398" +
+ "0B2A3B60E384ED200AE21B40D273651AD6060C13D97FD69AA13C5611A51B9085", 16),
+ true
+ );
+
+ /// <summary>
+ /// From NIST.
+ /// 3072-bit p, 256-bit q and 3072-bit g for 128-bit security.
+ /// </summary>
+ public static readonly JPAKEPrimeOrderGroup NIST_3072 = new JPAKEPrimeOrderGroup(
+ // p
+ new BigInteger(
+ "90066455B5CFC38F9CAA4A48B4281F292C260FEEF01FD61037E56258A7795A1C" +
+ "7AD46076982CE6BB956936C6AB4DCFE05E6784586940CA544B9B2140E1EB523F" +
+ "009D20A7E7880E4E5BFA690F1B9004A27811CD9904AF70420EEFD6EA11EF7DA1" +
+ "29F58835FF56B89FAA637BC9AC2EFAAB903402229F491D8D3485261CD068699B" +
+ "6BA58A1DDBBEF6DB51E8FE34E8A78E542D7BA351C21EA8D8F1D29F5D5D159394" +
+ "87E27F4416B0CA632C59EFD1B1EB66511A5A0FBF615B766C5862D0BD8A3FE7A0" +
+ "E0DA0FB2FE1FCB19E8F9996A8EA0FCCDE538175238FC8B0EE6F29AF7F642773E" +
+ "BE8CD5402415A01451A840476B2FCEB0E388D30D4B376C37FE401C2A2C2F941D" +
+ "AD179C540C1C8CE030D460C4D983BE9AB0B20F69144C1AE13F9383EA1C08504F" +
+ "B0BF321503EFE43488310DD8DC77EC5B8349B8BFE97C2C560EA878DE87C11E3D" +
+ "597F1FEA742D73EEC7F37BE43949EF1A0D15C3F3E3FC0A8335617055AC91328E" +
+ "C22B50FC15B941D3D1624CD88BC25F3E941FDDC6200689581BFEC416B4B2CB73", 16),
+ // q
+ new BigInteger("CFA0478A54717B08CE64805B76E5B14249A77A4838469DF7F7DC987EFCCFB11D", 16),
+ // g
+ new BigInteger(
+ "5E5CBA992E0A680D885EB903AEA78E4A45A469103D448EDE3B7ACCC54D521E37" +
+ "F84A4BDD5B06B0970CC2D2BBB715F7B82846F9A0C393914C792E6A923E2117AB" +
+ "805276A975AADB5261D91673EA9AAFFEECBFA6183DFCB5D3B7332AA19275AFA1" +
+ "F8EC0B60FB6F66CC23AE4870791D5982AAD1AA9485FD8F4A60126FEB2CF05DB8" +
+ "A7F0F09B3397F3937F2E90B9E5B9C9B6EFEF642BC48351C46FB171B9BFA9EF17" +
+ "A961CE96C7E7A7CC3D3D03DFAD1078BA21DA425198F07D2481622BCE45969D9C" +
+ "4D6063D72AB7A0F08B2F49A7CC6AF335E08C4720E31476B67299E231F8BD90B3" +
+ "9AC3AE3BE0C6B6CACEF8289A2E2873D58E51E029CAFBD55E6841489AB66B5B4B" +
+ "9BA6E2F784660896AFF387D92844CCB8B69475496DE19DA2E58259B090489AC8" +
+ "E62363CDF82CFD8EF2A427ABCD65750B506F56DDE3B988567A88126B914D7828" +
+ "E2B63A6D7ED0747EC59E0E0A23CE7D8A74C1D2C2A7AFB6A29799620F00E11C33" +
+ "787F7DED3B30E1A22D09F1FBDA1ABBBFBF25CAE05A13F812E34563F99410E73B", 16),
+ true
+ );
+ }
+}
diff --git a/crypto/src/crypto/agreement/jpake/JPAKERound1Payload.cs b/crypto/src/crypto/agreement/jpake/JPAKERound1Payload.cs
new file mode 100755
index 000000000..7b638dabd
--- /dev/null
+++ b/crypto/src/crypto/agreement/jpake/JPAKERound1Payload.cs
@@ -0,0 +1,101 @@
+using System;
+
+using Org.BouncyCastle.Math;
+
+namespace Org.BouncyCastle.Crypto.Agreement.Jpake
+{
+ /// <summary>
+ /// The payload sent/received during the first round of a J-PAKE exchange.
+ ///
+ /// Each JPAKEParticipant creates and sends an instance of this payload to
+ /// the other. The payload to send should be created via
+ /// JPAKEParticipant.CreateRound1PayloadToSend().
+ ///
+ /// Each participant must also validate the payload received from the other.
+ /// The received payload should be validated via
+ /// JPAKEParticipant.ValidateRound1PayloadReceived(JPAKERound1Payload).
+ /// </summary>
+ public class JPAKERound1Payload
+ {
+ /// <summary>
+ /// The id of the JPAKEParticipant who created/sent this payload.
+ /// </summary>
+ private readonly string participantId;
+
+ /// <summary>
+ /// The value of g^x1
+ /// </summary>
+ private readonly BigInteger gx1;
+
+ /// <summary>
+ /// The value of g^x2
+ /// </summary>
+ private readonly BigInteger gx2;
+
+ /// <summary>
+ /// The zero knowledge proof for x1.
+ ///
+ /// This is a two element array, containing {g^v, r} for x1.
+ /// </summary>
+ private readonly BigInteger[] knowledgeProofForX1;
+
+ /// <summary>
+ /// The zero knowledge proof for x2.
+ ///
+ /// This is a two element array, containing {g^v, r} for x2.
+ /// </summary>
+ private readonly BigInteger[] knowledgeProofForX2;
+
+ public JPAKERound1Payload(string participantId, BigInteger gx1, BigInteger gx2, BigInteger[] knowledgeProofForX1, BigInteger[] knowledgeProofForX2)
+ {
+ JPAKEUtil.ValidateNotNull(participantId, "participantId");
+ JPAKEUtil.ValidateNotNull(gx1, "gx1");
+ JPAKEUtil.ValidateNotNull(gx2, "gx2");
+ JPAKEUtil.ValidateNotNull(knowledgeProofForX1, "knowledgeProofForX1");
+ JPAKEUtil.ValidateNotNull(knowledgeProofForX2, "knowledgeProofForX2");
+
+ this.participantId = participantId;
+ this.gx1 = gx1;
+ this.gx2 = gx2;
+ this.knowledgeProofForX1 = new BigInteger[knowledgeProofForX1.Length];
+ Array.Copy(knowledgeProofForX1, this.knowledgeProofForX1, knowledgeProofForX1.Length);
+ this.knowledgeProofForX2 = new BigInteger[knowledgeProofForX2.Length];
+ Array.Copy(knowledgeProofForX2, this.knowledgeProofForX2, knowledgeProofForX2.Length);
+ }
+
+ public string ParticipantId
+ {
+ get { return participantId; }
+ }
+
+ public BigInteger Gx1
+ {
+ get { return gx1; }
+ }
+
+ public BigInteger Gx2
+ {
+ get { return gx2; }
+ }
+
+ public BigInteger[] KnowledgeProofForX1
+ {
+ get
+ {
+ BigInteger[] kp = new BigInteger[knowledgeProofForX1.Length];
+ Array.Copy(knowledgeProofForX1, kp, knowledgeProofForX1.Length);
+ return kp;
+ }
+ }
+
+ public BigInteger[] KnowledgeProofForX2
+ {
+ get
+ {
+ BigInteger[] kp = new BigInteger[knowledgeProofForX2.Length];
+ Array.Copy(knowledgeProofForX2, kp, knowledgeProofForX2.Length);
+ return kp;
+ }
+ }
+ }
+}
diff --git a/crypto/src/crypto/agreement/jpake/JPAKERound2Payload.cs b/crypto/src/crypto/agreement/jpake/JPAKERound2Payload.cs
new file mode 100755
index 000000000..cf1a8575e
--- /dev/null
+++ b/crypto/src/crypto/agreement/jpake/JPAKERound2Payload.cs
@@ -0,0 +1,72 @@
+using System;
+
+using Org.BouncyCastle.Math;
+using Org.BouncyCastle.Utilities;
+
+namespace Org.BouncyCastle.Crypto.Agreement.Jpake
+{
+ /// <summary>
+ /// The payload sent/received during the second round of a J-PAKE exchange.
+ ///
+ /// Each JPAKEParticipant creates and sends an instance
+ /// of this payload to the other JPAKEParticipant.
+ /// The payload to send should be created via
+ /// JPAKEParticipant#createRound2PayloadToSend()
+ ///
+ /// Each JPAKEParticipant must also validate the payload
+ /// received from the other JPAKEParticipant.
+ /// The received payload should be validated via
+ /// JPAKEParticipant#validateRound2PayloadReceived(JPAKERound2Payload)
+ /// </summary>
+ public class JPAKERound2Payload
+ {
+ /// <summary>
+ /// The id of the JPAKEParticipant who created/sent this payload.
+ /// </summary>
+ private readonly string participantId;
+
+ /// <summary>
+ /// The value of A, as computed during round 2.
+ /// </summary>
+ private readonly BigInteger a;
+
+ /// <summary>
+ /// The zero knowledge proof for x2 * s.
+ ///
+ /// This is a two element array, containing {g^v, r} for x2 * s.
+ /// </summary>
+ private readonly BigInteger[] knowledgeProofForX2s;
+
+ public JPAKERound2Payload(string participantId, BigInteger a, BigInteger[] knowledgeProofForX2s)
+ {
+ JPAKEUtil.ValidateNotNull(participantId, "participantId");
+ JPAKEUtil.ValidateNotNull(a, "a");
+ JPAKEUtil.ValidateNotNull(knowledgeProofForX2s, "knowledgeProofForX2s");
+
+ this.participantId = participantId;
+ this.a = a;
+ this.knowledgeProofForX2s = new BigInteger[knowledgeProofForX2s.Length];
+ knowledgeProofForX2s.CopyTo(this.knowledgeProofForX2s, 0);
+ }
+
+ public string ParticipantId
+ {
+ get { return participantId; }
+ }
+
+ public BigInteger A
+ {
+ get { return a; }
+ }
+
+ public BigInteger[] KnowledgeProofForX2s
+ {
+ get
+ {
+ BigInteger[] kp = new BigInteger[knowledgeProofForX2s.Length];
+ Array.Copy(knowledgeProofForX2s, kp, knowledgeProofForX2s.Length);
+ return kp;
+ }
+ }
+ }
+}
diff --git a/crypto/src/crypto/agreement/jpake/JPAKERound3Payload.cs b/crypto/src/crypto/agreement/jpake/JPAKERound3Payload.cs
new file mode 100755
index 000000000..95e0f24ce
--- /dev/null
+++ b/crypto/src/crypto/agreement/jpake/JPAKERound3Payload.cs
@@ -0,0 +1,51 @@
+using System;
+
+using Org.BouncyCastle.Math;
+
+namespace Org.BouncyCastle.Crypto.Agreement.Jpake
+{
+ /// <summary>
+ /// The payload sent/received during the optional third round of a J-PAKE exchange,
+ /// which is for explicit key confirmation.
+ ///
+ /// Each JPAKEParticipant creates and sends an instance
+ /// of this payload to the other JPAKEParticipant.
+ /// The payload to send should be created via
+ /// JPAKEParticipant#createRound3PayloadToSend(BigInteger)
+ ///
+ /// Eeach JPAKEParticipant must also validate the payload
+ /// received from the other JPAKEParticipant.
+ /// The received payload should be validated via
+ /// JPAKEParticipant#validateRound3PayloadReceived(JPAKERound3Payload, BigInteger)
+ /// </summary>
+ public class JPAKERound3Payload
+ {
+ /// <summary>
+ /// The id of the {@link JPAKEParticipant} who created/sent this payload.
+ /// </summary>
+ private readonly string participantId;
+
+ /// <summary>
+ /// The value of MacTag, as computed by round 3.
+ ///
+ /// See JPAKEUtil#calculateMacTag(string, string, BigInteger, BigInteger, BigInteger, BigInteger, BigInteger, org.bouncycastle.crypto.Digest)
+ /// </summary>
+ private readonly BigInteger macTag;
+
+ public JPAKERound3Payload(string participantId, BigInteger magTag)
+ {
+ this.participantId = participantId;
+ this.macTag = magTag;
+ }
+
+ public string ParticipantId
+ {
+ get { return participantId; }
+ }
+
+ public BigInteger MacTag
+ {
+ get { return macTag; }
+ }
+ }
+}
diff --git a/crypto/src/crypto/agreement/jpake/JPAKEUtil.cs b/crypto/src/crypto/agreement/jpake/JPAKEUtil.cs
new file mode 100755
index 000000000..34f8c2685
--- /dev/null
+++ b/crypto/src/crypto/agreement/jpake/JPAKEUtil.cs
@@ -0,0 +1,404 @@
+using System;
+using System.Text;
+
+using Org.BouncyCastle.Crypto;
+using Org.BouncyCastle.Crypto.Macs;
+using Org.BouncyCastle.Crypto.Parameters;
+using Org.BouncyCastle.Math;
+using Org.BouncyCastle.Security;
+using Org.BouncyCastle.Utilities;
+
+namespace Org.BouncyCastle.Crypto.Agreement.Jpake
+{
+ /// <summary>
+ /// Primitives needed for a J-PAKE exchange.
+ ///
+ /// The recommended way to perform a J-PAKE exchange is by using
+ /// two JPAKEParticipants. Internally, those participants
+ /// call these primitive operations in JPAKEUtil.
+ ///
+ /// The primitives, however, can be used without a JPAKEParticipant if needed.
+ /// </summary>
+ public class JPAKEUtil
+ {
+ public static BigInteger ZERO = BigInteger.ValueOf(0);
+ public static BigInteger ONE = BigInteger.ValueOf(1);
+
+ /// <summary>
+ /// Return a value that can be used as x1 or x3 during round 1.
+ /// The returned value is a random value in the range [0, q-1].
+ /// </summary>
+ public static BigInteger GenerateX1(BigInteger q, SecureRandom random)
+ {
+ BigInteger min = ZERO;
+ BigInteger max = q.Subtract(ONE);
+ return BigIntegers.CreateRandomInRange(min, max, random);
+ }
+
+ /// <summary>
+ /// Return a value that can be used as x2 or x4 during round 1.
+ /// The returned value is a random value in the range [1, q-1].
+ /// </summary>
+ public static BigInteger GenerateX2(BigInteger q, SecureRandom random)
+ {
+ BigInteger min = ONE;
+ BigInteger max = q.Subtract(ONE);
+ return BigIntegers.CreateRandomInRange(min, max, random);
+ }
+
+ /// <summary>
+ /// Converts the given password to a BigInteger
+ /// for use in arithmetic calculations.
+ /// </summary>
+ public static BigInteger CalculateS(char[] password)
+ {
+ return new BigInteger(Strings.ToUtf8ByteArray(password));
+ }
+
+ /// <summary>
+ /// Calculate g^x mod p as done in round 1.
+ /// </summary>
+ public static BigInteger CalculateGx(BigInteger p, BigInteger g, BigInteger x)
+ {
+ return g.ModPow(x, p);
+ }
+
+ /// <summary>
+ /// Calculate ga as done in round 2.
+ /// </summary>
+ public static BigInteger CalculateGA(BigInteger p, BigInteger gx1, BigInteger gx3, BigInteger gx4)
+ {
+ // ga = g^(x1+x3+x4) = g^x1 * g^x3 * g^x4
+ return gx1.Multiply(gx3).Multiply(gx4).Mod(p);
+ }
+
+ /// <summary>
+ /// Calculate x2 * s as done in round 2.
+ /// </summary>
+ public static BigInteger CalculateX2s(BigInteger q, BigInteger x2, BigInteger s)
+ {
+ return x2.Multiply(s).Mod(q);
+ }
+
+ /// <summary>
+ /// Calculate A as done in round 2.
+ /// </summary>
+ public static BigInteger CalculateA(BigInteger p, BigInteger q, BigInteger gA, BigInteger x2s)
+ {
+ // A = ga^(x*s)
+ return gA.ModPow(x2s, p);
+ }
+
+ /// <summary>
+ /// Calculate a zero knowledge proof of x using Schnorr's signature.
+ /// The returned array has two elements {g^v, r = v-x*h} for x.
+ /// </summary>
+ public static BigInteger[] CalculateZeroKnowledgeProof(BigInteger p, BigInteger q, BigInteger g,
+ BigInteger gx, BigInteger x, string participantId, IDigest digest, SecureRandom random)
+ {
+ BigInteger[] zeroKnowledgeProof = new BigInteger[2];
+
+ /* Generate a random v, and compute g^v */
+ BigInteger vMin = ZERO;
+ BigInteger vMax = q.Subtract(ONE);
+ BigInteger v = BigIntegers.CreateRandomInRange(vMin, vMax, random);
+
+ BigInteger gv = g.ModPow(v, p);
+ BigInteger h = CalculateHashForZeroKnowledgeProof(g, gv, gx, participantId, digest); // h
+
+ zeroKnowledgeProof[0] = gv;
+ zeroKnowledgeProof[1] = v.Subtract(x.Multiply(h)).Mod(q); // r = v-x*h
+
+ return zeroKnowledgeProof;
+ }
+
+ private static BigInteger CalculateHashForZeroKnowledgeProof(BigInteger g, BigInteger gr, BigInteger gx,
+ string participantId, IDigest digest)
+ {
+ digest.Reset();
+
+ UpdateDigestIncludingSize(digest, g);
+
+ UpdateDigestIncludingSize(digest, gr);
+
+ UpdateDigestIncludingSize(digest, gx);
+
+ UpdateDigestIncludingSize(digest, participantId);
+
+ byte[] output = new byte[digest.GetDigestSize()];
+ digest.DoFinal(output, 0);
+
+ return new BigInteger(output);
+ }
+
+ /// <summary>
+ /// Validates that g^x4 is not 1.
+ /// throws CryptoException if g^x4 is 1
+ /// </summary>
+ public static void ValidateGx4(BigInteger gx4)
+ {
+ if (gx4.Equals(ONE))
+ {
+ throw new CryptoException("g^x validation failed. g^x should not be 1.");
+ }
+ }
+
+ /// <summary>
+ /// Validates that ga is not 1.
+ ///
+ /// As described by Feng Hao...
+ /// Alice could simply check ga != 1 to ensure it is a generator.
+ /// In fact, as we will explain in Section 3, (x1 + x3 + x4 ) is random over Zq even in the face of active attacks.
+ /// Hence, the probability for ga = 1 is extremely small - on the order of 2^160 for 160-bit q.
+ ///
+ /// throws CryptoException if ga is 1
+ /// </summary>
+ public static void ValidateGa(BigInteger ga)
+ {
+ if (ga.Equals(ONE))
+ {
+ throw new CryptoException("ga is equal to 1. It should not be. The chances of this happening are on the order of 2^160 for a 160-bit q. Try again.");
+ }
+ }
+
+ /// <summary>
+ /// Validates the zero knowledge proof (generated by
+ /// calculateZeroKnowledgeProof(BigInteger, BigInteger, BigInteger, BigInteger, BigInteger, string, Digest, SecureRandom)
+ /// is correct.
+ ///
+ /// throws CryptoException if the zero knowledge proof is not correct
+ /// </summary>
+ public static void ValidateZeroKnowledgeProof(BigInteger p, BigInteger q, BigInteger g,
+ BigInteger gx, BigInteger[] zeroKnowledgeProof, string participantId, IDigest digest)
+ {
+ /* sig={g^v,r} */
+ BigInteger gv = zeroKnowledgeProof[0];
+ BigInteger r = zeroKnowledgeProof[1];
+
+ BigInteger h = CalculateHashForZeroKnowledgeProof(g, gv, gx, participantId, digest);
+ if (!(gx.CompareTo(ZERO) == 1 && // g^x > 0
+ gx.CompareTo(p) == -1 && // g^x < p
+ gx.ModPow(q, p).CompareTo(ONE) == 0 && // g^x^q mod q = 1
+ /*
+ * Below, I took a straightforward way to compute g^r * g^x^h,
+ * which needs 2 exp. Using a simultaneous computation technique
+ * would only need 1 exp.
+ */
+ g.ModPow(r, p).Multiply(gx.ModPow(h, p)).Mod(p).CompareTo(gv) == 0)) // g^v=g^r * g^x^h
+ {
+ throw new CryptoException("Zero-knowledge proof validation failed");
+ }
+ }
+
+ /// <summary>
+ /// Calculates the keying material, which can be done after round 2 has completed.
+ /// A session key must be derived from this key material using a secure key derivation function (KDF).
+ /// The KDF used to derive the key is handled externally (i.e. not by JPAKEParticipant).
+ ///
+ /// KeyingMaterial = (B/g^{x2*x4*s})^x2
+ /// </summary>
+ public static BigInteger CalculateKeyingMaterial(BigInteger p, BigInteger q,
+ BigInteger gx4, BigInteger x2, BigInteger s, BigInteger B)
+ {
+ return gx4.ModPow(x2.Multiply(s).Negate().Mod(q), p).Multiply(B).ModPow(x2, p);
+ }
+
+ /// <summary>
+ /// Validates that the given participant ids are not equal.
+ /// (For the J-PAKE exchange, each participant must use a unique id.)
+ ///
+ /// Throws CryptoException if the participantId strings are equal.
+ /// </summary>
+ public static void ValidateParticipantIdsDiffer(string participantId1, string participantId2)
+ {
+ if (participantId1.Equals(participantId2))
+ {
+ throw new CryptoException(
+ "Both participants are using the same participantId ("
+ + participantId1
+ + "). This is not allowed. "
+ + "Each participant must use a unique participantId.");
+ }
+ }
+
+ /// <summary>
+ /// Validates that the given participant ids are equal.
+ /// This is used to ensure that the payloads received from
+ /// each round all come from the same participant.
+ /// </summary>
+ public static void ValidateParticipantIdsEqual(string expectedParticipantId, string actualParticipantId)
+ {
+ if (!expectedParticipantId.Equals(actualParticipantId))
+ {
+ throw new CryptoException(
+ "Received payload from incorrect partner ("
+ + actualParticipantId
+ + "). Expected to receive payload from "
+ + expectedParticipantId
+ + ".");
+ }
+ }
+
+ /// <summary>
+ /// Validates that the given object is not null.
+ /// throws NullReferenceException if the object is null.
+ /// </summary>
+ /// <param name="obj">object in question</param>
+ /// <param name="description">name of the object (to be used in exception message)</param>
+ public static void ValidateNotNull(Object obj, string description)
+ {
+ if (obj == null)
+ {
+ throw new NullReferenceException(description + " must not be null");
+ }
+ }
+
+ /// <summary>
+ /// Calculates the MacTag (to be used for key confirmation), as defined by
+ /// <a href="http://csrc.nist.gov/publications/nistpubs/800-56A/SP800-56A_Revision1_Mar08-2007.pdf">NIST SP 800-56A Revision 1</a>,
+ /// Section 8.2 Unilateral Key Confirmation for Key Agreement Schemes.
+ ///
+ /// MacTag = HMAC(MacKey, MacLen, MacData)
+ /// MacKey = H(K || "JPAKE_KC")
+ /// MacData = "KC_1_U" || participantId || partnerParticipantId || gx1 || gx2 || gx3 || gx4
+ ///
+ /// Note that both participants use "KC_1_U" because the sender of the round 3 message
+ /// is always the initiator for key confirmation.
+ ///
+ /// HMAC = {@link HMac} used with the given {@link Digest}
+ /// H = The given {@link Digest}
+ /// MacLen = length of MacTag
+ /// </summary>
+ public static BigInteger CalculateMacTag(string participantId, string partnerParticipantId,
+ BigInteger gx1, BigInteger gx2, BigInteger gx3, BigInteger gx4, BigInteger keyingMaterial, IDigest digest)
+ {
+ byte[] macKey = CalculateMacKey(keyingMaterial, digest);
+
+ HMac mac = new HMac(digest);
+ byte[] macOutput = new byte[mac.GetMacSize()];
+ mac.Init(new KeyParameter(macKey));
+
+ /*
+ * MacData = "KC_1_U" || participantId_Alice || participantId_Bob || gx1 || gx2 || gx3 || gx4.
+ */
+ UpdateMac(mac, "KC_1_U");
+ UpdateMac(mac, participantId);
+ UpdateMac(mac, partnerParticipantId);
+ UpdateMac(mac, gx1);
+ UpdateMac(mac, gx2);
+ UpdateMac(mac, gx3);
+ UpdateMac(mac, gx4);
+
+ mac.DoFinal(macOutput, 0);
+
+ Arrays.Fill(macKey, (byte)0);
+
+ return new BigInteger(macOutput);
+ }
+
+ /// <summary>
+ /// Calculates the MacKey (i.e. the key to use when calculating the MagTag for key confirmation).
+ ///
+ /// MacKey = H(K || "JPAKE_KC")
+ /// </summary>
+ private static byte[] CalculateMacKey(BigInteger keyingMaterial, IDigest digest)
+ {
+ digest.Reset();
+
+ UpdateDigest(digest, keyingMaterial);
+ /*
+ * This constant is used to ensure that the macKey is NOT the same as the derived key.
+ */
+ UpdateDigest(digest, "JPAKE_KC");
+
+ byte[] output = new byte[digest.GetDigestSize()];
+ digest.DoFinal(output, 0);
+
+ return output;
+ }
+
+ /// <summary>
+ /// Validates the MacTag received from the partner participant.
+ ///
+ /// throws CryptoException if the participantId strings are equal.
+ /// </summary>
+ /// <param name="partnerMacTag">the MacTag received from the partner</param>
+ public static void ValidateMacTag(string participantId, string partnerParticipantId,
+ BigInteger gx1, BigInteger gx2, BigInteger gx3, BigInteger gx4,
+ BigInteger keyingMaterial, IDigest digest, BigInteger partnerMacTag)
+ {
+ /*
+ * Calculate the expected MacTag using the parameters as the partner
+ * would have used when the partner called calculateMacTag.
+ *
+ * i.e. basically all the parameters are reversed.
+ * participantId <-> partnerParticipantId
+ * x1 <-> x3
+ * x2 <-> x4
+ */
+ BigInteger expectedMacTag = CalculateMacTag(partnerParticipantId, participantId, gx3, gx4, gx1, gx2, keyingMaterial, digest);
+
+ if (!expectedMacTag.Equals(partnerMacTag))
+ {
+ throw new CryptoException(
+ "Partner MacTag validation failed. "
+ + "Therefore, the password, MAC, or digest algorithm of each participant does not match.");
+ }
+ }
+
+ private static void UpdateDigest(IDigest digest, BigInteger bigInteger)
+ {
+ byte[] byteArray = BigIntegers.AsUnsignedByteArray(bigInteger);
+ digest.BlockUpdate(byteArray, 0, byteArray.Length);
+ Arrays.Fill(byteArray, (byte)0);
+ }
+
+ private static void UpdateDigestIncludingSize(IDigest digest, BigInteger bigInteger)
+ {
+ byte[] byteArray = BigIntegers.AsUnsignedByteArray(bigInteger);
+ digest.BlockUpdate(IntToByteArray(byteArray.Length), 0, 4);
+ digest.BlockUpdate(byteArray, 0, byteArray.Length);
+ Arrays.Fill(byteArray, (byte)0);
+ }
+
+ private static void UpdateDigest(IDigest digest, string str)
+ {
+ byte[] byteArray = Encoding.UTF8.GetBytes(str);
+ digest.BlockUpdate(byteArray, 0, byteArray.Length);
+ Arrays.Fill(byteArray, (byte)0);
+ }
+
+ private static void UpdateDigestIncludingSize(IDigest digest, string str)
+ {
+ byte[] byteArray = Encoding.UTF8.GetBytes(str);
+ digest.BlockUpdate(IntToByteArray(byteArray.Length), 0, 4);
+ digest.BlockUpdate(byteArray, 0, byteArray.Length);
+ Arrays.Fill(byteArray, (byte)0);
+ }
+
+ private static void UpdateMac(IMac mac, BigInteger bigInteger)
+ {
+ byte[] byteArray = BigIntegers.AsUnsignedByteArray(bigInteger);
+ mac.BlockUpdate(byteArray, 0, byteArray.Length);
+ Arrays.Fill(byteArray, (byte)0);
+ }
+
+ private static void UpdateMac(IMac mac, string str)
+ {
+ byte[] byteArray = Encoding.UTF8.GetBytes(str);
+ mac.BlockUpdate(byteArray, 0, byteArray.Length);
+ Arrays.Fill(byteArray, (byte)0);
+ }
+
+ private static byte[] IntToByteArray(int value)
+ {
+ return new byte[]{
+ (byte)((uint)value >> 24),
+ (byte)((uint)value >> 16),
+ (byte)((uint)value >> 8),
+ (byte)value
+ };
+ }
+
+ }
+}
|