summary refs log tree commit diff
path: root/crypto/src/pqc/math/linearalgebra/PolynomialGF2mSmallM.cs
diff options
context:
space:
mode:
Diffstat (limited to 'crypto/src/pqc/math/linearalgebra/PolynomialGF2mSmallM.cs')
-rw-r--r--crypto/src/pqc/math/linearalgebra/PolynomialGF2mSmallM.cs1266
1 files changed, 0 insertions, 1266 deletions
diff --git a/crypto/src/pqc/math/linearalgebra/PolynomialGF2mSmallM.cs b/crypto/src/pqc/math/linearalgebra/PolynomialGF2mSmallM.cs
deleted file mode 100644
index 9dca71bee..000000000
--- a/crypto/src/pqc/math/linearalgebra/PolynomialGF2mSmallM.cs
+++ /dev/null
@@ -1,1266 +0,0 @@
-using Org.BouncyCastle.Security;
-using Org.BouncyCastle.Utilities;
-using System;
-
-namespace Org.BouncyCastle.Pqc.Math.LinearAlgebra
-{
-    public class PolynomialGF2mSmallM
-    {
-
-        /**
-         * the finite field GF(2^m)
-         */
-        private GF2mField field;
-
-        /**
-         * the degree of this polynomial
-         */
-        private int degree;
-
-        /**
-         * For the polynomial representation the map f: R->Z*,
-         * <tt>poly(X) -> [coef_0, coef_1, ...]</tt> is used, where
-         * <tt>coef_i</tt> is the <tt>i</tt>th coefficient of the polynomial
-         * represented as int (see {@link GF2mField}). The polynomials are stored
-         * as int arrays.
-         */
-        private int[] coefficients;
-
-        /*
-          * some types of polynomials
-          */
-
-        /**
-         * Constant used for polynomial construction (see constructor
-         * {@link #PolynomialGF2mSmallM(GF2mField, int, char, SecureRandom)}).
-         */
-        public const char RANDOM_IRREDUCIBLE_POLYNOMIAL = 'I';
-
-        /**
-         * Construct the zero polynomial over the finite field GF(2^m).
-         *
-         * @param field the finite field GF(2^m)
-         */
-        public PolynomialGF2mSmallM(GF2mField field)
-        {
-            this.field = field;
-            degree = -1;
-            coefficients = new int[1];
-        }
-
-        /**
-         * Construct a polynomial over the finite field GF(2^m).
-         *
-         * @param field            the finite field GF(2^m)
-         * @param deg              degree of polynomial
-         * @param typeOfPolynomial type of polynomial
-         * @param sr               PRNG
-         */
-        public PolynomialGF2mSmallM(GF2mField field, int deg,
-                                    char typeOfPolynomial, SecureRandom sr)
-        {
-            this.field = field;
-
-            switch (typeOfPolynomial)
-            {
-                case PolynomialGF2mSmallM.RANDOM_IRREDUCIBLE_POLYNOMIAL:
-                    coefficients = CreateRandomIrreduciblePolynomial(deg, sr);
-                    break;
-                default:
-                    throw new ArgumentException(" Error: type "
-                        + typeOfPolynomial
-                        + " is not defined for GF2smallmPolynomial");
-            }
-            ComputeDegree();
-        }
-
-        /**
-         * Create an irreducible polynomial with the given degree over the field
-         * <tt>GF(2^m)</tt>.
-         *
-         * @param deg polynomial degree
-         * @param sr  source of randomness
-         * @return the generated irreducible polynomial
-         */
-        private int[] CreateRandomIrreduciblePolynomial(int deg, SecureRandom sr)
-        {
-            int[] resCoeff = new int[deg + 1];
-            resCoeff[deg] = 1;
-            resCoeff[0] = field.GetRandomNonZeroElement(sr);
-            for (int i = 1; i < deg; i++)
-            {
-                resCoeff[i] = field.GetRandomElement(sr);
-            }
-            while (!IsIrreducible(resCoeff))
-            {
-                int n = RandUtils.NextInt(sr, deg);
-                if (n == 0)
-                {
-                    resCoeff[0] = field.GetRandomNonZeroElement(sr);
-                }
-                else
-                {
-                    resCoeff[n] = field.GetRandomElement(sr);
-                }
-            }
-            return resCoeff;
-        }
-
-        /**
-         * Construct a monomial of the given degree over the finite field GF(2^m).
-         *
-         * @param field  the finite field GF(2^m)
-         * @param degree the degree of the monomial
-         */
-        public PolynomialGF2mSmallM(GF2mField field, int degree)
-        {
-            this.field = field;
-            this.degree = degree;
-            coefficients = new int[degree + 1];
-            coefficients[degree] = 1;
-        }
-
-        /**
-         * Construct the polynomial over the given finite field GF(2^m) from the
-         * given coefficient vector.
-         *
-         * @param field  finite field GF2m
-         * @param coeffs the coefficient vector
-         */
-        public PolynomialGF2mSmallM(GF2mField field, int[] coeffs)
-        {
-            this.field = field;
-            coefficients = NormalForm(coeffs);
-            ComputeDegree();
-        }
-
-        /**
-         * Create a polynomial over the finite field GF(2^m).
-         *
-         * @param field the finite field GF(2^m)
-         * @param enc   byte[] polynomial in byte array form
-         */
-        public PolynomialGF2mSmallM(GF2mField field, byte[] enc)
-        {
-            this.field = field;
-
-            // decodes polynomial
-            int d = 8;
-            int count = 1;
-            while (field.GetDegree() > d)
-            {
-                count++;
-                d += 8;
-            }
-
-            if ((enc.Length % count) != 0)
-            {
-                throw new ArgumentException(
-                    " Error: byte array is not encoded polynomial over given finite field GF2m");
-            }
-
-            coefficients = new int[enc.Length / count];
-            count = 0;
-            for (int i = 0; i < coefficients.Length; i++)
-            {
-                for (int j = 0; j < d; j += 8)
-                {
-                    coefficients[i] ^= (enc[count++] & 0x000000ff) << j;
-                }
-                if (!this.field.IsElementOfThisField(coefficients[i]))
-                {
-                    throw new ArgumentException(
-                        " Error: byte array is not encoded polynomial over given finite field GF2m");
-                }
-            }
-            // if HC = 0 for non-zero polynomial, returns error
-            if ((coefficients.Length != 1)
-                && (coefficients[coefficients.Length - 1] == 0))
-            {
-                throw new ArgumentException(
-                    " Error: byte array is not encoded polynomial over given finite field GF2m");
-            }
-            ComputeDegree();
-        }
-
-        /**
-         * Copy constructor.
-         *
-         * @param other another {@link PolynomialGF2mSmallM}
-         */
-        public PolynomialGF2mSmallM(PolynomialGF2mSmallM other)
-        {
-            // field needs not to be cloned since it is immutable
-            field = other.field;
-            degree = other.degree;
-            coefficients = IntUtils.Clone(other.coefficients);
-        }
-
-        /**
-         * Create a polynomial over the finite field GF(2^m) out of the given
-         * coefficient vector. The finite field is also obtained from the
-         * {@link GF2mVector}.
-         *
-         * @param vect the coefficient vector
-         */
-        public PolynomialGF2mSmallM(GF2mVector vect)
-        {
-            new PolynomialGF2mSmallM(vect.GetField(), vect.GetIntArrayForm());
-        }
-
-        /*
-          * ------------------------
-          */
-
-        /**
-         * Return the degree of this polynomial
-         *
-         * @return int degree of this polynomial if this is zero polynomial return
-         *         -1
-         */
-        public int GetDegree()
-        {
-            int d = coefficients.Length - 1;
-            if (coefficients[d] == 0)
-            {
-                return -1;
-            }
-            return d;
-        }
-
-        /**
-         * @return the head coefficient of this polynomial
-         */
-        public int GetHeadCoefficient()
-        {
-            if (degree == -1)
-            {
-                return 0;
-            }
-            return coefficients[degree];
-        }
-
-        /**
-         * Return the head coefficient of a polynomial.
-         *
-         * @param a the polynomial
-         * @return the head coefficient of <tt>a</tt>
-         */
-        private static int HeadCoefficient(int[] a)
-        {
-            int degree = ComputeDegree(a);
-            if (degree == -1)
-            {
-                return 0;
-            }
-            return a[degree];
-        }
-
-        /**
-         * Return the coefficient with the given index.
-         *
-         * @param index the index
-         * @return the coefficient with the given index
-         */
-        public int GetCoefficient(int index)
-        {
-            if ((index < 0) || (index > degree))
-            {
-                return 0;
-            }
-            return coefficients[index];
-        }
-
-        /**
-         * Returns encoded polynomial, i.e., this polynomial in byte array form
-         *
-         * @return the encoded polynomial
-         */
-        public byte[] GetEncoded()
-        {
-            int d = 8;
-            int count = 1;
-            while (field.GetDegree() > d)
-            {
-                count++;
-                d += 8;
-            }
-
-            byte[] res = new byte[coefficients.Length * count];
-            count = 0;
-            for (int i = 0; i < coefficients.Length; i++)
-            {
-                for (int j = 0; j < d; j += 8)
-                {
-                    res[count++] = (byte)(Utils.UnsignedRightBitShiftInt(coefficients[i], j));
-                }
-            }
-
-            return res;
-        }
-
-        /**
-         * Evaluate this polynomial <tt>p</tt> at a value <tt>e</tt> (in
-         * <tt>GF(2^m)</tt>) with the Horner scheme.
-         *
-         * @param e the element of the finite field GF(2^m)
-         * @return <tt>this(e)</tt>
-         */
-        public int evaluateAt(int e)
-        {
-            int result = coefficients[degree];
-            for (int i = degree - 1; i >= 0; i--)
-            {
-                result = field.Mult(result, e) ^ coefficients[i];
-            }
-            return result;
-        }
-
-        /**
-         * Compute the sum of this polynomial and the given polynomial.
-         *
-         * @param addend the addend
-         * @return <tt>this + a</tt> (newly created)
-         */
-        public PolynomialGF2mSmallM add(PolynomialGF2mSmallM addend)
-        {
-            int[] resultCoeff = Add(coefficients, addend.coefficients);
-            return new PolynomialGF2mSmallM(field, resultCoeff);
-        }
-
-        /**
-         * Add the given polynomial to this polynomial (overwrite this).
-         *
-         * @param addend the addend
-         */
-        public void AddToThis(PolynomialGF2mSmallM addend)
-        {
-            coefficients = Add(coefficients, addend.coefficients);
-            ComputeDegree();
-        }
-
-        /**
-         * Compute the sum of two polynomials a and b over the finite field
-         * <tt>GF(2^m)</tt>.
-         *
-         * @param a the first polynomial
-         * @param b the second polynomial
-         * @return a + b
-         */
-        private int[] Add(int[] a, int[] b)
-        {
-            int[] result, addend;
-            if (a.Length < b.Length)
-            {
-                result = new int[b.Length];
-                Array.Copy(b, 0, result, 0, b.Length);
-                addend = a;
-            }
-            else
-            {
-                result = new int[a.Length];
-                Array.Copy(a, 0, result, 0, a.Length);
-                addend = b;
-            }
-
-            for (int i = addend.Length - 1; i >= 0; i--)
-            {
-                result[i] = field.add(result[i], addend[i]);
-            }
-
-            return result;
-        }
-
-        /**
-         * Compute the sum of this polynomial and the monomial of the given degree.
-         *
-         * @param degree the degree of the monomial
-         * @return <tt>this + X^k</tt>
-         */
-        public PolynomialGF2mSmallM AddMonomial(int degree)
-        {
-            int[] monomial = new int[degree + 1];
-            monomial[degree] = 1;
-            int[] resultCoeff = Add(coefficients, monomial);
-            return new PolynomialGF2mSmallM(field, resultCoeff);
-        }
-
-        /**
-         * Compute the product of this polynomial with an element from GF(2^m).
-         *
-         * @param element an element of the finite field GF(2^m)
-         * @return <tt>this * element</tt> (newly created)
-         * @throws ArithmeticException if <tt>element</tt> is not an element of the finite
-         * field this polynomial is defined over.
-         */
-        public PolynomialGF2mSmallM MultWithElement(int element)
-        {
-            if (!field.IsElementOfThisField(element))
-            {
-                throw new ArithmeticException(
-                    "Not an element of the finite field this polynomial is defined over.");
-            }
-            int[] resultCoeff = MultWithElement(coefficients, element);
-            return new PolynomialGF2mSmallM(field, resultCoeff);
-        }
-
-        /**
-         * Multiply this polynomial with an element from GF(2^m).
-         *
-         * @param element an element of the finite field GF(2^m)
-         * @throws ArithmeticException if <tt>element</tt> is not an element of the finite
-         * field this polynomial is defined over.
-         */
-        public void MultThisWithElement(int element)
-        {
-            if (!field.IsElementOfThisField(element))
-            {
-                throw new ArithmeticException(
-                    "Not an element of the finite field this polynomial is defined over.");
-            }
-            coefficients = MultWithElement(coefficients, element);
-            ComputeDegree();
-        }
-
-        /**
-         * Compute the product of a polynomial a with an element from the finite
-         * field <tt>GF(2^m)</tt>.
-         *
-         * @param a       the polynomial
-         * @param element an element of the finite field GF(2^m)
-         * @return <tt>a * element</tt>
-         */
-        private int[] MultWithElement(int[] a, int element)
-        {
-            int degree = ComputeDegree(a);
-            if (degree == -1 || element == 0)
-            {
-                return new int[1];
-            }
-
-            if (element == 1)
-            {
-                return IntUtils.Clone(a);
-            }
-
-            int[] result = new int[degree + 1];
-            for (int i = degree; i >= 0; i--)
-            {
-                result[i] = field.Mult(a[i], element);
-            }
-
-            return result;
-        }
-
-        /**
-         * Compute the product of this polynomial with a monomial X^k.
-         *
-         * @param k the degree of the monomial
-         * @return <tt>this * X^k</tt>
-         */
-        public PolynomialGF2mSmallM MultWithMonomial(int k)
-        {
-            int[] resultCoeff = MultWithMonomial(coefficients, k);
-            return new PolynomialGF2mSmallM(field, resultCoeff);
-        }
-
-        /**
-         * Compute the product of a polynomial with a monomial X^k.
-         *
-         * @param a the polynomial
-         * @param k the degree of the monomial
-         * @return <tt>a * X^k</tt>
-         */
-        private static int[] MultWithMonomial(int[] a, int k)
-        {
-            int d = ComputeDegree(a);
-            if (d == -1)
-            {
-                return new int[1];
-            }
-            int[] result = new int[d + k + 1];
-            Array.Copy(a, 0, result, k, d + 1);
-            return result;
-        }
-
-        /**
-         * Divide this polynomial by the given polynomial.
-         *
-         * @param f a polynomial
-         * @return polynomial pair = {q,r} where this = q*f+r and deg(r) &lt;
-         *         deg(f);
-         */
-        public PolynomialGF2mSmallM[] Div(PolynomialGF2mSmallM f)
-        {
-            int[][] resultCoeffs = Div(coefficients, f.coefficients);
-            return new PolynomialGF2mSmallM[]{
-            new PolynomialGF2mSmallM(field, resultCoeffs[0]),
-            new PolynomialGF2mSmallM(field, resultCoeffs[1])};
-        }
-
-        /**
-         * Compute the result of the division of two polynomials over the field
-         * <tt>GF(2^m)</tt>.
-         *
-         * @param a the first polynomial
-         * @param f the second polynomial
-         * @return int[][] {q,r}, where a = q*f+r and deg(r) &lt; deg(f);
-         */
-        private int[][] Div(int[] a, int[] f)
-        {
-            int df = ComputeDegree(f);
-            int da = ComputeDegree(a) + 1;
-            if (df == -1)
-            {
-                throw new ArithmeticException("Division by zero.");
-            }
-            int[][] result = new int[2][];
-            result[0] = new int[1];
-            result[1] = new int[da];
-            int hc = HeadCoefficient(f);
-            hc = field.Inverse(hc);
-            result[0][0] = 0;
-            Array.Copy(a, 0, result[1], 0, result[1].Length);
-            while (df <= ComputeDegree(result[1]))
-            {
-                int[] q;
-                int[] coeff = new int[1];
-                coeff[0] = field.Mult(HeadCoefficient(result[1]), hc);
-                q = MultWithElement(f, coeff[0]);
-                int n = ComputeDegree(result[1]) - df;
-                q = MultWithMonomial(q, n);
-                coeff = MultWithMonomial(coeff, n);
-                result[0] = Add(coeff, result[0]);
-                result[1] = Add(q, result[1]);
-            }
-            return result;
-        }
-
-        /**
-         * Return the greatest common divisor of this and a polynomial <i>f</i>
-         *
-         * @param f polynomial
-         * @return GCD(this, f)
-         */
-        public PolynomialGF2mSmallM Gcd(PolynomialGF2mSmallM f)
-        {
-            int[] resultCoeff = Gcd(coefficients, f.coefficients);
-            return new PolynomialGF2mSmallM(field, resultCoeff);
-        }
-
-        /**
-         * Return the greatest common divisor of two polynomials over the field
-         * <tt>GF(2^m)</tt>.
-         *
-         * @param f the first polynomial
-         * @param g the second polynomial
-         * @return <tt>gcd(f, g)</tt>
-         */
-        private int[] Gcd(int[] f, int[] g)
-        {
-            int[] a = f;
-            int[] b = g;
-            if (ComputeDegree(a) == -1)
-            {
-                return b;
-            }
-            while (ComputeDegree(b) != -1)
-            {
-                int[] c = Mod(a, b);
-                a = new int[b.Length];
-                Array.Copy(b, 0, a, 0, a.Length);
-                b = new int[c.Length];
-                Array.Copy(c, 0, b, 0, b.Length);
-            }
-            int coeff = field.Inverse(HeadCoefficient(a));
-            return MultWithElement(a, coeff);
-        }
-
-        /**
-         * Compute the product of this polynomial and the given factor using a
-         * Karatzuba like scheme.
-         *
-         * @param factor the polynomial
-         * @return <tt>this * factor</tt>
-         */
-        public PolynomialGF2mSmallM Multiply(PolynomialGF2mSmallM factor)
-        {
-            int[] resultCoeff = Multiply(coefficients, factor.coefficients);
-            return new PolynomialGF2mSmallM(field, resultCoeff);
-        }
-
-        /**
-         * Compute the product of two polynomials over the field <tt>GF(2^m)</tt>
-         * using a Karatzuba like multiplication.
-         *
-         * @param a the first polynomial
-         * @param b the second polynomial
-         * @return a * b
-         */
-        private int[] Multiply(int[] a, int[] b)
-        {
-            int[] mult1, mult2;
-            if (ComputeDegree(a) < ComputeDegree(b))
-            {
-                mult1 = b;
-                mult2 = a;
-            }
-            else
-            {
-                mult1 = a;
-                mult2 = b;
-            }
-
-            mult1 = NormalForm(mult1);
-            mult2 = NormalForm(mult2);
-
-            if (mult2.Length == 1)
-            {
-                return MultWithElement(mult1, mult2[0]);
-            }
-
-            int d1 = mult1.Length;
-            int d2 = mult2.Length;
-            int[] result = new int[d1 + d2 - 1];
-
-            if (d2 != d1)
-            {
-                int[] res1 = new int[d2];
-                int[] res2 = new int[d1 - d2];
-                Array.Copy(mult1, 0, res1, 0, res1.Length);
-                Array.Copy(mult1, d2, res2, 0, res2.Length);
-                res1 = Multiply(res1, mult2);
-                res2 = Multiply(res2, mult2);
-                res2 = MultWithMonomial(res2, d2);
-                result = Add(res1, res2);
-            }
-            else
-            {
-                d2 = Utils.UnsignedRightBitShiftInt(d1 + 1, 1);
-                int d = d1 - d2;
-                int[] firstPartMult1 = new int[d2];
-                int[] firstPartMult2 = new int[d2];
-                int[] secondPartMult1 = new int[d];
-                int[] secondPartMult2 = new int[d];
-                Array.Copy(mult1, 0, firstPartMult1, 0,
-                        firstPartMult1.Length);
-                Array.Copy(mult1, d2, secondPartMult1, 0,
-                    secondPartMult1.Length);
-                Array.Copy(mult2, 0, firstPartMult2, 0,
-                        firstPartMult2.Length);
-                Array.Copy(mult2, d2, secondPartMult2, 0,
-                    secondPartMult2.Length);
-                int[] helpPoly1 = Add(firstPartMult1, secondPartMult1);
-                int[] helpPoly2 = Add(firstPartMult2, secondPartMult2);
-                int[] res1 = Multiply(firstPartMult1, firstPartMult2);
-                int[] res2 = Multiply(helpPoly1, helpPoly2);
-                int[] res3 = Multiply(secondPartMult1, secondPartMult2);
-                res2 = Add(res2, res1);
-                res2 = Add(res2, res3);
-                res3 = MultWithMonomial(res3, d2);
-                result = Add(res2, res3);
-                result = MultWithMonomial(result, d2);
-                result = Add(result, res1);
-            }
-
-            return result;
-        }
-
-        /*
-          * ---------------- PART II ----------------
-          *
-          */
-
-        /**
-         * Check a polynomial for irreducibility over the field <tt>GF(2^m)</tt>.
-         *
-         * @param a the polynomial to check
-         * @return true if a is irreducible, false otherwise
-         */
-        private bool IsIrreducible(int[] a)
-        {
-            if (a[0] == 0)
-            {
-                return false;
-            }
-            int d = ComputeDegree(a) >> 1;
-            int[] u = { 0, 1 };
-            int[] Y = { 0, 1 };
-            int fieldDegree = field.GetDegree();
-            for (int i = 0; i < d; i++)
-            {
-                for (int j = fieldDegree - 1; j >= 0; j--)
-                {
-                    u = ModMultiply(u, u, a);
-                }
-                u = NormalForm(u);
-                int[] g = Gcd(Add(u, Y), a);
-                if (ComputeDegree(g) != 0)
-                {
-                    return false;
-                }
-            }
-            return true;
-        }
-
-        /**
-         * Reduce this polynomial modulo another polynomial.
-         *
-         * @param f the reduction polynomial
-         * @return <tt>this mod f</tt>
-         */
-        public PolynomialGF2mSmallM Mod(PolynomialGF2mSmallM f)
-        {
-            int[] resultCoeff = Mod(coefficients, f.coefficients);
-            return new PolynomialGF2mSmallM(field, resultCoeff);
-        }
-
-        /**
-         * Reduce a polynomial modulo another polynomial.
-         *
-         * @param a the polynomial
-         * @param f the reduction polynomial
-         * @return <tt>a mod f</tt>
-         */
-        private int[] Mod(int[] a, int[] f)
-        {
-            int df = ComputeDegree(f);
-            if (df == -1)
-            {
-                throw new ArithmeticException("Division by zero");
-            }
-            int[] result = new int[a.Length];
-            int hc = HeadCoefficient(f);
-            hc = field.Inverse(hc);
-            Array.Copy(a, 0, result, 0, result.Length);
-            while (df <= ComputeDegree(result))
-            {
-                int[] q;
-                int coeff = field.Mult(HeadCoefficient(result), hc);
-                q = MultWithMonomial(f, ComputeDegree(result) - df);
-                q = MultWithElement(q, coeff);
-                result = Add(q, result);
-            }
-            return result;
-        }
-
-        /**
-         * Compute the product of this polynomial and another polynomial modulo a
-         * third polynomial.
-         *
-         * @param a another polynomial
-         * @param b the reduction polynomial
-         * @return <tt>this * a mod b</tt>
-         */
-        public PolynomialGF2mSmallM ModMultiply(PolynomialGF2mSmallM a,
-                                                PolynomialGF2mSmallM b)
-        {
-            int[] resultCoeff = ModMultiply(coefficients, a.coefficients,
-                b.coefficients);
-            return new PolynomialGF2mSmallM(field, resultCoeff);
-        }
-
-
-
-        /**
-         * Square this polynomial using a squaring matrix.
-         *
-         * @param matrix the squaring matrix
-         * @return <tt>this^2</tt> modulo the reduction polynomial implicitly
-         *         given via the squaring matrix
-         */
-        public PolynomialGF2mSmallM ModSquareMatrix(PolynomialGF2mSmallM[] matrix)
-        {
-
-            int length = matrix.Length;
-
-            int[] resultCoeff = new int[length];
-            int[] thisSquare = new int[length];
-
-            // square each entry of this polynomial
-            for (int i = 0; i < coefficients.Length; i++)
-            {
-                thisSquare[i] = field.Mult(coefficients[i], coefficients[i]);
-            }
-
-            // do matrix-vector multiplication
-            for (int i = 0; i < length; i++)
-            {
-                // compute scalar product of i-th row and coefficient vector
-                for (int j = 0; j < length; j++)
-                {
-                    if (i >= matrix[j].coefficients.Length)
-                    {
-                        continue;
-                    }
-                    int scalarTerm = field.Mult(matrix[j].coefficients[i],
-                        thisSquare[j]);
-                    resultCoeff[i] = field.add(resultCoeff[i], scalarTerm);
-                }
-            }
-
-            return new PolynomialGF2mSmallM(field, resultCoeff);
-        }
-
-        /**
-         * Compute the product of two polynomials modulo a third polynomial over the
-         * finite field <tt>GF(2^m)</tt>.
-         *
-         * @param a the first polynomial
-         * @param b the second polynomial
-         * @param g the reduction polynomial
-         * @return <tt>a * b mod g</tt>
-         */
-        private int[] ModMultiply(int[] a, int[] b, int[] g)
-        {
-            return Mod(Multiply(a, b), g);
-        }
-
-        /**
-         * Compute the square root of this polynomial modulo the given polynomial.
-         *
-         * @param a the reduction polynomial
-         * @return <tt>this^(1/2) mod a</tt>
-         */
-        public PolynomialGF2mSmallM ModSquareRoot(PolynomialGF2mSmallM a)
-        {
-            int[] resultCoeff = IntUtils.Clone(coefficients);
-            int[] help = ModMultiply(resultCoeff, resultCoeff, a.coefficients);
-            while (!IsEqual(help, coefficients))
-            {
-                resultCoeff = NormalForm(help);
-                help = ModMultiply(resultCoeff, resultCoeff, a.coefficients);
-            }
-
-            return new PolynomialGF2mSmallM(field, resultCoeff);
-        }
-
-        /**
-         * Compute the square root of this polynomial using a square root matrix.
-         *
-         * @param matrix the matrix for computing square roots in
-         *               <tt>(GF(2^m))^t</tt> the polynomial ring defining the
-         *               square root matrix
-         * @return <tt>this^(1/2)</tt> modulo the reduction polynomial implicitly
-         *         given via the square root matrix
-         */
-        public PolynomialGF2mSmallM ModSquareRootMatrix(
-            PolynomialGF2mSmallM[] matrix)
-        {
-
-            int length = matrix.Length;
-
-            int[] resultCoeff = new int[length];
-
-            // do matrix multiplication
-            for (int i = 0; i < length; i++)
-            {
-                // compute scalar product of i-th row and j-th column
-                for (int j = 0; j < length; j++)
-                {
-                    if (i >= matrix[j].coefficients.Length)
-                    {
-                        continue;
-                    }
-                    if (j < coefficients.Length)
-                    {
-                        int scalarTerm = field.Mult(matrix[j].coefficients[i],
-                            coefficients[j]);
-                        resultCoeff[i] = field.add(resultCoeff[i], scalarTerm);
-                    }
-                }
-            }
-
-            // compute the square root of each entry of the result coefficients
-            for (int i = 0; i < length; i++)
-            {
-                resultCoeff[i] = field.SqRoot(resultCoeff[i]);
-            }
-
-            return new PolynomialGF2mSmallM(field, resultCoeff);
-        }
-
-        /**
-         * Compute the result of the division of this polynomial by another
-         * polynomial modulo a third polynomial.
-         *
-         * @param divisor the divisor
-         * @param modulus the reduction polynomial
-         * @return <tt>this * divisor^(-1) mod modulus</tt>
-         */
-        public PolynomialGF2mSmallM ModDiv(PolynomialGF2mSmallM divisor,
-                                           PolynomialGF2mSmallM modulus)
-        {
-            int[] resultCoeff = ModDiv(coefficients, divisor.coefficients,
-                modulus.coefficients);
-            return new PolynomialGF2mSmallM(field, resultCoeff);
-        }
-
-        /**
-         * Compute the result of the division of two polynomials modulo a third
-         * polynomial over the field <tt>GF(2^m)</tt>.
-         *
-         * @param a the first polynomial
-         * @param b the second polynomial
-         * @param g the reduction polynomial
-         * @return <tt>a * b^(-1) mod g</tt>
-         */
-        private int[] ModDiv(int[] a, int[] b, int[] g)
-        {
-            int[] r0 = NormalForm(g);
-            int[] r1 = Mod(b, g);
-            int[] s0 = { 0 };
-            int[] s1 = Mod(a, g);
-            int[] s2;
-            int[][] q;
-            while (ComputeDegree(r1) != -1)
-            {
-                q = Div(r0, r1);
-                r0 = NormalForm(r1);
-                r1 = NormalForm(q[1]);
-                s2 = Add(s0, ModMultiply(q[0], s1, g));
-                s0 = NormalForm(s1);
-                s1 = NormalForm(s2);
-
-            }
-            int hc = HeadCoefficient(r0);
-            s0 = MultWithElement(s0, field.Inverse(hc));
-            return s0;
-        }
-
-        /**
-         * Compute the inverse of this polynomial modulo the given polynomial.
-         *
-         * @param a the reduction polynomial
-         * @return <tt>this^(-1) mod a</tt>
-         */
-        public PolynomialGF2mSmallM ModInverse(PolynomialGF2mSmallM a)
-        {
-            int[] unit = { 1 };
-            int[] resultCoeff = ModDiv(unit, coefficients, a.coefficients);
-            return new PolynomialGF2mSmallM(field, resultCoeff);
-        }
-
-        /**
-         * Compute a polynomial pair (a,b) from this polynomial and the given
-         * polynomial g with the property b*this = a mod g and deg(a)&lt;=deg(g)/2.
-         *
-         * @param g the reduction polynomial
-         * @return PolynomialGF2mSmallM[] {a,b} with b*this = a mod g and deg(a)&lt;=
-         *         deg(g)/2
-         */
-        public PolynomialGF2mSmallM[] ModPolynomialToFracton(PolynomialGF2mSmallM g)
-        {
-            int dg = g.degree >> 1;
-            int[] a0 = NormalForm(g.coefficients);
-            int[] a1 = Mod(coefficients, g.coefficients);
-            int[] b0 = { 0 };
-            int[] b1 = { 1 };
-            while (ComputeDegree(a1) > dg)
-            {
-                int[][] q = Div(a0, a1);
-                a0 = a1;
-                a1 = q[1];
-                int[] b2 = Add(b0, ModMultiply(q[0], b1, g.coefficients));
-                b0 = b1;
-                b1 = b2;
-            }
-
-            return new PolynomialGF2mSmallM[]{
-            new PolynomialGF2mSmallM(field, a1),
-            new PolynomialGF2mSmallM(field, b1)};
-        }
-
-        /**
-         * checks if given object is equal to this polynomial.
-         * <p>
-         * The method returns false whenever the given object is not polynomial over
-         * GF(2^m).
-         *
-         * @param other object
-         * @return true or false
-         */
-        public bool equals(Object other)
-        {
-
-            if (other == null || !(other is PolynomialGF2mSmallM))
-            {
-                return false;
-            }
-
-            PolynomialGF2mSmallM p = (PolynomialGF2mSmallM)other;
-
-            if ((field.Equals(p.field)) && (degree == p.degree)
-                && (IsEqual(coefficients, p.coefficients)))
-            {
-                return true;
-            }
-
-            return false;
-        }
-
-        /**
-         * Compare two polynomials given as int arrays.
-         *
-         * @param a the first polynomial
-         * @param b the second polynomial
-         * @return <tt>true</tt> if <tt>a</tt> and <tt>b</tt> represent the
-         *         same polynomials, <tt>false</tt> otherwise
-         */
-        private static bool IsEqual(int[] a, int[] b)
-        {
-            int da = ComputeDegree(a);
-            int db = ComputeDegree(b);
-            if (da != db)
-            {
-                return false;
-            }
-            for (int i = 0; i <= da; i++)
-            {
-                if (a[i] != b[i])
-                {
-                    return false;
-                }
-            }
-            return true;
-        }
-
-        /**
-         * @return the hash code of this polynomial
-         */
-        public int HashCode()
-        {
-            int hash = field.HashCode();
-            for (int j = 0; j < coefficients.Length; j++)
-            {
-                hash = hash * 31 + coefficients[j];
-            }
-            return hash;
-        }
-
-        /**
-         * Returns a human readable form of the polynomial.
-         *
-         * @return a human readable form of the polynomial.
-         */
-        public String toString()
-        {
-            String str = " Polynomial over " + field.ToString() + ": \n";
-
-            for (int i = 0; i < coefficients.Length; i++)
-            {
-                str = str + field.ElementToStr(coefficients[i]) + "Y^" + i + "+";
-            }
-            str = str + ";";
-
-            return str;
-        }
-
-        /**
-         * Compute the degree of this polynomial. If this is the zero polynomial,
-         * the degree is -1.
-         */
-        private void ComputeDegree()
-        {
-            for (degree = coefficients.Length - 1; degree >= 0
-                && coefficients[degree] == 0; degree--)
-            {
-                ;
-            }
-        }
-
-        /**
-         * Compute the degree of a polynomial.
-         *
-         * @param a the polynomial
-         * @return the degree of the polynomial <tt>a</tt>. If <tt>a</tt> is
-         *         the zero polynomial, return -1.
-         */
-        private static int ComputeDegree(int[] a)
-        {
-            int degree;
-            for (degree = a.Length - 1; degree >= 0 && a[degree] == 0; degree--)
-            {
-                ;
-            }
-            return degree;
-        }
-
-        /**
-         * Strip leading zero coefficients from the given polynomial.
-         *
-         * @param a the polynomial
-         * @return the reduced polynomial
-         */
-        private static int[] NormalForm(int[] a)
-        {
-            int d = ComputeDegree(a);
-
-            // if a is the zero polynomial
-            if (d == -1)
-            {
-                // return new zero polynomial
-                return new int[1];
-            }
-
-            // if a already is in normal form
-            if (a.Length == d + 1)
-            {
-                // return a clone of a
-                return IntUtils.Clone(a);
-            }
-
-            // else, reduce a
-            int[] result = new int[d + 1];
-            Array.Copy(a, 0, result, 0, d + 1);
-            return result;
-        }
-
-        /**
-         * Compute the product of this polynomial and another polynomial modulo a
-         * third polynomial.
-         *
-         * @param a another polynomial
-         * @param b the reduction polynomial
-         * @return <tt>this * a mod b</tt>
-         */
-        public PolynomialGF2mSmallM ModKaratsubaMultiplyBigDeg(PolynomialGF2mSmallM a,
-                                                               PolynomialGF2mSmallM b)
-        {
-            int[] resultCoeff = ModKaratsubaMultiplyBigDeg(coefficients, a.coefficients,
-                    b.coefficients);
-            return new PolynomialGF2mSmallM(field, resultCoeff);
-        }
-
-        /**
-         * Compute the inverse of this polynomial modulo the given polynomial.
-         *
-         * @param a the reduction polynomial
-         * @return <tt>this^(-1) mod a</tt>
-         */
-        public PolynomialGF2mSmallM ModInverseBigDeg(PolynomialGF2mSmallM a)
-        {
-            int[] unit = { 1 };
-            int[] resultCoeff = ModDivBigDeg(unit, coefficients, a.coefficients);
-            return new PolynomialGF2mSmallM(field, resultCoeff);
-        }
-
-        private int[] ModDivBigDeg(int[] a, int[] b, int[] g)
-        {
-            int[] r0 = NormalForm(g);
-            int[] r1 = Mod(b, g);
-            int[] s0 = { 0 };
-            int[] s1 = Mod(a, g);
-            int[] s2;
-            int[][] q;
-            while (ComputeDegree(r1) != -1)
-            {
-                q = Div(r0, r1);
-                r0 = NormalForm(r1);
-                r1 = NormalForm(q[1]);
-                s2 = Add(s0, ModKaratsubaMultiplyBigDeg(q[0], s1, g));
-                s0 = NormalForm(s1);
-                s1 = NormalForm(s2);
-            }
-            int hc = HeadCoefficient(r0);
-            s0 = MultWithElement(s0, field.Inverse(hc));
-            return s0;
-        }
-
-        /**
-         * Compute the product of two polynomials modulo a third polynomial over the
-         * finite field <tt>GF(2^m)</tt>.
-         *
-         * @param aa the first polynomial
-         * @param bb the second polynomial
-         * @param g the reduction polynomial
-         * @return <tt>a * b mod g</tt>
-         */
-        private int[] ModKaratsubaMultiplyBigDeg(int[] aa, int[] bb, int[] g)
-        {
-            int[] a, b;
-            if (aa.Length >= bb.Length)
-            {
-                a = Arrays.Clone(aa);
-                b = Arrays.Clone(bb);
-            }
-            else
-            {
-                a = Arrays.Clone(bb);
-                b = Arrays.Clone(aa);
-            }
-
-            int n = a.Length;
-            int m = b.Length;
-
-            int[] D = new int[(n + m) / 2];
-            int[] S = new int[n + m - 1];
-            int[] T = new int[n + m - 1];
-            int[] C = new int[n + m - 1];
-
-            for (int i = 0; i < m; i++)
-            {
-                D[i] = a[i] * b[i];
-            }
-
-            for (int i = 1; i < n + m - 2; i++)
-            {
-                for (int p = 0; p < System.Math.Min(m, i); p++)
-                {
-                    int q = i - p;
-                    if (p >= q)
-                    {
-                        break;
-                    }
-
-                    int ap = a[p];
-                    int aq = 0;
-
-                    if (q < a.Length)
-                    {
-                        aq = a[q];
-                    }
-
-                    int bp = b[p];
-                    int dp = D[p];
-
-                    if (q < m && p < m)
-                    {
-                        int bq = b[q];
-                        int dq = D[q];
-
-                        S[i] = S[i] + (ap + aq) * (bp + bq);
-                        T[i] = T[i] + dp + dq;
-                    }
-                    else if (q >= m && q < n)
-                    {
-                        S[i] = S[i] + ((ap + aq) * bp);
-                        T[i] = T[i] + dp;
-                    }
-                }
-            }
-
-            for (int i = 0; i < n + m - 1; i++)
-            {
-                if (i == 0)
-                {
-                    C[i] = D[i] % 2;
-                }
-                else if (i == n + m - 2)
-                {
-                    C[i] = (a[a.Length - 1] * b[b.Length - 1]) % 2;
-                }
-                else if (i % 2 == 1)
-                {
-                    C[i] = (S[i] - T[i]) % 2;
-                }
-                else
-                {
-                    C[i] = (S[i] - T[i] + D[i / 2]) % 2;
-                }
-            }
-            int[] res = Mod(C, g);
-            return res;
-        }
-    }
-}