summary refs log tree commit diff
path: root/crypto/src/pqc/math
diff options
context:
space:
mode:
Diffstat (limited to 'crypto/src/pqc/math')
-rw-r--r--crypto/src/pqc/math/linearalgebra/GF2mField.cs370
-rw-r--r--crypto/src/pqc/math/linearalgebra/GF2mVector.cs221
-rw-r--r--crypto/src/pqc/math/linearalgebra/IntUtils.cs159
-rw-r--r--crypto/src/pqc/math/linearalgebra/LittleEndianConversions.cs195
-rw-r--r--crypto/src/pqc/math/linearalgebra/Permutation.cs192
-rw-r--r--crypto/src/pqc/math/linearalgebra/PolynomialGF2mSmallM.cs1266
-rw-r--r--crypto/src/pqc/math/linearalgebra/PolynomialRingGF2.cs286
-rw-r--r--crypto/src/pqc/math/linearalgebra/RandUtils.cs27
-rw-r--r--crypto/src/pqc/math/linearalgebra/Utils.cs20
-rw-r--r--crypto/src/pqc/math/linearalgebra/Vector.cs62
10 files changed, 2798 insertions, 0 deletions
diff --git a/crypto/src/pqc/math/linearalgebra/GF2mField.cs b/crypto/src/pqc/math/linearalgebra/GF2mField.cs
new file mode 100644
index 000000000..e8182bf6f
--- /dev/null
+++ b/crypto/src/pqc/math/linearalgebra/GF2mField.cs
@@ -0,0 +1,370 @@
+using Org.BouncyCastle.Security;
+using System;
+
+namespace Org.BouncyCastle.Pqc.Math.LinearAlgebra
+{
+    public class GF2mField
+    {
+
+        /*
+          * degree - degree of the field polynomial - the field polynomial ring -
+          * polynomial ring over the finite field GF(2)
+          */
+
+        private int degree = 0;
+
+        private int polynomial;
+
+        /**
+         * create a finite field GF(2^m)
+         *
+         * @param degree the degree of the field
+         */
+        public GF2mField(int degree)
+        {
+            if (degree >= 32)
+            {
+                throw new ArgumentException(
+                    " Error: the degree of field is too large ");
+            }
+            if (degree < 1)
+            {
+                throw new ArgumentException(
+                    " Error: the degree of field is non-positive ");
+            }
+            this.degree = degree;
+            polynomial = PolynomialRingGF2.GetIrreduciblePolynomial(degree);
+        }
+
+        /**
+         * create a finite field GF(2^m) with the fixed field polynomial
+         *
+         * @param degree the degree of the field
+         * @param poly   the field polynomial
+         */
+        public GF2mField(int degree, int poly)
+        {
+            if (degree != PolynomialRingGF2.Degree(poly))
+            {
+                throw new ArgumentException(
+                    " Error: the degree is not correct");
+            }
+            if (!PolynomialRingGF2.IsIrreducible(poly))
+            {
+                throw new ArgumentException(
+                    " Error: given polynomial is reducible");
+            }
+            this.degree = degree;
+            polynomial = poly;
+
+        }
+
+        public GF2mField(byte[] enc)
+        {
+            if (enc.Length != 4)
+            {
+                throw new ArgumentException(
+                    "byte array is not an encoded finite field");
+            }
+            polynomial = LittleEndianConversions.OS2IP(enc);
+            if (!PolynomialRingGF2.IsIrreducible(polynomial))
+            {
+                throw new ArgumentException(
+                    "byte array is not an encoded finite field");
+            }
+
+            degree = PolynomialRingGF2.Degree(polynomial);
+        }
+
+        public GF2mField(GF2mField field)
+        {
+            degree = field.degree;
+            polynomial = field.polynomial;
+        }
+
+        /**
+         * return degree of the field
+         *
+         * @return degree of the field
+         */
+        public int GetDegree()
+        {
+            return degree;
+        }
+
+        /**
+         * return the field polynomial
+         *
+         * @return the field polynomial
+         */
+        public int GetPolynomial()
+        {
+            return polynomial;
+        }
+
+        /**
+         * return the encoded form of this field
+         *
+         * @return the field in byte array form
+         */
+        public byte[] GetEncoded()
+        {
+            return LittleEndianConversions.I2OSP(polynomial);
+        }
+
+        /**
+         * Return sum of two elements
+         *
+         * @param a
+         * @param b
+         * @return a+b
+         */
+        public int add(int a, int b)
+        {
+            return a ^ b;
+        }
+
+        /**
+         * Return product of two elements
+         *
+         * @param a
+         * @param b
+         * @return a*b
+         */
+        public int Mult(int a, int b)
+        {
+            return PolynomialRingGF2.modMultiply(a, b, polynomial);
+        }
+
+        /**
+         * compute exponentiation a^k
+         *
+         * @param a a field element a
+         * @param k k degree
+         * @return a^k
+         */
+        public int Exp(int a, int k)
+        {
+            if (k == 0)
+            {
+                return 1;
+            }
+            if (a == 0)
+            {
+                return 0;
+            }
+            if (a == 1)
+            {
+                return 1;
+            }
+            int result = 1;
+            if (k < 0)
+            {
+                a = Inverse(a);
+                k = -k;
+            }
+            while (k != 0)
+            {
+                if ((k & 1) == 1)
+                {
+                    result = Mult(result, a);
+                }
+                a = Mult(a, a);
+                //k >>>= 1;
+                uint kTmp = (uint)k;
+                kTmp >>= 1;
+                k = (int) kTmp;
+            }
+            return result;
+        }
+
+        /**
+         * compute the multiplicative inverse of a
+         *
+         * @param a a field element a
+         * @return a<sup>-1</sup>
+         */
+        public int Inverse(int a)
+        {
+            int d = (1 << degree) - 2;
+
+            return Exp(a, d);
+        }
+
+        /**
+         * compute the square root of an integer
+         *
+         * @param a a field element a
+         * @return a<sup>1/2</sup>
+         */
+        public int SqRoot(int a)
+        {
+            for (int i = 1; i < degree; i++)
+            {
+                a = Mult(a, a);
+            }
+            return a;
+        }
+
+        /**
+         * create a random field element using PRNG sr
+         *
+         * @param sr SecureRandom
+         * @return a random element
+         */
+        public int GetRandomElement(SecureRandom sr)
+        {
+            int result = RandUtils.NextInt(sr, 1 << degree);
+            return result;
+        }
+
+        /**
+         * create a random non-zero field element
+         *
+         * @return a random element
+         */
+        //public int getRandomNonZeroElement()
+        //{
+        //    return getRandomNonZeroElement(CryptoServicesRegistrar.getSecureRandom());
+        //}
+
+        /**
+         * create a random non-zero field element using PRNG sr
+         *
+         * @param sr SecureRandom
+         * @return a random non-zero element
+         */
+        public int GetRandomNonZeroElement(SecureRandom sr)
+        {
+            int controltime = 1 << 20;
+            int count = 0;
+            int result = RandUtils.NextInt(sr, 1 << degree);
+            while ((result == 0) && (count < controltime))
+            {
+                result = RandUtils.NextInt(sr, 1 << degree);
+                count++;
+            }
+            if (count == controltime)
+            {
+                result = 1;
+            }
+            return result;
+        }
+
+        /**
+         * @return true if e is encoded element of this field and false otherwise
+         */
+        public bool IsElementOfThisField(int e)
+        {
+            // e is encoded element of this field iff 0<= e < |2^m|
+            if (degree == 31)
+            {
+                return e >= 0;
+            }
+            return e >= 0 && e < (1 << degree);
+        }
+
+        /*
+          * help method for visual control
+          */
+        public String ElementToStr(int a)
+        {
+            String s = "";
+            for (int i = 0; i < degree; i++)
+            {
+                if (((byte)a & 0x01) == 0)
+                {
+                    s = "0" + s;
+                }
+                else
+                {
+                    s = "1" + s;
+                }
+                //a >>>= 1;
+                uint aTmp = (uint)a;
+                aTmp >>= 1;
+                a = (int)aTmp;
+            }
+            return s;
+        }
+
+        /**
+         * checks if given object is equal to this field.
+         * <p>
+         * The method returns false whenever the given object is not GF2m.
+         *
+         * @param other object
+         * @return true or false
+         */
+        public bool Equals(Object other)
+        {
+            if ((other == null) || !(other is GF2mField))
+        {
+                return false;
+            }
+
+            GF2mField otherField = (GF2mField)other;
+
+            if ((degree == otherField.degree)
+                && (polynomial == otherField.polynomial))
+            {
+                return true;
+            }
+
+            return false;
+        }
+
+        public int HashCode()
+        {
+            return polynomial;
+        }
+
+        /**
+         * Returns a human readable form of this field.
+         *
+         * @return a human readable form of this field.
+         */
+        public String ToString()
+        {
+            String str = "Finite Field GF(2^" + degree + ") = " + "GF(2)[X]/<"
+                + PolyToString(polynomial) + "> ";
+            return str;
+        }
+
+        private static String PolyToString(int p)
+        {
+            String str = "";
+            if (p == 0)
+            {
+                str = "0";
+            }
+            else
+            {
+                byte b = (byte)(p & 0x01);
+                if (b == 1)
+                {
+                    str = "1";
+                }
+                //p >>>= 1;
+                uint pTmp = (uint)p;
+                pTmp >>= 1;
+                p = (int)pTmp;
+                int i = 1;
+                while (p != 0)
+                {
+                    b = (byte)(p & 0x01);
+                    if (b == 1)
+                    {
+                        str = str + "+x^" + i;
+                    }
+                    //p >>>= 1;
+                    pTmp = (uint) p;
+                    pTmp >>= 1;
+                    p = (int)pTmp;
+                    i++;
+                }
+            }
+            return str;
+        }
+    }
+}
\ No newline at end of file
diff --git a/crypto/src/pqc/math/linearalgebra/GF2mVector.cs b/crypto/src/pqc/math/linearalgebra/GF2mVector.cs
new file mode 100644
index 000000000..f0e44ebe6
--- /dev/null
+++ b/crypto/src/pqc/math/linearalgebra/GF2mVector.cs
@@ -0,0 +1,221 @@
+using System;
+
+namespace Org.BouncyCastle.Pqc.Math.LinearAlgebra
+{
+    /**
+ * This class implements vectors over the finite field
+ * <tt>GF(2<sup>m</sup>)</tt> for small <tt>m</tt> (i.e.,
+ * <tt>1&lt;m&lt;32</tt>). It extends the abstract class {@link Vector}.
+ */
+public class GF2mVector : Vector
+{
+
+    /**
+     * the finite field this vector is defined over
+     */
+    private GF2mField field;
+
+    /**
+     * the element array
+     */
+    private int[] vector;
+
+    /**
+     * creates the vector over GF(2^m) of given length and with elements from
+     * array v (beginning at the first bit)
+     *
+     * @param field finite field
+     * @param v     array with elements of vector
+     */
+    public GF2mVector(GF2mField field, byte[] v)
+    {
+        this.field = new GF2mField(field);
+
+        // decode vector
+        int d = 8;
+        int count = 1;
+        while (field.GetDegree() > d)
+        {
+            count++;
+            d += 8;
+        }
+
+        if ((v.Length % count) != 0)
+        {
+            throw new ArgumentException(
+                "Byte array is not an encoded vector over the given finite field.");
+        }
+
+        length = v.Length / count;
+        vector = new int[length];
+        count = 0;
+        for (int i = 0; i < vector.Length; i++)
+        {
+            for (int j = 0; j < d; j += 8)
+            {
+                vector[i] |= (v[count++] & 0xff) << j;
+            }
+            if (!field.IsElementOfThisField(vector[i]))
+            {
+                throw new ArgumentException(
+                    "Byte array is not an encoded vector over the given finite field.");
+            }
+        }
+    }
+
+    /**
+     * Create a new vector over <tt>GF(2<sup>m</sup>)</tt> of the given
+     * length and element array.
+     *
+     * @param field  the finite field <tt>GF(2<sup>m</sup>)</tt>
+     * @param vector the element array
+     */
+    public GF2mVector(GF2mField field, int[] vector)
+    {
+        this.field = field;
+        length = vector.Length;
+        for (int i = vector.Length - 1; i >= 0; i--)
+        {
+            if (!field.IsElementOfThisField(vector[i]))
+            {
+                throw new ArithmeticException(
+                    "Element array is not specified over the given finite field.");
+            }
+        }
+        this.vector = IntUtils.Clone(vector);
+    }
+
+    /**
+     * Copy constructor.
+     *
+     * @param other another {@link GF2mVector}
+     */
+    public GF2mVector(GF2mVector other)
+    {
+        field = new GF2mField(other.field);
+        length = other.length;
+        vector = IntUtils.Clone(other.vector);
+    }
+
+    /**
+     * @return the finite field this vector is defined over
+     */
+    public GF2mField GetField()
+    {
+        return field;
+    }
+
+    /**
+     * @return int[] form of this vector
+     */
+    public int[] GetIntArrayForm()
+    {
+        return IntUtils.Clone(vector);
+    }
+
+        /**
+         * @return a byte array encoding of this vector
+         */
+        public override byte[] GetEncoded()
+    {
+        int d = 8;
+        int count = 1;
+        while (field.GetDegree() > d)
+        {
+            count++;
+            d += 8;
+        }
+
+        byte[] res = new byte[vector.Length * count];
+        count = 0;
+        for (int i = 0; i < vector.Length; i++)
+        {
+            for (int j = 0; j < d; j += 8)
+            {
+                res[count++] = (byte)(Utils.UnsignedRightBitShiftInt(vector[i], j));
+            }
+        }
+
+        return res;
+    }
+
+    /**
+     * @return whether this is the zero vector (i.e., all elements are zero)
+     */
+    public override bool IsZero()
+    {
+        for (int i = vector.Length - 1; i >= 0; i--)
+        {
+            if (vector[i] != 0)
+            {
+                return false;
+            }
+        }
+        return true;
+    }
+
+    /**
+     * Add another vector to this vector. Method is not yet implemented.
+     *
+     * @param addend the other vector
+     * @return <tt>this + addend</tt>
+     * @throws ArithmeticException if the other vector is not defined over the same field as
+     * this vector.
+     * <p>
+     * TODO: implement this method
+     */
+    public override Vector Add(Vector addend)
+    {
+        throw new SystemException("not implemented");
+    }
+
+    /**
+     * Multiply this vector with a permutation.
+     *
+     * @param p the permutation
+     * @return <tt>this*p = p*this</tt>
+     */
+    public override Vector Multiply(Permutation p)
+    {
+        int[] pVec = p.GetVector();
+        if (length != pVec.Length)
+        {
+            throw new ArithmeticException(
+                "permutation size and vector size mismatch");
+        }
+
+        int[] result = new int[length];
+        for (int i = 0; i < pVec.Length; i++)
+        {
+            result[i] = vector[pVec[i]];
+        }
+
+        return new GF2mVector(field, result);
+    }
+
+    /**
+     * Compare this vector with another object.
+     *
+     * @param other the other object
+     * @return the result of the comparison
+     */
+    public override bool Equals(Object other)
+    {
+
+        if (!(other is GF2mVector))
+        {
+            return false;
+        }
+        GF2mVector otherVec = (GF2mVector)other;
+
+        if (!field.Equals(otherVec.field))
+        {
+            return false;
+        }
+
+        return IntUtils.Equals(vector, otherVec.vector);
+    }
+
+      
+    }
+}
diff --git a/crypto/src/pqc/math/linearalgebra/IntUtils.cs b/crypto/src/pqc/math/linearalgebra/IntUtils.cs
new file mode 100644
index 000000000..0a7671df6
--- /dev/null
+++ b/crypto/src/pqc/math/linearalgebra/IntUtils.cs
@@ -0,0 +1,159 @@
+using Org.BouncyCastle.Utilities;
+using System;
+
+namespace Org.BouncyCastle.Pqc.Math.LinearAlgebra
+{
+    public class IntUtils
+    {
+
+        /**
+         * Default constructor (private).
+         */
+        private IntUtils()
+        {
+            // empty
+        }
+
+        /**
+         * Compare two int arrays. No null checks are performed.
+         *
+         * @param left  the first int array
+         * @param right the second int array
+         * @return the result of the comparison
+         */
+        public static bool Equals(int[] left, int[] right)
+        {
+            return Arrays.AreEqual(left, right);
+        }
+
+        /**
+         * Return a clone of the given int array. No null checks are performed.
+         *
+         * @param array the array to clone
+         * @return the clone of the given array
+         */
+        public static int[] Clone(int[] array)
+        {
+            return Arrays.Clone(array);
+        }
+
+        /**
+         * Fill the given int array with the given value.
+         *
+         * @param array the array
+         * @param value the value
+         */
+        public static void Fill(int[] array, int value)
+        {
+            Arrays.Fill(array, value);
+        }
+
+        /**
+         * Sorts this array of integers according to the Quicksort algorithm. After
+         * calling this method this array is sorted in ascending order with the
+         * smallest integer taking position 0 in the array.
+         * <p>
+         * This implementation is based on the quicksort algorithm as described in
+         * <code>Data Structures In Java</code> by Thomas A. Standish, Chapter 10,
+         * ISBN 0-201-30564-X.
+         *
+         * @param source the array of integers that needs to be sorted.
+         */
+        public static void Quicksort(int[] source)
+        {
+            Quicksort(source, 0, source.Length - 1);
+        }
+
+        /**
+         * Sort a subarray of a source array. The subarray is specified by its start
+         * and end index.
+         *
+         * @param source the int array to be sorted
+         * @param left   the start index of the subarray
+         * @param right  the end index of the subarray
+         */
+        public static void Quicksort(int[] source, int left, int right)
+        {
+            if (right > left)
+            {
+                int index = Partition(source, left, right, right);
+                Quicksort(source, left, index - 1);
+                Quicksort(source, index + 1, right);
+            }
+        }
+
+        /**
+         * Split a subarray of a source array into two partitions. The left
+         * partition contains elements that have value less than or equal to the
+         * pivot element, the right partition contains the elements that have larger
+         * value.
+         *
+         * @param source     the int array whose subarray will be splitted
+         * @param left       the start position of the subarray
+         * @param right      the end position of the subarray
+         * @param pivotIndex the index of the pivot element inside the array
+         * @return the new index of the pivot element inside the array
+         */
+        private static int Partition(int[] source, int left, int right,
+                                     int pivotIndex)
+        {
+
+            int pivot = source[pivotIndex];
+            source[pivotIndex] = source[right];
+            source[right] = pivot;
+
+            int index = left;
+            int tmp = 0;
+            for (int i = left; i < right; i++)
+            {
+                if (source[i] <= pivot)
+                {
+                    tmp = source[index];
+                    source[index] = source[i];
+                    source[i] = tmp;
+                    index++;
+                }
+            }
+
+            tmp = source[index];
+            source[index] = source[right];
+            source[right] = tmp;
+
+            return index;
+        }
+
+        /**
+         * Generates a subarray of a given int array.
+         *
+         * @param input -
+         *              the input int array
+         * @param start -
+         *              the start index
+         * @param end   -
+         *              the end index
+         * @return a subarray of <tt>input</tt>, ranging from <tt>start</tt> to
+         *         <tt>end</tt>
+         */
+        public static int[] SubArray( int[] input,  int start,
+                                      int end)
+        {
+            int[] result = new int[end - start];
+            Array.Copy(input, start, result, 0, end - start);
+            return result;
+        }
+
+        /**
+         * @param input an int array
+         * @return a human readable form of the given int array
+         */
+        public static String ToString(int[] input)
+        {
+            String result = "";
+            for (int i = 0; i < input.Length; i++)
+            {
+                result += input[i] + " ";
+            }
+            return result;
+        }
+    }
+}
diff --git a/crypto/src/pqc/math/linearalgebra/LittleEndianConversions.cs b/crypto/src/pqc/math/linearalgebra/LittleEndianConversions.cs
new file mode 100644
index 000000000..5b3215070
--- /dev/null
+++ b/crypto/src/pqc/math/linearalgebra/LittleEndianConversions.cs
@@ -0,0 +1,195 @@
+
+using Org.BouncyCastle.Crypto.Utilities;
+
+namespace Org.BouncyCastle.Pqc.Math.LinearAlgebra
+{
+    /**
+ * This is a utility class containing data type conversions using little-endian
+ * byte order.
+ *
+ */
+    class LittleEndianConversions
+    {
+        /**
+     * Default constructor (private).
+     */
+        private LittleEndianConversions()
+        {
+            // empty
+        }
+
+        /**
+         * Convert an octet string of length 4 to an integer. No length checking is
+         * performed.
+         *
+         * @param input the byte array holding the octet string
+         * @return an integer representing the octet string <tt>input</tt>
+         * @throws ArithmeticException if the length of the given octet string is larger than 4.
+         */
+        public static int OS2IP(byte[] input)
+        {
+            return (int)Pack.LE_To_UInt32(input);
+        }
+
+        /**
+         * Convert an byte array of length 4 beginning at <tt>offset</tt> into an
+         * integer.
+         *
+         * @param input the byte array
+         * @param inOff the offset into the byte array
+         * @return the resulting integer
+         */
+        public static int OS2IP(byte[] input, int inOff)
+        {
+            return (int)Pack.LE_To_UInt32(input, inOff);
+        }
+
+        /**
+         * Convert a byte array of the given length beginning at <tt>offset</tt>
+         * into an integer.
+         *
+         * @param input the byte array
+         * @param inOff the offset into the byte array
+         * @param inLen the length of the encoding
+         * @return the resulting integer
+         */
+        public static int OS2IP(byte[] input, int inOff, int inLen)
+        {
+            int result = 0;
+            for (int i = inLen - 1; i >= 0; i--)
+            {
+                result |= (input[inOff + i] & 0xff) << (8 * i);
+            }
+            return result;
+        }
+
+        /**
+         * Convert a byte array of length 8 beginning at <tt>inOff</tt> into a
+         * long integer.
+         *
+         * @param input the byte array
+         * @param inOff the offset into the byte array
+         * @return the resulting long integer
+         */
+        public static long OS2LIP(byte[] input, int inOff)
+        {
+            return (long)Pack.LE_To_UInt64(input, inOff);
+        }
+
+        /**
+         * Convert an integer to an octet string of length 4.
+         *
+         * @param x the integer to convert
+         * @return the converted integer
+         */
+        public static byte[] I2OSP(int x)
+        {
+            return Pack.UInt32_To_LE((uint)x);
+        }
+
+        /**
+         * Convert an integer into a byte array beginning at the specified offset.
+         *
+         * @param value  the integer to convert
+         * @param output the byte array to hold the result
+         * @param outOff the integer offset into the byte array
+         */
+        public static void I2OSP(int value, byte[] output, int outOff)
+        {
+            Pack.UInt32_To_LE((uint)value, output, outOff);
+        }
+
+        /**
+         * Convert an integer to a byte array beginning at the specified offset. No
+         * length checking is performed (i.e., if the integer cannot be encoded with
+         * <tt>length</tt> octets, it is truncated).
+         *
+         * @param value  the integer to convert
+         * @param output the byte array to hold the result
+         * @param outOff the integer offset into the byte array
+         * @param outLen the length of the encoding
+         */
+        public static void I2OSP(int value, byte[] output, int outOff, int outLen)
+        {
+            uint valueTmp = (uint)value;
+            for (int i = outLen - 1; i >= 0; i--)
+            {
+                output[outOff + i] = (byte)(valueTmp >> (8 * i));
+            }
+        }
+
+        /**
+         * Convert an integer to a byte array of length 8.
+         *
+         * @param input the integer to convert
+         * @return the converted integer
+         */
+        public static byte[] I2OSP(long input)
+        {
+            return Pack.UInt64_To_LE((ulong)input);
+        }
+
+        /**
+         * Convert an integer to a byte array of length 8.
+         *
+         * @param input  the integer to convert
+         * @param output byte array holding the output
+         * @param outOff offset in output array where the result is stored
+         */
+        public static void I2OSP(long input, byte[] output, int outOff)
+        {
+            Pack.UInt64_To_LE((ulong)input, output, outOff);
+        }
+
+        /**
+         * Convert an int array to a byte array of the specified length. No length
+         * checking is performed (i.e., if the last integer cannot be encoded with
+         * <tt>length % 4</tt> octets, it is truncated).
+         *
+         * @param input  the int array
+         * @param outLen the length of the converted array
+         * @return the converted array
+         */
+        public static byte[] ToByteArray(int[] input, int outLen)
+        {
+            int intLen = input.Length;
+            byte[] result = new byte[outLen];
+            int index = 0;
+            for (int i = 0; i <= intLen - 2; i++, index += 4)
+            {
+                I2OSP(input[i], result, index);
+            }
+            I2OSP(input[intLen - 1], result, index, outLen - index);
+            return result;
+        }
+
+        /**
+         * Convert a byte array to an int array.
+         *
+         * @param input the byte array
+         * @return the converted array
+         */
+        public static int[] ToIntArray(byte[] input)
+        {
+            int intLen = (input.Length + 3) / 4;
+            int lastLen = input.Length & 0x03;
+            int[] result = new int[intLen];
+
+            int index = 0;
+            for (int i = 0; i <= intLen - 2; i++, index += 4)
+            {
+                result[i] = OS2IP(input, index);
+            }
+            if (lastLen != 0)
+            {
+                result[intLen - 1] = OS2IP(input, index, lastLen);
+            }
+            else
+            {
+                result[intLen - 1] = OS2IP(input, index);
+            }
+
+            return result;
+        }
+    }
+}
diff --git a/crypto/src/pqc/math/linearalgebra/Permutation.cs b/crypto/src/pqc/math/linearalgebra/Permutation.cs
new file mode 100644
index 000000000..0d36958c9
--- /dev/null
+++ b/crypto/src/pqc/math/linearalgebra/Permutation.cs
@@ -0,0 +1,192 @@
+using Org.BouncyCastle.Security;
+using System;
+
+namespace Org.BouncyCastle.Pqc.Math.LinearAlgebra
+{
+    /**
+  * This class implements permutations of the set {0,1,...,n-1} for some given n
+  * &gt; 0, i.e., ordered sequences containing each number <tt>m</tt> (<tt>0 &lt;=
+  * m &lt; n</tt>)
+  * once and only once.
+  */
+    public class Permutation
+    {
+
+        /**
+         * perm holds the elements of the permutation vector, i.e. <tt>[perm(0),
+         * perm(1), ..., perm(n-1)]</tt>
+         */
+        private int[] perm;
+
+        /**
+         * Create the identity permutation of the given size.
+         *
+         * @param n the size of the permutation
+         */
+        public Permutation(int n)
+        {
+            if (n <= 0)
+            {
+                throw new ArgumentException("invalid length");
+            }
+
+            perm = new int[n];
+            for (int i = n - 1; i >= 0; i--)
+            {
+                perm[i] = i;
+            }
+        }
+
+        /**
+         * Create a permutation using the given permutation vector.
+         *
+         * @param perm the permutation vector
+         */
+        public Permutation(int[] perm)
+        {
+            if (!IsPermutation(perm))
+            {
+                throw new ArgumentException(
+                    "array is not a permutation vector");
+            }
+
+            this.perm = IntUtils.Clone(perm);
+        }
+
+        /**
+         * Create a random permutation of the given size.
+         *
+         * @param n  the size of the permutation
+         * @param sr the source of randomness
+         */
+        public Permutation(int n, SecureRandom sr)
+        {
+            if (n <= 0)
+            {
+                throw new ArgumentException("invalid length");
+            }
+
+            perm = new int[n];
+
+            int[] help = new int[n];
+            for (int i = 0; i < n; i++)
+            {
+                help[i] = i;
+            }
+
+            int k = n;
+            for (int j = 0; j < n; j++)
+            {
+                int i = RandUtils.NextInt(sr, k);
+                k--;
+                perm[j] = help[i];
+                help[i] = help[k];
+            }
+        }
+
+
+        /**
+         * @return the permutation vector <tt>(perm(0),perm(1),...,perm(n-1))</tt>
+         */
+        public int[] GetVector()
+        {
+            return IntUtils.Clone(perm);
+        }
+
+        /**
+         * Compute the inverse permutation <tt>P<sup>-1</sup></tt>.
+         *
+         * @return <tt>this<sup>-1</sup></tt>
+         */
+        public Permutation ComputeInverse()
+        {
+            Permutation result = new Permutation(perm.Length);
+            for (int i = perm.Length - 1; i >= 0; i--)
+            {
+                result.perm[perm[i]] = i;
+            }
+            return result;
+        }
+
+        /**
+         * Compute the product of this permutation and another permutation.
+         *
+         * @param p the other permutation
+         * @return <tt>this * p</tt>
+         */
+        public Permutation RightMultiply(Permutation p)
+        {
+            if (p.perm.Length != perm.Length)
+            {
+                throw new ArgumentException("length mismatch");
+            }
+            Permutation result = new Permutation(perm.Length);
+            for (int i = perm.Length - 1; i >= 0; i--)
+            {
+                result.perm[i] = perm[p.perm[i]];
+            }
+            return result;
+        }
+
+        /**
+         * checks if given object is equal to this permutation.
+         * <p>
+         * The method returns false whenever the given object is not permutation.
+         *
+         * @param other -
+         *              permutation
+         * @return true or false
+         */
+        public bool equals(Object other)
+        {
+
+            if (!(other is Permutation))
+        {
+                return false;
+            }
+            Permutation otherPerm = (Permutation)other;
+
+            return IntUtils.Equals(perm, otherPerm.perm);
+        }
+
+        /**
+         * @return a human readable form of the permutation
+         */
+        public String ToString()
+        {
+            String result = "[" + perm[0];
+            for (int i = 1; i < perm.Length; i++)
+            {
+                result += ", " + perm[i];
+            }
+            result += "]";
+            return result;
+        }
+
+        /**
+         * Check that the given array corresponds to a permutation of the set
+         * <tt>{0, 1, ..., n-1}</tt>.
+         *
+         * @param perm permutation vector
+         * @return true if perm represents an n-permutation and false otherwise
+         */
+        private bool IsPermutation(int[] perm)
+        {
+            int n = perm.Length;
+            bool[] onlyOnce = new bool[n];
+
+            for (int i = 0; i < n; i++)
+            {
+                if ((perm[i] < 0) || (perm[i] >= n) || onlyOnce[perm[i]])
+                {
+                    return false;
+                }
+                onlyOnce[perm[i]] = true;
+            }
+
+            return true;
+        }
+
+    }
+
+}
diff --git a/crypto/src/pqc/math/linearalgebra/PolynomialGF2mSmallM.cs b/crypto/src/pqc/math/linearalgebra/PolynomialGF2mSmallM.cs
new file mode 100644
index 000000000..9dca71bee
--- /dev/null
+++ b/crypto/src/pqc/math/linearalgebra/PolynomialGF2mSmallM.cs
@@ -0,0 +1,1266 @@
+using Org.BouncyCastle.Security;
+using Org.BouncyCastle.Utilities;
+using System;
+
+namespace Org.BouncyCastle.Pqc.Math.LinearAlgebra
+{
+    public class PolynomialGF2mSmallM
+    {
+
+        /**
+         * the finite field GF(2^m)
+         */
+        private GF2mField field;
+
+        /**
+         * the degree of this polynomial
+         */
+        private int degree;
+
+        /**
+         * For the polynomial representation the map f: R->Z*,
+         * <tt>poly(X) -> [coef_0, coef_1, ...]</tt> is used, where
+         * <tt>coef_i</tt> is the <tt>i</tt>th coefficient of the polynomial
+         * represented as int (see {@link GF2mField}). The polynomials are stored
+         * as int arrays.
+         */
+        private int[] coefficients;
+
+        /*
+          * some types of polynomials
+          */
+
+        /**
+         * Constant used for polynomial construction (see constructor
+         * {@link #PolynomialGF2mSmallM(GF2mField, int, char, SecureRandom)}).
+         */
+        public const char RANDOM_IRREDUCIBLE_POLYNOMIAL = 'I';
+
+        /**
+         * Construct the zero polynomial over the finite field GF(2^m).
+         *
+         * @param field the finite field GF(2^m)
+         */
+        public PolynomialGF2mSmallM(GF2mField field)
+        {
+            this.field = field;
+            degree = -1;
+            coefficients = new int[1];
+        }
+
+        /**
+         * Construct a polynomial over the finite field GF(2^m).
+         *
+         * @param field            the finite field GF(2^m)
+         * @param deg              degree of polynomial
+         * @param typeOfPolynomial type of polynomial
+         * @param sr               PRNG
+         */
+        public PolynomialGF2mSmallM(GF2mField field, int deg,
+                                    char typeOfPolynomial, SecureRandom sr)
+        {
+            this.field = field;
+
+            switch (typeOfPolynomial)
+            {
+                case PolynomialGF2mSmallM.RANDOM_IRREDUCIBLE_POLYNOMIAL:
+                    coefficients = CreateRandomIrreduciblePolynomial(deg, sr);
+                    break;
+                default:
+                    throw new ArgumentException(" Error: type "
+                        + typeOfPolynomial
+                        + " is not defined for GF2smallmPolynomial");
+            }
+            ComputeDegree();
+        }
+
+        /**
+         * Create an irreducible polynomial with the given degree over the field
+         * <tt>GF(2^m)</tt>.
+         *
+         * @param deg polynomial degree
+         * @param sr  source of randomness
+         * @return the generated irreducible polynomial
+         */
+        private int[] CreateRandomIrreduciblePolynomial(int deg, SecureRandom sr)
+        {
+            int[] resCoeff = new int[deg + 1];
+            resCoeff[deg] = 1;
+            resCoeff[0] = field.GetRandomNonZeroElement(sr);
+            for (int i = 1; i < deg; i++)
+            {
+                resCoeff[i] = field.GetRandomElement(sr);
+            }
+            while (!IsIrreducible(resCoeff))
+            {
+                int n = RandUtils.NextInt(sr, deg);
+                if (n == 0)
+                {
+                    resCoeff[0] = field.GetRandomNonZeroElement(sr);
+                }
+                else
+                {
+                    resCoeff[n] = field.GetRandomElement(sr);
+                }
+            }
+            return resCoeff;
+        }
+
+        /**
+         * Construct a monomial of the given degree over the finite field GF(2^m).
+         *
+         * @param field  the finite field GF(2^m)
+         * @param degree the degree of the monomial
+         */
+        public PolynomialGF2mSmallM(GF2mField field, int degree)
+        {
+            this.field = field;
+            this.degree = degree;
+            coefficients = new int[degree + 1];
+            coefficients[degree] = 1;
+        }
+
+        /**
+         * Construct the polynomial over the given finite field GF(2^m) from the
+         * given coefficient vector.
+         *
+         * @param field  finite field GF2m
+         * @param coeffs the coefficient vector
+         */
+        public PolynomialGF2mSmallM(GF2mField field, int[] coeffs)
+        {
+            this.field = field;
+            coefficients = NormalForm(coeffs);
+            ComputeDegree();
+        }
+
+        /**
+         * Create a polynomial over the finite field GF(2^m).
+         *
+         * @param field the finite field GF(2^m)
+         * @param enc   byte[] polynomial in byte array form
+         */
+        public PolynomialGF2mSmallM(GF2mField field, byte[] enc)
+        {
+            this.field = field;
+
+            // decodes polynomial
+            int d = 8;
+            int count = 1;
+            while (field.GetDegree() > d)
+            {
+                count++;
+                d += 8;
+            }
+
+            if ((enc.Length % count) != 0)
+            {
+                throw new ArgumentException(
+                    " Error: byte array is not encoded polynomial over given finite field GF2m");
+            }
+
+            coefficients = new int[enc.Length / count];
+            count = 0;
+            for (int i = 0; i < coefficients.Length; i++)
+            {
+                for (int j = 0; j < d; j += 8)
+                {
+                    coefficients[i] ^= (enc[count++] & 0x000000ff) << j;
+                }
+                if (!this.field.IsElementOfThisField(coefficients[i]))
+                {
+                    throw new ArgumentException(
+                        " Error: byte array is not encoded polynomial over given finite field GF2m");
+                }
+            }
+            // if HC = 0 for non-zero polynomial, returns error
+            if ((coefficients.Length != 1)
+                && (coefficients[coefficients.Length - 1] == 0))
+            {
+                throw new ArgumentException(
+                    " Error: byte array is not encoded polynomial over given finite field GF2m");
+            }
+            ComputeDegree();
+        }
+
+        /**
+         * Copy constructor.
+         *
+         * @param other another {@link PolynomialGF2mSmallM}
+         */
+        public PolynomialGF2mSmallM(PolynomialGF2mSmallM other)
+        {
+            // field needs not to be cloned since it is immutable
+            field = other.field;
+            degree = other.degree;
+            coefficients = IntUtils.Clone(other.coefficients);
+        }
+
+        /**
+         * Create a polynomial over the finite field GF(2^m) out of the given
+         * coefficient vector. The finite field is also obtained from the
+         * {@link GF2mVector}.
+         *
+         * @param vect the coefficient vector
+         */
+        public PolynomialGF2mSmallM(GF2mVector vect)
+        {
+            new PolynomialGF2mSmallM(vect.GetField(), vect.GetIntArrayForm());
+        }
+
+        /*
+          * ------------------------
+          */
+
+        /**
+         * Return the degree of this polynomial
+         *
+         * @return int degree of this polynomial if this is zero polynomial return
+         *         -1
+         */
+        public int GetDegree()
+        {
+            int d = coefficients.Length - 1;
+            if (coefficients[d] == 0)
+            {
+                return -1;
+            }
+            return d;
+        }
+
+        /**
+         * @return the head coefficient of this polynomial
+         */
+        public int GetHeadCoefficient()
+        {
+            if (degree == -1)
+            {
+                return 0;
+            }
+            return coefficients[degree];
+        }
+
+        /**
+         * Return the head coefficient of a polynomial.
+         *
+         * @param a the polynomial
+         * @return the head coefficient of <tt>a</tt>
+         */
+        private static int HeadCoefficient(int[] a)
+        {
+            int degree = ComputeDegree(a);
+            if (degree == -1)
+            {
+                return 0;
+            }
+            return a[degree];
+        }
+
+        /**
+         * Return the coefficient with the given index.
+         *
+         * @param index the index
+         * @return the coefficient with the given index
+         */
+        public int GetCoefficient(int index)
+        {
+            if ((index < 0) || (index > degree))
+            {
+                return 0;
+            }
+            return coefficients[index];
+        }
+
+        /**
+         * Returns encoded polynomial, i.e., this polynomial in byte array form
+         *
+         * @return the encoded polynomial
+         */
+        public byte[] GetEncoded()
+        {
+            int d = 8;
+            int count = 1;
+            while (field.GetDegree() > d)
+            {
+                count++;
+                d += 8;
+            }
+
+            byte[] res = new byte[coefficients.Length * count];
+            count = 0;
+            for (int i = 0; i < coefficients.Length; i++)
+            {
+                for (int j = 0; j < d; j += 8)
+                {
+                    res[count++] = (byte)(Utils.UnsignedRightBitShiftInt(coefficients[i], j));
+                }
+            }
+
+            return res;
+        }
+
+        /**
+         * Evaluate this polynomial <tt>p</tt> at a value <tt>e</tt> (in
+         * <tt>GF(2^m)</tt>) with the Horner scheme.
+         *
+         * @param e the element of the finite field GF(2^m)
+         * @return <tt>this(e)</tt>
+         */
+        public int evaluateAt(int e)
+        {
+            int result = coefficients[degree];
+            for (int i = degree - 1; i >= 0; i--)
+            {
+                result = field.Mult(result, e) ^ coefficients[i];
+            }
+            return result;
+        }
+
+        /**
+         * Compute the sum of this polynomial and the given polynomial.
+         *
+         * @param addend the addend
+         * @return <tt>this + a</tt> (newly created)
+         */
+        public PolynomialGF2mSmallM add(PolynomialGF2mSmallM addend)
+        {
+            int[] resultCoeff = Add(coefficients, addend.coefficients);
+            return new PolynomialGF2mSmallM(field, resultCoeff);
+        }
+
+        /**
+         * Add the given polynomial to this polynomial (overwrite this).
+         *
+         * @param addend the addend
+         */
+        public void AddToThis(PolynomialGF2mSmallM addend)
+        {
+            coefficients = Add(coefficients, addend.coefficients);
+            ComputeDegree();
+        }
+
+        /**
+         * Compute the sum of two polynomials a and b over the finite field
+         * <tt>GF(2^m)</tt>.
+         *
+         * @param a the first polynomial
+         * @param b the second polynomial
+         * @return a + b
+         */
+        private int[] Add(int[] a, int[] b)
+        {
+            int[] result, addend;
+            if (a.Length < b.Length)
+            {
+                result = new int[b.Length];
+                Array.Copy(b, 0, result, 0, b.Length);
+                addend = a;
+            }
+            else
+            {
+                result = new int[a.Length];
+                Array.Copy(a, 0, result, 0, a.Length);
+                addend = b;
+            }
+
+            for (int i = addend.Length - 1; i >= 0; i--)
+            {
+                result[i] = field.add(result[i], addend[i]);
+            }
+
+            return result;
+        }
+
+        /**
+         * Compute the sum of this polynomial and the monomial of the given degree.
+         *
+         * @param degree the degree of the monomial
+         * @return <tt>this + X^k</tt>
+         */
+        public PolynomialGF2mSmallM AddMonomial(int degree)
+        {
+            int[] monomial = new int[degree + 1];
+            monomial[degree] = 1;
+            int[] resultCoeff = Add(coefficients, monomial);
+            return new PolynomialGF2mSmallM(field, resultCoeff);
+        }
+
+        /**
+         * Compute the product of this polynomial with an element from GF(2^m).
+         *
+         * @param element an element of the finite field GF(2^m)
+         * @return <tt>this * element</tt> (newly created)
+         * @throws ArithmeticException if <tt>element</tt> is not an element of the finite
+         * field this polynomial is defined over.
+         */
+        public PolynomialGF2mSmallM MultWithElement(int element)
+        {
+            if (!field.IsElementOfThisField(element))
+            {
+                throw new ArithmeticException(
+                    "Not an element of the finite field this polynomial is defined over.");
+            }
+            int[] resultCoeff = MultWithElement(coefficients, element);
+            return new PolynomialGF2mSmallM(field, resultCoeff);
+        }
+
+        /**
+         * Multiply this polynomial with an element from GF(2^m).
+         *
+         * @param element an element of the finite field GF(2^m)
+         * @throws ArithmeticException if <tt>element</tt> is not an element of the finite
+         * field this polynomial is defined over.
+         */
+        public void MultThisWithElement(int element)
+        {
+            if (!field.IsElementOfThisField(element))
+            {
+                throw new ArithmeticException(
+                    "Not an element of the finite field this polynomial is defined over.");
+            }
+            coefficients = MultWithElement(coefficients, element);
+            ComputeDegree();
+        }
+
+        /**
+         * Compute the product of a polynomial a with an element from the finite
+         * field <tt>GF(2^m)</tt>.
+         *
+         * @param a       the polynomial
+         * @param element an element of the finite field GF(2^m)
+         * @return <tt>a * element</tt>
+         */
+        private int[] MultWithElement(int[] a, int element)
+        {
+            int degree = ComputeDegree(a);
+            if (degree == -1 || element == 0)
+            {
+                return new int[1];
+            }
+
+            if (element == 1)
+            {
+                return IntUtils.Clone(a);
+            }
+
+            int[] result = new int[degree + 1];
+            for (int i = degree; i >= 0; i--)
+            {
+                result[i] = field.Mult(a[i], element);
+            }
+
+            return result;
+        }
+
+        /**
+         * Compute the product of this polynomial with a monomial X^k.
+         *
+         * @param k the degree of the monomial
+         * @return <tt>this * X^k</tt>
+         */
+        public PolynomialGF2mSmallM MultWithMonomial(int k)
+        {
+            int[] resultCoeff = MultWithMonomial(coefficients, k);
+            return new PolynomialGF2mSmallM(field, resultCoeff);
+        }
+
+        /**
+         * Compute the product of a polynomial with a monomial X^k.
+         *
+         * @param a the polynomial
+         * @param k the degree of the monomial
+         * @return <tt>a * X^k</tt>
+         */
+        private static int[] MultWithMonomial(int[] a, int k)
+        {
+            int d = ComputeDegree(a);
+            if (d == -1)
+            {
+                return new int[1];
+            }
+            int[] result = new int[d + k + 1];
+            Array.Copy(a, 0, result, k, d + 1);
+            return result;
+        }
+
+        /**
+         * Divide this polynomial by the given polynomial.
+         *
+         * @param f a polynomial
+         * @return polynomial pair = {q,r} where this = q*f+r and deg(r) &lt;
+         *         deg(f);
+         */
+        public PolynomialGF2mSmallM[] Div(PolynomialGF2mSmallM f)
+        {
+            int[][] resultCoeffs = Div(coefficients, f.coefficients);
+            return new PolynomialGF2mSmallM[]{
+            new PolynomialGF2mSmallM(field, resultCoeffs[0]),
+            new PolynomialGF2mSmallM(field, resultCoeffs[1])};
+        }
+
+        /**
+         * Compute the result of the division of two polynomials over the field
+         * <tt>GF(2^m)</tt>.
+         *
+         * @param a the first polynomial
+         * @param f the second polynomial
+         * @return int[][] {q,r}, where a = q*f+r and deg(r) &lt; deg(f);
+         */
+        private int[][] Div(int[] a, int[] f)
+        {
+            int df = ComputeDegree(f);
+            int da = ComputeDegree(a) + 1;
+            if (df == -1)
+            {
+                throw new ArithmeticException("Division by zero.");
+            }
+            int[][] result = new int[2][];
+            result[0] = new int[1];
+            result[1] = new int[da];
+            int hc = HeadCoefficient(f);
+            hc = field.Inverse(hc);
+            result[0][0] = 0;
+            Array.Copy(a, 0, result[1], 0, result[1].Length);
+            while (df <= ComputeDegree(result[1]))
+            {
+                int[] q;
+                int[] coeff = new int[1];
+                coeff[0] = field.Mult(HeadCoefficient(result[1]), hc);
+                q = MultWithElement(f, coeff[0]);
+                int n = ComputeDegree(result[1]) - df;
+                q = MultWithMonomial(q, n);
+                coeff = MultWithMonomial(coeff, n);
+                result[0] = Add(coeff, result[0]);
+                result[1] = Add(q, result[1]);
+            }
+            return result;
+        }
+
+        /**
+         * Return the greatest common divisor of this and a polynomial <i>f</i>
+         *
+         * @param f polynomial
+         * @return GCD(this, f)
+         */
+        public PolynomialGF2mSmallM Gcd(PolynomialGF2mSmallM f)
+        {
+            int[] resultCoeff = Gcd(coefficients, f.coefficients);
+            return new PolynomialGF2mSmallM(field, resultCoeff);
+        }
+
+        /**
+         * Return the greatest common divisor of two polynomials over the field
+         * <tt>GF(2^m)</tt>.
+         *
+         * @param f the first polynomial
+         * @param g the second polynomial
+         * @return <tt>gcd(f, g)</tt>
+         */
+        private int[] Gcd(int[] f, int[] g)
+        {
+            int[] a = f;
+            int[] b = g;
+            if (ComputeDegree(a) == -1)
+            {
+                return b;
+            }
+            while (ComputeDegree(b) != -1)
+            {
+                int[] c = Mod(a, b);
+                a = new int[b.Length];
+                Array.Copy(b, 0, a, 0, a.Length);
+                b = new int[c.Length];
+                Array.Copy(c, 0, b, 0, b.Length);
+            }
+            int coeff = field.Inverse(HeadCoefficient(a));
+            return MultWithElement(a, coeff);
+        }
+
+        /**
+         * Compute the product of this polynomial and the given factor using a
+         * Karatzuba like scheme.
+         *
+         * @param factor the polynomial
+         * @return <tt>this * factor</tt>
+         */
+        public PolynomialGF2mSmallM Multiply(PolynomialGF2mSmallM factor)
+        {
+            int[] resultCoeff = Multiply(coefficients, factor.coefficients);
+            return new PolynomialGF2mSmallM(field, resultCoeff);
+        }
+
+        /**
+         * Compute the product of two polynomials over the field <tt>GF(2^m)</tt>
+         * using a Karatzuba like multiplication.
+         *
+         * @param a the first polynomial
+         * @param b the second polynomial
+         * @return a * b
+         */
+        private int[] Multiply(int[] a, int[] b)
+        {
+            int[] mult1, mult2;
+            if (ComputeDegree(a) < ComputeDegree(b))
+            {
+                mult1 = b;
+                mult2 = a;
+            }
+            else
+            {
+                mult1 = a;
+                mult2 = b;
+            }
+
+            mult1 = NormalForm(mult1);
+            mult2 = NormalForm(mult2);
+
+            if (mult2.Length == 1)
+            {
+                return MultWithElement(mult1, mult2[0]);
+            }
+
+            int d1 = mult1.Length;
+            int d2 = mult2.Length;
+            int[] result = new int[d1 + d2 - 1];
+
+            if (d2 != d1)
+            {
+                int[] res1 = new int[d2];
+                int[] res2 = new int[d1 - d2];
+                Array.Copy(mult1, 0, res1, 0, res1.Length);
+                Array.Copy(mult1, d2, res2, 0, res2.Length);
+                res1 = Multiply(res1, mult2);
+                res2 = Multiply(res2, mult2);
+                res2 = MultWithMonomial(res2, d2);
+                result = Add(res1, res2);
+            }
+            else
+            {
+                d2 = Utils.UnsignedRightBitShiftInt(d1 + 1, 1);
+                int d = d1 - d2;
+                int[] firstPartMult1 = new int[d2];
+                int[] firstPartMult2 = new int[d2];
+                int[] secondPartMult1 = new int[d];
+                int[] secondPartMult2 = new int[d];
+                Array.Copy(mult1, 0, firstPartMult1, 0,
+                        firstPartMult1.Length);
+                Array.Copy(mult1, d2, secondPartMult1, 0,
+                    secondPartMult1.Length);
+                Array.Copy(mult2, 0, firstPartMult2, 0,
+                        firstPartMult2.Length);
+                Array.Copy(mult2, d2, secondPartMult2, 0,
+                    secondPartMult2.Length);
+                int[] helpPoly1 = Add(firstPartMult1, secondPartMult1);
+                int[] helpPoly2 = Add(firstPartMult2, secondPartMult2);
+                int[] res1 = Multiply(firstPartMult1, firstPartMult2);
+                int[] res2 = Multiply(helpPoly1, helpPoly2);
+                int[] res3 = Multiply(secondPartMult1, secondPartMult2);
+                res2 = Add(res2, res1);
+                res2 = Add(res2, res3);
+                res3 = MultWithMonomial(res3, d2);
+                result = Add(res2, res3);
+                result = MultWithMonomial(result, d2);
+                result = Add(result, res1);
+            }
+
+            return result;
+        }
+
+        /*
+          * ---------------- PART II ----------------
+          *
+          */
+
+        /**
+         * Check a polynomial for irreducibility over the field <tt>GF(2^m)</tt>.
+         *
+         * @param a the polynomial to check
+         * @return true if a is irreducible, false otherwise
+         */
+        private bool IsIrreducible(int[] a)
+        {
+            if (a[0] == 0)
+            {
+                return false;
+            }
+            int d = ComputeDegree(a) >> 1;
+            int[] u = { 0, 1 };
+            int[] Y = { 0, 1 };
+            int fieldDegree = field.GetDegree();
+            for (int i = 0; i < d; i++)
+            {
+                for (int j = fieldDegree - 1; j >= 0; j--)
+                {
+                    u = ModMultiply(u, u, a);
+                }
+                u = NormalForm(u);
+                int[] g = Gcd(Add(u, Y), a);
+                if (ComputeDegree(g) != 0)
+                {
+                    return false;
+                }
+            }
+            return true;
+        }
+
+        /**
+         * Reduce this polynomial modulo another polynomial.
+         *
+         * @param f the reduction polynomial
+         * @return <tt>this mod f</tt>
+         */
+        public PolynomialGF2mSmallM Mod(PolynomialGF2mSmallM f)
+        {
+            int[] resultCoeff = Mod(coefficients, f.coefficients);
+            return new PolynomialGF2mSmallM(field, resultCoeff);
+        }
+
+        /**
+         * Reduce a polynomial modulo another polynomial.
+         *
+         * @param a the polynomial
+         * @param f the reduction polynomial
+         * @return <tt>a mod f</tt>
+         */
+        private int[] Mod(int[] a, int[] f)
+        {
+            int df = ComputeDegree(f);
+            if (df == -1)
+            {
+                throw new ArithmeticException("Division by zero");
+            }
+            int[] result = new int[a.Length];
+            int hc = HeadCoefficient(f);
+            hc = field.Inverse(hc);
+            Array.Copy(a, 0, result, 0, result.Length);
+            while (df <= ComputeDegree(result))
+            {
+                int[] q;
+                int coeff = field.Mult(HeadCoefficient(result), hc);
+                q = MultWithMonomial(f, ComputeDegree(result) - df);
+                q = MultWithElement(q, coeff);
+                result = Add(q, result);
+            }
+            return result;
+        }
+
+        /**
+         * Compute the product of this polynomial and another polynomial modulo a
+         * third polynomial.
+         *
+         * @param a another polynomial
+         * @param b the reduction polynomial
+         * @return <tt>this * a mod b</tt>
+         */
+        public PolynomialGF2mSmallM ModMultiply(PolynomialGF2mSmallM a,
+                                                PolynomialGF2mSmallM b)
+        {
+            int[] resultCoeff = ModMultiply(coefficients, a.coefficients,
+                b.coefficients);
+            return new PolynomialGF2mSmallM(field, resultCoeff);
+        }
+
+
+
+        /**
+         * Square this polynomial using a squaring matrix.
+         *
+         * @param matrix the squaring matrix
+         * @return <tt>this^2</tt> modulo the reduction polynomial implicitly
+         *         given via the squaring matrix
+         */
+        public PolynomialGF2mSmallM ModSquareMatrix(PolynomialGF2mSmallM[] matrix)
+        {
+
+            int length = matrix.Length;
+
+            int[] resultCoeff = new int[length];
+            int[] thisSquare = new int[length];
+
+            // square each entry of this polynomial
+            for (int i = 0; i < coefficients.Length; i++)
+            {
+                thisSquare[i] = field.Mult(coefficients[i], coefficients[i]);
+            }
+
+            // do matrix-vector multiplication
+            for (int i = 0; i < length; i++)
+            {
+                // compute scalar product of i-th row and coefficient vector
+                for (int j = 0; j < length; j++)
+                {
+                    if (i >= matrix[j].coefficients.Length)
+                    {
+                        continue;
+                    }
+                    int scalarTerm = field.Mult(matrix[j].coefficients[i],
+                        thisSquare[j]);
+                    resultCoeff[i] = field.add(resultCoeff[i], scalarTerm);
+                }
+            }
+
+            return new PolynomialGF2mSmallM(field, resultCoeff);
+        }
+
+        /**
+         * Compute the product of two polynomials modulo a third polynomial over the
+         * finite field <tt>GF(2^m)</tt>.
+         *
+         * @param a the first polynomial
+         * @param b the second polynomial
+         * @param g the reduction polynomial
+         * @return <tt>a * b mod g</tt>
+         */
+        private int[] ModMultiply(int[] a, int[] b, int[] g)
+        {
+            return Mod(Multiply(a, b), g);
+        }
+
+        /**
+         * Compute the square root of this polynomial modulo the given polynomial.
+         *
+         * @param a the reduction polynomial
+         * @return <tt>this^(1/2) mod a</tt>
+         */
+        public PolynomialGF2mSmallM ModSquareRoot(PolynomialGF2mSmallM a)
+        {
+            int[] resultCoeff = IntUtils.Clone(coefficients);
+            int[] help = ModMultiply(resultCoeff, resultCoeff, a.coefficients);
+            while (!IsEqual(help, coefficients))
+            {
+                resultCoeff = NormalForm(help);
+                help = ModMultiply(resultCoeff, resultCoeff, a.coefficients);
+            }
+
+            return new PolynomialGF2mSmallM(field, resultCoeff);
+        }
+
+        /**
+         * Compute the square root of this polynomial using a square root matrix.
+         *
+         * @param matrix the matrix for computing square roots in
+         *               <tt>(GF(2^m))^t</tt> the polynomial ring defining the
+         *               square root matrix
+         * @return <tt>this^(1/2)</tt> modulo the reduction polynomial implicitly
+         *         given via the square root matrix
+         */
+        public PolynomialGF2mSmallM ModSquareRootMatrix(
+            PolynomialGF2mSmallM[] matrix)
+        {
+
+            int length = matrix.Length;
+
+            int[] resultCoeff = new int[length];
+
+            // do matrix multiplication
+            for (int i = 0; i < length; i++)
+            {
+                // compute scalar product of i-th row and j-th column
+                for (int j = 0; j < length; j++)
+                {
+                    if (i >= matrix[j].coefficients.Length)
+                    {
+                        continue;
+                    }
+                    if (j < coefficients.Length)
+                    {
+                        int scalarTerm = field.Mult(matrix[j].coefficients[i],
+                            coefficients[j]);
+                        resultCoeff[i] = field.add(resultCoeff[i], scalarTerm);
+                    }
+                }
+            }
+
+            // compute the square root of each entry of the result coefficients
+            for (int i = 0; i < length; i++)
+            {
+                resultCoeff[i] = field.SqRoot(resultCoeff[i]);
+            }
+
+            return new PolynomialGF2mSmallM(field, resultCoeff);
+        }
+
+        /**
+         * Compute the result of the division of this polynomial by another
+         * polynomial modulo a third polynomial.
+         *
+         * @param divisor the divisor
+         * @param modulus the reduction polynomial
+         * @return <tt>this * divisor^(-1) mod modulus</tt>
+         */
+        public PolynomialGF2mSmallM ModDiv(PolynomialGF2mSmallM divisor,
+                                           PolynomialGF2mSmallM modulus)
+        {
+            int[] resultCoeff = ModDiv(coefficients, divisor.coefficients,
+                modulus.coefficients);
+            return new PolynomialGF2mSmallM(field, resultCoeff);
+        }
+
+        /**
+         * Compute the result of the division of two polynomials modulo a third
+         * polynomial over the field <tt>GF(2^m)</tt>.
+         *
+         * @param a the first polynomial
+         * @param b the second polynomial
+         * @param g the reduction polynomial
+         * @return <tt>a * b^(-1) mod g</tt>
+         */
+        private int[] ModDiv(int[] a, int[] b, int[] g)
+        {
+            int[] r0 = NormalForm(g);
+            int[] r1 = Mod(b, g);
+            int[] s0 = { 0 };
+            int[] s1 = Mod(a, g);
+            int[] s2;
+            int[][] q;
+            while (ComputeDegree(r1) != -1)
+            {
+                q = Div(r0, r1);
+                r0 = NormalForm(r1);
+                r1 = NormalForm(q[1]);
+                s2 = Add(s0, ModMultiply(q[0], s1, g));
+                s0 = NormalForm(s1);
+                s1 = NormalForm(s2);
+
+            }
+            int hc = HeadCoefficient(r0);
+            s0 = MultWithElement(s0, field.Inverse(hc));
+            return s0;
+        }
+
+        /**
+         * Compute the inverse of this polynomial modulo the given polynomial.
+         *
+         * @param a the reduction polynomial
+         * @return <tt>this^(-1) mod a</tt>
+         */
+        public PolynomialGF2mSmallM ModInverse(PolynomialGF2mSmallM a)
+        {
+            int[] unit = { 1 };
+            int[] resultCoeff = ModDiv(unit, coefficients, a.coefficients);
+            return new PolynomialGF2mSmallM(field, resultCoeff);
+        }
+
+        /**
+         * Compute a polynomial pair (a,b) from this polynomial and the given
+         * polynomial g with the property b*this = a mod g and deg(a)&lt;=deg(g)/2.
+         *
+         * @param g the reduction polynomial
+         * @return PolynomialGF2mSmallM[] {a,b} with b*this = a mod g and deg(a)&lt;=
+         *         deg(g)/2
+         */
+        public PolynomialGF2mSmallM[] ModPolynomialToFracton(PolynomialGF2mSmallM g)
+        {
+            int dg = g.degree >> 1;
+            int[] a0 = NormalForm(g.coefficients);
+            int[] a1 = Mod(coefficients, g.coefficients);
+            int[] b0 = { 0 };
+            int[] b1 = { 1 };
+            while (ComputeDegree(a1) > dg)
+            {
+                int[][] q = Div(a0, a1);
+                a0 = a1;
+                a1 = q[1];
+                int[] b2 = Add(b0, ModMultiply(q[0], b1, g.coefficients));
+                b0 = b1;
+                b1 = b2;
+            }
+
+            return new PolynomialGF2mSmallM[]{
+            new PolynomialGF2mSmallM(field, a1),
+            new PolynomialGF2mSmallM(field, b1)};
+        }
+
+        /**
+         * checks if given object is equal to this polynomial.
+         * <p>
+         * The method returns false whenever the given object is not polynomial over
+         * GF(2^m).
+         *
+         * @param other object
+         * @return true or false
+         */
+        public bool equals(Object other)
+        {
+
+            if (other == null || !(other is PolynomialGF2mSmallM))
+            {
+                return false;
+            }
+
+            PolynomialGF2mSmallM p = (PolynomialGF2mSmallM)other;
+
+            if ((field.Equals(p.field)) && (degree == p.degree)
+                && (IsEqual(coefficients, p.coefficients)))
+            {
+                return true;
+            }
+
+            return false;
+        }
+
+        /**
+         * Compare two polynomials given as int arrays.
+         *
+         * @param a the first polynomial
+         * @param b the second polynomial
+         * @return <tt>true</tt> if <tt>a</tt> and <tt>b</tt> represent the
+         *         same polynomials, <tt>false</tt> otherwise
+         */
+        private static bool IsEqual(int[] a, int[] b)
+        {
+            int da = ComputeDegree(a);
+            int db = ComputeDegree(b);
+            if (da != db)
+            {
+                return false;
+            }
+            for (int i = 0; i <= da; i++)
+            {
+                if (a[i] != b[i])
+                {
+                    return false;
+                }
+            }
+            return true;
+        }
+
+        /**
+         * @return the hash code of this polynomial
+         */
+        public int HashCode()
+        {
+            int hash = field.HashCode();
+            for (int j = 0; j < coefficients.Length; j++)
+            {
+                hash = hash * 31 + coefficients[j];
+            }
+            return hash;
+        }
+
+        /**
+         * Returns a human readable form of the polynomial.
+         *
+         * @return a human readable form of the polynomial.
+         */
+        public String toString()
+        {
+            String str = " Polynomial over " + field.ToString() + ": \n";
+
+            for (int i = 0; i < coefficients.Length; i++)
+            {
+                str = str + field.ElementToStr(coefficients[i]) + "Y^" + i + "+";
+            }
+            str = str + ";";
+
+            return str;
+        }
+
+        /**
+         * Compute the degree of this polynomial. If this is the zero polynomial,
+         * the degree is -1.
+         */
+        private void ComputeDegree()
+        {
+            for (degree = coefficients.Length - 1; degree >= 0
+                && coefficients[degree] == 0; degree--)
+            {
+                ;
+            }
+        }
+
+        /**
+         * Compute the degree of a polynomial.
+         *
+         * @param a the polynomial
+         * @return the degree of the polynomial <tt>a</tt>. If <tt>a</tt> is
+         *         the zero polynomial, return -1.
+         */
+        private static int ComputeDegree(int[] a)
+        {
+            int degree;
+            for (degree = a.Length - 1; degree >= 0 && a[degree] == 0; degree--)
+            {
+                ;
+            }
+            return degree;
+        }
+
+        /**
+         * Strip leading zero coefficients from the given polynomial.
+         *
+         * @param a the polynomial
+         * @return the reduced polynomial
+         */
+        private static int[] NormalForm(int[] a)
+        {
+            int d = ComputeDegree(a);
+
+            // if a is the zero polynomial
+            if (d == -1)
+            {
+                // return new zero polynomial
+                return new int[1];
+            }
+
+            // if a already is in normal form
+            if (a.Length == d + 1)
+            {
+                // return a clone of a
+                return IntUtils.Clone(a);
+            }
+
+            // else, reduce a
+            int[] result = new int[d + 1];
+            Array.Copy(a, 0, result, 0, d + 1);
+            return result;
+        }
+
+        /**
+         * Compute the product of this polynomial and another polynomial modulo a
+         * third polynomial.
+         *
+         * @param a another polynomial
+         * @param b the reduction polynomial
+         * @return <tt>this * a mod b</tt>
+         */
+        public PolynomialGF2mSmallM ModKaratsubaMultiplyBigDeg(PolynomialGF2mSmallM a,
+                                                               PolynomialGF2mSmallM b)
+        {
+            int[] resultCoeff = ModKaratsubaMultiplyBigDeg(coefficients, a.coefficients,
+                    b.coefficients);
+            return new PolynomialGF2mSmallM(field, resultCoeff);
+        }
+
+        /**
+         * Compute the inverse of this polynomial modulo the given polynomial.
+         *
+         * @param a the reduction polynomial
+         * @return <tt>this^(-1) mod a</tt>
+         */
+        public PolynomialGF2mSmallM ModInverseBigDeg(PolynomialGF2mSmallM a)
+        {
+            int[] unit = { 1 };
+            int[] resultCoeff = ModDivBigDeg(unit, coefficients, a.coefficients);
+            return new PolynomialGF2mSmallM(field, resultCoeff);
+        }
+
+        private int[] ModDivBigDeg(int[] a, int[] b, int[] g)
+        {
+            int[] r0 = NormalForm(g);
+            int[] r1 = Mod(b, g);
+            int[] s0 = { 0 };
+            int[] s1 = Mod(a, g);
+            int[] s2;
+            int[][] q;
+            while (ComputeDegree(r1) != -1)
+            {
+                q = Div(r0, r1);
+                r0 = NormalForm(r1);
+                r1 = NormalForm(q[1]);
+                s2 = Add(s0, ModKaratsubaMultiplyBigDeg(q[0], s1, g));
+                s0 = NormalForm(s1);
+                s1 = NormalForm(s2);
+            }
+            int hc = HeadCoefficient(r0);
+            s0 = MultWithElement(s0, field.Inverse(hc));
+            return s0;
+        }
+
+        /**
+         * Compute the product of two polynomials modulo a third polynomial over the
+         * finite field <tt>GF(2^m)</tt>.
+         *
+         * @param aa the first polynomial
+         * @param bb the second polynomial
+         * @param g the reduction polynomial
+         * @return <tt>a * b mod g</tt>
+         */
+        private int[] ModKaratsubaMultiplyBigDeg(int[] aa, int[] bb, int[] g)
+        {
+            int[] a, b;
+            if (aa.Length >= bb.Length)
+            {
+                a = Arrays.Clone(aa);
+                b = Arrays.Clone(bb);
+            }
+            else
+            {
+                a = Arrays.Clone(bb);
+                b = Arrays.Clone(aa);
+            }
+
+            int n = a.Length;
+            int m = b.Length;
+
+            int[] D = new int[(n + m) / 2];
+            int[] S = new int[n + m - 1];
+            int[] T = new int[n + m - 1];
+            int[] C = new int[n + m - 1];
+
+            for (int i = 0; i < m; i++)
+            {
+                D[i] = a[i] * b[i];
+            }
+
+            for (int i = 1; i < n + m - 2; i++)
+            {
+                for (int p = 0; p < System.Math.Min(m, i); p++)
+                {
+                    int q = i - p;
+                    if (p >= q)
+                    {
+                        break;
+                    }
+
+                    int ap = a[p];
+                    int aq = 0;
+
+                    if (q < a.Length)
+                    {
+                        aq = a[q];
+                    }
+
+                    int bp = b[p];
+                    int dp = D[p];
+
+                    if (q < m && p < m)
+                    {
+                        int bq = b[q];
+                        int dq = D[q];
+
+                        S[i] = S[i] + (ap + aq) * (bp + bq);
+                        T[i] = T[i] + dp + dq;
+                    }
+                    else if (q >= m && q < n)
+                    {
+                        S[i] = S[i] + ((ap + aq) * bp);
+                        T[i] = T[i] + dp;
+                    }
+                }
+            }
+
+            for (int i = 0; i < n + m - 1; i++)
+            {
+                if (i == 0)
+                {
+                    C[i] = D[i] % 2;
+                }
+                else if (i == n + m - 2)
+                {
+                    C[i] = (a[a.Length - 1] * b[b.Length - 1]) % 2;
+                }
+                else if (i % 2 == 1)
+                {
+                    C[i] = (S[i] - T[i]) % 2;
+                }
+                else
+                {
+                    C[i] = (S[i] - T[i] + D[i / 2]) % 2;
+                }
+            }
+            int[] res = Mod(C, g);
+            return res;
+        }
+    }
+}
diff --git a/crypto/src/pqc/math/linearalgebra/PolynomialRingGF2.cs b/crypto/src/pqc/math/linearalgebra/PolynomialRingGF2.cs
new file mode 100644
index 000000000..9bc3fcd31
--- /dev/null
+++ b/crypto/src/pqc/math/linearalgebra/PolynomialRingGF2.cs
@@ -0,0 +1,286 @@
+using System;
+
+namespace Org.BouncyCastle.Pqc.Math.LinearAlgebra
+{
+    /**
+ * This class describes operations with polynomials over finite field GF(2), i e
+ * polynomial ring R = GF(2)[X]. All operations are defined only for polynomials
+ * with degree &lt;=32. For the polynomial representation the map f: R-&gt;Z,
+ * poly(X)-&gt;poly(2) is used, where integers have the binary representation. For
+ * example: X^7+X^3+X+1 -&gt; (00...0010001011)=139 Also for polynomials type
+ * Integer is used.
+ *
+ * @see GF2mField
+ */
+    public class PolynomialRingGF2
+    {
+
+        /**
+         * Default constructor (private).
+         */
+        private PolynomialRingGF2()
+        {
+            // empty
+        }
+
+        /**
+         * Return sum of two polyomials
+         *
+         * @param p polynomial
+         * @param q polynomial
+         * @return p+q
+         */
+
+        public static int Add(int p, int q)
+        {
+            return p ^ q;
+        }
+
+        /**
+         * Return product of two polynomials
+         *
+         * @param p polynomial
+         * @param q polynomial
+         * @return p*q
+         */
+
+        public static long Multiply(int p, int q)
+        {
+            long result = 0;
+            if (q != 0)
+            {
+                long q1 = q & 0x00000000ffffffffL;
+
+                while (p != 0)
+                {
+                    byte b = (byte)(p & 0x01);
+                    if (b == 1)
+                    {
+                        result ^= q1;
+                    }
+                    p = Utils.UnsignedRightBitShiftInt(p, 1);
+                    q1 <<= 1;
+
+                }
+            }
+            return result;
+        }
+
+        /**
+         * Compute the product of two polynomials modulo a third polynomial.
+         *
+         * @param a the first polynomial
+         * @param b the second polynomial
+         * @param r the reduction polynomial
+         * @return <tt>a * b mod r</tt>
+         */
+        public static int modMultiply(int a, int b, int r)
+        {
+            int result = 0;
+            int p = Remainder(a, r);
+            int q = Remainder(b, r);
+            if (q != 0)
+            {
+                int d = 1 << Degree(r);
+
+                while (p != 0)
+                {
+                    byte pMod2 = (byte)(p & 0x01);
+                    if (pMod2 == 1)
+                    {
+                        result ^= q;
+                    }
+                    p = Utils.UnsignedRightBitShiftInt(p, 1);
+                    q <<= 1;
+                    if (q >= d)
+                    {
+                        q ^= r;
+                    }
+                }
+            }
+            return result;
+        }
+
+        /**
+         * Return the degree of a polynomial
+         *
+         * @param p polynomial p
+         * @return degree(p)
+         */
+
+        public static int Degree(int p)
+        {
+            int result = -1;
+            while (p != 0)
+            {
+                result++;
+                p = Utils.UnsignedRightBitShiftInt(p, 1);
+            }
+            return result;
+        }
+
+        /**
+         * Return the degree of a polynomial
+         *
+         * @param p polynomial p
+         * @return degree(p)
+         */
+
+        public static int Degree(long p)
+        {
+            int result = 0;
+            while (p != 0)
+            {
+                result++;
+                p = Utils.UnsignedRightBitShiftLong(p, 1);
+            }
+            return result - 1;
+        }
+
+        /**
+         * Return the remainder of a polynomial division of two polynomials.
+         *
+         * @param p dividend
+         * @param q divisor
+         * @return <tt>p mod q</tt>
+         */
+        public static int Remainder(int p, int q)
+        {
+            int result = p;
+
+            if (q == 0)
+            {
+                // -DM Console.Error.WriteLine
+                Console.Error.WriteLine("Error: to be divided by 0");
+                return 0;
+            }
+
+            while (Degree(result) >= Degree(q))
+            {
+                result ^= q << (Degree(result) - Degree(q));
+            }
+
+            return result;
+        }
+
+        /**
+         * Return the rest of devision two polynomials
+         *
+         * @param p polinomial
+         * @param q polinomial
+         * @return p mod q
+         */
+
+        public static int Rest(long p, int q)
+        {
+            long p1 = p;
+            if (q == 0)
+            {
+                // -DM Console.Error.WriteLine
+                Console.Error.WriteLine("Error: to be divided by 0");
+                return 0;
+            }
+            long q1 = q & 0x00000000ffffffffL;
+
+            while ((Utils.UnsignedRightBitShiftLong(p1, 32)) != 0)
+            {
+                p1 ^= q1 << (Degree(p1) - Degree(q1));
+            }
+
+            int result = (int)(p1 & 0xffffffff);
+            while (Degree(result) >= Degree(q))
+            {
+                result ^= q << (Degree(result) - Degree(q));
+            }
+
+            return result;
+        }
+
+        /**
+         * Return the greatest common divisor of two polynomials
+         *
+         * @param p polinomial
+         * @param q polinomial
+         * @return GCD(p, q)
+         */
+
+        public static int Gcd(int p, int q)
+        {
+            int a, b, c;
+            a = p;
+            b = q;
+            while (b != 0)
+            {
+                c = Remainder(a, b);
+                a = b;
+                b = c;
+
+            }
+            return a;
+        }
+
+        /**
+         * Checking polynomial for irreducibility
+         *
+         * @param p polinomial
+         * @return true if p is irreducible and false otherwise
+         */
+
+        public static bool IsIrreducible(int p)
+        {
+            if (p == 0)
+            {
+                return false;
+            }
+            uint tmpDeg = (uint)Degree(p);
+            int d = (int) tmpDeg >> 1;
+            int u = 2;
+            for (int i = 0; i < d; i++)
+            {
+                u = modMultiply(u, u, p);
+                if (Gcd(u ^ 2, p) != 1)
+                {
+                    return false;
+                }
+            }
+            return true;
+        }
+
+        /**
+         * Creates irreducible polynomial with degree d
+         *
+         * @param deg polynomial degree
+         * @return irreducible polynomial p
+         */
+        public static int GetIrreduciblePolynomial(int deg)
+        {
+            if (deg < 0)
+            {
+                // -DM Console.Error.WriteLine
+                Console.Error.WriteLine("The Degree is negative");
+                return 0;
+            }
+            if (deg > 31)
+            {
+                // -DM Console.Error.WriteLine
+                Console.Error.WriteLine("The Degree is more then 31");
+                return 0;
+            }
+            if (deg == 0)
+            {
+                return 1;
+            }
+            int a = 1 << deg;
+            a++;
+            int b = 1 << (deg + 1);
+            for (int i = a; i < b; i += 2)
+            {
+                if (IsIrreducible(i))
+                {
+                    return i;
+                }
+            }
+            return 0;
+        }
+    }
+}
diff --git a/crypto/src/pqc/math/linearalgebra/RandUtils.cs b/crypto/src/pqc/math/linearalgebra/RandUtils.cs
new file mode 100644
index 000000000..f7b7b8588
--- /dev/null
+++ b/crypto/src/pqc/math/linearalgebra/RandUtils.cs
@@ -0,0 +1,27 @@
+using Org.BouncyCastle.Security;
+
+namespace Org.BouncyCastle.Pqc.Math.LinearAlgebra
+{
+    public class RandUtils
+    {
+        public static int NextInt(SecureRandom rand, int n)
+        {
+
+            if ((n & -n) == n)  // i.e., n is a power of 2
+            {
+                return (int)((n * (long)(Utils.UnsignedRightBitShiftInt(rand.NextInt(), 1))) >> 31);
+            }
+
+            int bits, value;
+            do
+            {
+                bits = Utils.UnsignedRightBitShiftInt(rand.NextInt() ,1);
+                value = bits % n;
+            }
+            while (bits - value + (n - 1) < 0);
+
+            return value;
+        }
+    }
+
+}
diff --git a/crypto/src/pqc/math/linearalgebra/Utils.cs b/crypto/src/pqc/math/linearalgebra/Utils.cs
new file mode 100644
index 000000000..eb2760f82
--- /dev/null
+++ b/crypto/src/pqc/math/linearalgebra/Utils.cs
@@ -0,0 +1,20 @@
+
+namespace Org.BouncyCastle.Pqc.Math.LinearAlgebra
+{
+    class Utils
+    {
+        internal static int UnsignedRightBitShiftInt(int a, int b)
+        {
+            uint tmp = (uint) a;
+            tmp >>= b;
+            return (int) tmp;
+        }
+
+        internal static long UnsignedRightBitShiftLong(long a, int b)
+        {
+            ulong tmp = (ulong)a;
+            tmp >>= b;
+            return (long) tmp;
+        }
+    }
+}
diff --git a/crypto/src/pqc/math/linearalgebra/Vector.cs b/crypto/src/pqc/math/linearalgebra/Vector.cs
new file mode 100644
index 000000000..e50c54792
--- /dev/null
+++ b/crypto/src/pqc/math/linearalgebra/Vector.cs
@@ -0,0 +1,62 @@
+using System;
+
+namespace Org.BouncyCastle.Pqc.Math.LinearAlgebra
+{
+    /**
+ * This abstract class defines vectors. It holds the length of vector.
+ */
+    public abstract class Vector
+    {
+
+        /**
+         * the length of this vector
+         */
+        protected int length;
+
+        /**
+         * @return the length of this vector
+         */
+        public int GetLength()
+        {
+            return length;
+        }
+
+        /**
+         * @return this vector as byte array
+         */
+        public abstract byte[] GetEncoded();
+
+        /**
+         * Return whether this is the zero vector (i.e., all elements are zero).
+         *
+         * @return <tt>true</tt> if this is the zero vector, <tt>false</tt>
+         *         otherwise
+         */
+        public abstract bool IsZero();
+
+        /**
+         * Add another vector to this vector.
+         *
+         * @param addend the other vector
+         * @return <tt>this + addend</tt>
+         */
+        public abstract Vector Add(Vector addend);
+
+        /**
+         * Multiply this vector with a permutation.
+         *
+         * @param p the permutation
+         * @return <tt>this*p = p*this</tt>
+         */
+        public abstract Vector Multiply(Permutation p);
+
+        /**
+         * Check if the given object is equal to this vector.
+         *
+         * @param other vector
+         * @return the result of the comparison
+         */
+        public abstract bool Equals(Object other);
+
+    }
+}