summary refs log tree commit diff
path: root/crypto/src/math/ec
diff options
context:
space:
mode:
Diffstat (limited to 'crypto/src/math/ec')
-rw-r--r--crypto/src/math/ec/custom/sec/SecT113Field.cs180
-rw-r--r--crypto/src/math/ec/custom/sec/SecT113FieldElement.cs213
-rw-r--r--crypto/src/math/ec/custom/sec/SecT113R1Curve.cs188
-rw-r--r--crypto/src/math/ec/custom/sec/SecT113R1Point.cs281
-rw-r--r--crypto/src/math/ec/custom/sec/SecT113R2Curve.cs190
-rw-r--r--crypto/src/math/ec/custom/sec/SecT113R2Point.cs291
-rw-r--r--crypto/src/math/ec/custom/sec/SecT131Field.cs274
-rw-r--r--crypto/src/math/ec/custom/sec/SecT131FieldElement.cs213
-rw-r--r--crypto/src/math/ec/custom/sec/SecT131R1Curve.cs188
-rw-r--r--crypto/src/math/ec/custom/sec/SecT131R1Point.cs287
-rw-r--r--crypto/src/math/ec/custom/sec/SecT131R2Curve.cs190
-rw-r--r--crypto/src/math/ec/custom/sec/SecT131R2Point.cs283
-rw-r--r--crypto/src/math/ec/custom/sec/SecT163Field.cs272
-rw-r--r--crypto/src/math/ec/custom/sec/SecT163FieldElement.cs213
-rw-r--r--crypto/src/math/ec/custom/sec/SecT163K1Curve.cs194
-rw-r--r--crypto/src/math/ec/custom/sec/SecT163K1Point.cs289
-rw-r--r--crypto/src/math/ec/custom/sec/SecT163R1Curve.cs190
-rw-r--r--crypto/src/math/ec/custom/sec/SecT163R1Point.cs283
-rw-r--r--crypto/src/math/ec/custom/sec/SecT163R2Curve.cs188
-rw-r--r--crypto/src/math/ec/custom/sec/SecT163R2Point.cs290
-rw-r--r--crypto/src/math/ec/custom/sec/SecT233Field.cs243
-rw-r--r--crypto/src/math/ec/custom/sec/SecT233FieldElement.cs213
-rw-r--r--crypto/src/math/ec/custom/sec/SecT233K1Curve.cs196
-rw-r--r--crypto/src/math/ec/custom/sec/SecT233K1Point.cs302
-rw-r--r--crypto/src/math/ec/custom/sec/SecT233R1Curve.cs188
-rw-r--r--crypto/src/math/ec/custom/sec/SecT233R1Point.cs282
-rw-r--r--crypto/src/math/ec/custom/sec/SecT239Field.cs249
-rw-r--r--crypto/src/math/ec/custom/sec/SecT239FieldElement.cs213
-rw-r--r--crypto/src/math/ec/custom/sec/SecT239K1Curve.cs194
-rw-r--r--crypto/src/math/ec/custom/sec/SecT239K1Point.cs297
-rw-r--r--crypto/src/math/ec/custom/sec/SecT283Field.cs335
-rw-r--r--crypto/src/math/ec/custom/sec/SecT283FieldElement.cs213
-rw-r--r--crypto/src/math/ec/custom/sec/SecT283K1Curve.cs194
-rw-r--r--crypto/src/math/ec/custom/sec/SecT283K1Point.cs296
-rw-r--r--crypto/src/math/ec/custom/sec/SecT283R1Curve.cs188
-rw-r--r--crypto/src/math/ec/custom/sec/SecT283R1Point.cs282
-rw-r--r--crypto/src/math/ec/custom/sec/SecT409Field.cs244
-rw-r--r--crypto/src/math/ec/custom/sec/SecT409FieldElement.cs213
-rw-r--r--crypto/src/math/ec/custom/sec/SecT409K1Curve.cs194
-rw-r--r--crypto/src/math/ec/custom/sec/SecT409K1Point.cs296
-rw-r--r--crypto/src/math/ec/custom/sec/SecT409R1Curve.cs188
-rw-r--r--crypto/src/math/ec/custom/sec/SecT409R1Point.cs282
-rw-r--r--crypto/src/math/ec/custom/sec/SecT571Field.cs251
-rw-r--r--crypto/src/math/ec/custom/sec/SecT571FieldElement.cs213
-rw-r--r--crypto/src/math/ec/custom/sec/SecT571K1Curve.cs196
-rw-r--r--crypto/src/math/ec/custom/sec/SecT571K1Point.cs296
-rw-r--r--crypto/src/math/ec/custom/sec/SecT571R1Curve.cs193
-rw-r--r--crypto/src/math/ec/custom/sec/SecT571R1Point.cs286
48 files changed, 11434 insertions, 0 deletions
diff --git a/crypto/src/math/ec/custom/sec/SecT113Field.cs b/crypto/src/math/ec/custom/sec/SecT113Field.cs
new file mode 100644
index 000000000..dbb645e6f
--- /dev/null
+++ b/crypto/src/math/ec/custom/sec/SecT113Field.cs
@@ -0,0 +1,180 @@
+using System;
+using System.Diagnostics;
+
+using Org.BouncyCastle.Math.Raw;
+
+namespace Org.BouncyCastle.Math.EC.Custom.Sec
+{
+    internal class SecT113Field
+    {
+        private const ulong M49 = ulong.MaxValue >> 15;
+        private const ulong M57 = ulong.MaxValue >> 7;
+
+        public static void Add(ulong[] x, ulong[] y, ulong[] z)
+        {
+            z[0] = x[0] ^ y[0];
+            z[1] = x[1] ^ y[1];
+        }
+
+        public static void AddExt(ulong[] xx, ulong[] yy, ulong[] zz)
+        {
+            zz[0] = xx[0] ^ yy[0];
+            zz[1] = xx[1] ^ yy[1];
+            zz[2] = xx[2] ^ yy[2];
+            zz[3] = xx[3] ^ yy[3];
+        }
+
+        public static void AddOne(ulong[] x, ulong[] z)
+        {
+            z[0] = x[0] ^ 1UL;
+            z[1] = x[1];
+        }
+
+        public static ulong[] FromBigInteger(BigInteger x)
+        {
+            ulong[] z = Nat128.FromBigInteger64(x);
+            Reduce15(z, 0);
+            return z;
+        }
+
+        public static void Multiply(ulong[] x, ulong[] y, ulong[] z)
+        {
+            ulong[] tt = Nat128.CreateExt64();
+            ImplMultiply(x, y, tt);
+            Reduce(tt, z);
+        }
+
+        public static void MultiplyAddToExt(ulong[] x, ulong[] y, ulong[] zz)
+        {
+            ulong[] tt = Nat128.CreateExt64();
+            ImplMultiply(x, y, tt);
+            AddExt(zz, tt, zz);
+        }
+
+        public static void Reduce(ulong[] xx, ulong[] z)
+        {
+            ulong x0 = xx[0], x1 = xx[1], x2 = xx[2], x3 = xx[3];
+
+            x1 ^= (x3 << 15) ^ (x3 << 24);
+            x2 ^= (x3 >> 49) ^ (x3 >> 40);
+
+            x0 ^= (x2 << 15) ^ (x2 << 24);
+            x1 ^= (x2 >> 49) ^ (x2 >> 40);
+
+            ulong t = x1 >> 49;
+            z[0]    = x0 ^ t ^ (t << 9);
+            z[1]    = x1 & M49;
+        }
+
+        public static void Reduce15(ulong[] z, int zOff)
+        {
+            ulong z1     = z[zOff + 1], t = z1 >> 49;
+            z[zOff    ] ^= t ^ (t << 9);
+            z[zOff + 1]  = z1 & M49;
+        }
+
+        public static void Square(ulong[] x, ulong[] z)
+        {
+            ulong[] tt = Nat128.CreateExt64();
+            ImplSquare(x, tt);
+            Reduce(tt, z);
+        }
+
+        public static void SquareAddToExt(ulong[] x, ulong[] zz)
+        {
+            ulong[] tt = Nat128.CreateExt64();
+            ImplSquare(x, tt);
+            AddExt(zz, tt, zz);
+        }
+
+        public static void SquareN(ulong[] x, int n, ulong[] z)
+        {
+            Debug.Assert(n > 0);
+
+            ulong[] tt = Nat128.CreateExt64();
+            ImplSquare(x, tt);
+            Reduce(tt, z);
+
+            while (--n > 0)
+            {
+                ImplSquare(z, tt);
+                Reduce(tt, z);
+            }
+        }
+
+        protected static void ImplMultiply(ulong[] x, ulong[] y, ulong[] zz)
+        {
+            /*
+             * "Three-way recursion" as described in "Batch binary Edwards", Daniel J. Bernstein.
+             */
+
+            ulong f0 = x[0], f1 = x[1];
+            f1  = ((f0 >> 57) ^ (f1 << 7)) & M57;
+            f0 &= M57;
+
+            ulong g0 = y[0], g1 = y[1];
+            g1  = ((g0 >> 57) ^ (g1 << 7)) & M57;
+            g0 &= M57;
+
+            ulong[] H = new ulong[6];
+
+            ImplMulw(f0, g0, H, 0);               // H(0)       57/56 bits                                
+            ImplMulw(f1, g1, H, 2);               // H(INF)     57/54 bits                                
+            ImplMulw(f0 ^ f1, g0 ^ g1, H, 4);     // H(1)       57/56 bits
+
+            ulong r  = H[1] ^ H[2];
+            ulong z0 = H[0],
+                  z3 = H[3],
+                  z1 = H[4] ^ z0 ^ r,
+                  z2 = H[5] ^ z3 ^ r;
+
+            zz[0] =  z0        ^ (z1 << 57);
+            zz[1] = (z1 >>  7) ^ (z2 << 50);
+            zz[2] = (z2 >> 14) ^ (z3 << 43);
+            zz[3] = (z3 >> 21);
+        }
+
+        protected static void ImplMulw(ulong x, ulong y, ulong[] z, int zOff)
+        {
+            Debug.Assert(x >> 57 == 0);
+            Debug.Assert(y >> 57 == 0);
+
+            ulong[] u = new ulong[8];
+            //u[0] = 0;
+            u[1] = y;
+            u[2] = u[1] << 1;
+            u[3] = u[2] ^ y;
+            u[4] = u[2] << 1;
+            u[5] = u[4] ^ y;
+            u[6] = u[3] << 1;
+            u[7] = u[6] ^ y;
+
+            uint j = (uint)x;
+            ulong g, h = 0, l = u[j & 7];
+            int k = 48;
+            do
+            {
+                j  = (uint)(x >> k);
+                g  = u[j & 7]
+                   ^ u[(j >> 3) & 7] << 3
+                   ^ u[(j >> 6) & 7] << 6;
+                l ^= (g << k);
+                h ^= (g >> -k);
+            }
+            while ((k -= 9) > 0);
+
+            h ^= ((x & 0x0100804020100800UL) & (ulong)(((long)y << 7) >> 63)) >> 8;
+
+            Debug.Assert(h >> 49 == 0);
+
+            z[zOff    ] = l & M57;
+            z[zOff + 1] = (l >> 57) ^ (h << 7);
+        }
+
+        protected static void ImplSquare(ulong[] x, ulong[] zz)
+        {
+            Interleave.Expand64To128(x[0], zz, 0);
+            Interleave.Expand64To128(x[1], zz, 2);
+        }
+    }
+}
diff --git a/crypto/src/math/ec/custom/sec/SecT113FieldElement.cs b/crypto/src/math/ec/custom/sec/SecT113FieldElement.cs
new file mode 100644
index 000000000..7e9d53e44
--- /dev/null
+++ b/crypto/src/math/ec/custom/sec/SecT113FieldElement.cs
@@ -0,0 +1,213 @@
+using System;
+
+using Org.BouncyCastle.Math.Raw;
+using Org.BouncyCastle.Utilities;
+
+namespace Org.BouncyCastle.Math.EC.Custom.Sec
+{
+    internal class SecT113FieldElement
+        : ECFieldElement
+    {
+        protected internal readonly ulong[] x;
+
+        public SecT113FieldElement(BigInteger x)
+        {
+            if (x == null || x.SignValue < 0)
+                throw new ArgumentException("value invalid for SecT113FieldElement", "x");
+
+            this.x = SecT113Field.FromBigInteger(x);
+        }
+
+        public SecT113FieldElement()
+        {
+            this.x = Nat128.Create64();
+        }
+
+        protected internal SecT113FieldElement(ulong[] x)
+        {
+            this.x = x;
+        }
+
+        public override bool IsOne
+        {
+            get { return Nat128.IsOne64(x); }
+        }
+
+        public override bool IsZero
+        {
+            get { return Nat128.IsZero64(x); }
+        }
+
+        public override bool TestBitZero()
+        {
+            return (x[0] & 1L) != 0L;
+        }
+
+        public override BigInteger ToBigInteger()
+        {
+            return Nat128.ToBigInteger64(x);
+        }
+
+        public override string FieldName
+        {
+            get { return "SecT113Field"; }
+        }
+
+        public override int FieldSize
+        {
+            get { return 113; }
+        }
+
+        public override ECFieldElement Add(ECFieldElement b)
+        {
+            ulong[] z = Nat128.Create64();
+            SecT113Field.Add(x, ((SecT113FieldElement)b).x, z);
+            return new SecT113FieldElement(z);
+        }
+
+        public override ECFieldElement AddOne()
+        {
+            ulong[] z = Nat128.Create64();
+            SecT113Field.AddOne(x, z);
+            return new SecT113FieldElement(z);
+        }
+
+        public override ECFieldElement Subtract(ECFieldElement b)
+        {
+            // Addition and Subtraction are the same in F2m
+            return Add(b);
+        }
+
+        public override ECFieldElement Multiply(ECFieldElement b)
+        {
+            ulong[] z = Nat128.Create64();
+            SecT113Field.Multiply(x, ((SecT113FieldElement)b).x, z);
+            return new SecT113FieldElement(z);
+        }
+
+        public override ECFieldElement MultiplyMinusProduct(ECFieldElement b, ECFieldElement x, ECFieldElement y)
+        {
+            return MultiplyPlusProduct(b, x, y);
+        }
+
+        public override ECFieldElement MultiplyPlusProduct(ECFieldElement b, ECFieldElement x, ECFieldElement y)
+        {
+            ulong[] ax = this.x, bx = ((SecT113FieldElement)b).x;
+            ulong[] xx = ((SecT113FieldElement)x).x, yx = ((SecT113FieldElement)y).x;
+
+            ulong[] tt = Nat128.CreateExt64();
+            SecT113Field.MultiplyAddToExt(ax, bx, tt);
+            SecT113Field.MultiplyAddToExt(xx, yx, tt);
+
+            ulong[] z = Nat128.Create64();
+            SecT113Field.Reduce(tt, z);
+            return new SecT113FieldElement(z);
+        }
+
+        public override ECFieldElement Divide(ECFieldElement b)
+        {
+            return Multiply(b.Invert());
+        }
+
+        public override ECFieldElement Negate()
+        {
+            return this;
+        }
+
+        public override ECFieldElement Square()
+        {
+            ulong[] z = Nat128.Create64();
+            SecT113Field.Square(x, z);
+            return new SecT113FieldElement(z);
+        }
+
+        public override ECFieldElement SquareMinusProduct(ECFieldElement x, ECFieldElement y)
+        {
+            return SquarePlusProduct(x, y);
+        }
+
+        public override ECFieldElement SquarePlusProduct(ECFieldElement x, ECFieldElement y)
+        {
+            ulong[] ax = this.x;
+            ulong[] xx = ((SecT113FieldElement)x).x, yx = ((SecT113FieldElement)y).x;
+
+            ulong[] tt = Nat128.CreateExt64();
+            SecT113Field.SquareAddToExt(ax, tt);
+            SecT113Field.MultiplyAddToExt(xx, yx, tt);
+
+            ulong[] z = Nat128.Create64();
+            SecT113Field.Reduce(tt, z);
+            return new SecT113FieldElement(z);
+        }
+
+        public override ECFieldElement SquarePow(int pow)
+        {
+            if (pow < 1)
+                return this;
+
+            ulong[] z = Nat128.Create64();
+            SecT113Field.SquareN(x, pow, z);
+            return new SecT113FieldElement(z);
+        }
+
+        public override ECFieldElement Invert()
+        {
+            return new SecT113FieldElement(
+                AbstractF2mCurve.Inverse(113, new int[]{ 9 }, ToBigInteger()));
+        }
+
+        public override ECFieldElement Sqrt()
+        {
+            return SquarePow(M - 1);
+        }
+
+        public virtual int Representation
+        {
+            get { return F2mFieldElement.Tpb; }
+        }
+
+        public virtual int M
+        {
+            get { return 113; }
+        }
+
+        public virtual int K1
+        {
+            get { return 9; }
+        }
+
+        public virtual int K2
+        {
+            get { return 0; }
+        }
+
+        public virtual int K3
+        {
+            get { return 0; }
+        }
+
+        public override bool Equals(object obj)
+        {
+            return Equals(obj as SecT113FieldElement);
+        }
+
+        public override bool Equals(ECFieldElement other)
+        {
+            return Equals(other as SecT113FieldElement);
+        }
+
+        public virtual bool Equals(SecT113FieldElement other)
+        {
+            if (this == other)
+                return true;
+            if (null == other)
+                return false;
+            return Nat128.Eq64(x, other.x);
+        }
+
+        public override int GetHashCode()
+        {
+            return 113009 ^ Arrays.GetHashCode(x, 0, 2);
+        }
+    }
+}
diff --git a/crypto/src/math/ec/custom/sec/SecT113R1Curve.cs b/crypto/src/math/ec/custom/sec/SecT113R1Curve.cs
new file mode 100644
index 000000000..04e69e2a8
--- /dev/null
+++ b/crypto/src/math/ec/custom/sec/SecT113R1Curve.cs
@@ -0,0 +1,188 @@
+using System;
+
+using Org.BouncyCastle.Utilities.Encoders;
+
+namespace Org.BouncyCastle.Math.EC.Custom.Sec
+{
+    internal class SecT113R1Curve
+        : AbstractF2mCurve
+    {
+        private const int SecT113R1_DEFAULT_COORDS = COORD_LAMBDA_PROJECTIVE;
+
+        protected readonly SecT113R1Point m_infinity;
+
+        public SecT113R1Curve()
+            : base(113, 9, 0, 0)
+        {
+            this.m_infinity = new SecT113R1Point(this, null, null);
+
+            this.m_a = FromBigInteger(new BigInteger(1, Hex.Decode("003088250CA6E7C7FE649CE85820F7")));
+            this.m_b = FromBigInteger(new BigInteger(1, Hex.Decode("00E8BEE4D3E2260744188BE0E9C723")));
+            this.m_order = new BigInteger(1, Hex.Decode("0100000000000000D9CCEC8A39E56F"));
+            this.m_cofactor = BigInteger.Two;
+
+            this.m_coord = SecT113R1_DEFAULT_COORDS;
+        }
+
+        protected override ECCurve CloneCurve()
+        {
+            return new SecT113R1Curve();
+        }
+
+        public override bool SupportsCoordinateSystem(int coord)
+        {
+            switch (coord)
+            {
+            case COORD_LAMBDA_PROJECTIVE:
+                return true;
+            default:
+                return false;
+            }
+        }
+
+        public override ECPoint Infinity
+        {
+            get { return m_infinity; }
+        }
+
+        public override int FieldSize
+        {
+            get { return 113; }
+        }
+
+        public override ECFieldElement FromBigInteger(BigInteger x)
+        {
+            return new SecT113FieldElement(x);
+        }
+
+        protected internal override ECPoint CreateRawPoint(ECFieldElement x, ECFieldElement y, bool withCompression)
+        {
+            return new SecT113R1Point(this, x, y, withCompression);
+        }
+
+        protected internal override ECPoint CreateRawPoint(ECFieldElement x, ECFieldElement y, ECFieldElement[] zs, bool withCompression)
+        {
+            return new SecT113R1Point(this, x, y, zs, withCompression);
+        }
+
+       public override bool IsKoblitz
+        {
+            get { return false; }
+        }
+
+        /**
+         * Decompresses a compressed point P = (xp, yp) (X9.62 s 4.2.2).
+         * 
+         * @param yTilde
+         *            ~yp, an indication bit for the decompression of yp.
+         * @param X1
+         *            The field element xp.
+         * @return the decompressed point.
+         */
+        protected override ECPoint DecompressPoint(int yTilde, BigInteger X1)
+        {
+            ECFieldElement x = FromBigInteger(X1), y = null;
+            if (x.IsZero)
+            {
+                y = B.Sqrt();
+            }
+            else
+            {
+                ECFieldElement beta = x.Square().Invert().Multiply(B).Add(A).Add(x);
+                ECFieldElement z = SolveQuadraticEquation(beta);
+                if (z != null)
+                {
+                    if (z.TestBitZero() != (yTilde == 1))
+                    {
+                        z = z.AddOne();
+                    }
+
+                    switch (this.CoordinateSystem)
+                    {
+                    case COORD_LAMBDA_AFFINE:
+                    case COORD_LAMBDA_PROJECTIVE:
+                    {
+                        y = z.Add(x);
+                        break;
+                    }
+                    default:
+                    {
+                        y = z.Multiply(x);
+                        break;
+                    }
+                    }
+                }
+            }
+
+            if (y == null)
+                throw new ArgumentException("Invalid point compression");
+
+            return this.CreateRawPoint(x, y, true);
+        }
+
+        /**
+         * Solves a quadratic equation <code>z<sup>2</sup> + z = beta</code>(X9.62
+         * D.1.6) The other solution is <code>z + 1</code>.
+         * 
+         * @param beta
+         *            The value to solve the quadratic equation for.
+         * @return the solution for <code>z<sup>2</sup> + z = beta</code> or
+         *         <code>null</code> if no solution exists.
+         */
+        private ECFieldElement SolveQuadraticEquation(ECFieldElement beta)
+        {
+            if (beta.IsZero)
+                return beta;
+
+            ECFieldElement zeroElement = FromBigInteger(BigInteger.Zero);
+
+            ECFieldElement z = null;
+            ECFieldElement gamma = null;
+
+            Random rand = new Random();
+            do
+            {
+                ECFieldElement t = FromBigInteger(new BigInteger(113, rand));
+                z = zeroElement;
+                ECFieldElement w = beta;
+                for (int i = 1; i < 113; i++)
+                {
+                    ECFieldElement w2 = w.Square();
+                    z = z.Square().Add(w2.Multiply(t));
+                    w = w2.Add(beta);
+                }
+                if (!w.IsZero)
+                    return null;
+                gamma = z.Square().Add(z);
+            }
+            while (gamma.IsZero);
+
+            return z;
+        }
+
+        public virtual int M
+        {
+            get { return 113; }
+        }
+
+        public virtual bool IsTrinomial
+        {
+            get { return true; }
+        }
+
+        public virtual int K1
+        {
+            get { return 9; }
+        }
+
+        public virtual int K2
+        {
+            get { return 0; }
+        }
+
+        public virtual int K3
+        {
+            get { return 0; }
+        }
+    }
+}
diff --git a/crypto/src/math/ec/custom/sec/SecT113R1Point.cs b/crypto/src/math/ec/custom/sec/SecT113R1Point.cs
new file mode 100644
index 000000000..6ecc8b01a
--- /dev/null
+++ b/crypto/src/math/ec/custom/sec/SecT113R1Point.cs
@@ -0,0 +1,281 @@
+using System;
+
+namespace Org.BouncyCastle.Math.EC.Custom.Sec
+{
+    internal class SecT113R1Point
+        : AbstractF2mPoint
+    {
+        /**
+         * @deprecated Use ECCurve.createPoint to construct points
+         */
+        public SecT113R1Point(ECCurve curve, ECFieldElement x, ECFieldElement y)
+            : this(curve, x, y, false)
+        {
+        }
+
+        /**
+         * @deprecated per-point compression property will be removed, refer {@link #getEncoded(bool)}
+         */
+        public SecT113R1Point(ECCurve curve, ECFieldElement x, ECFieldElement y, bool withCompression)
+            : base(curve, x, y, withCompression)
+        {
+            if ((x == null) != (y == null))
+                throw new ArgumentException("Exactly one of the field elements is null");
+        }
+
+        internal SecT113R1Point(ECCurve curve, ECFieldElement x, ECFieldElement y, ECFieldElement[] zs, bool withCompression)
+            : base(curve, x, y, zs, withCompression)
+        {
+        }
+
+        protected override ECPoint Detach()
+        {
+            return new SecT113R1Point(null, AffineXCoord, AffineYCoord);
+        }
+
+        public override ECFieldElement YCoord
+        {
+            get
+            {
+                ECFieldElement X = RawXCoord, L = RawYCoord;
+
+                if (this.IsInfinity || X.IsZero)
+                    return L;
+
+                // Y is actually Lambda (X + Y/X) here; convert to affine value on the fly
+                ECFieldElement Y = L.Add(X).Multiply(X);
+
+                ECFieldElement Z = RawZCoords[0];
+                if (!Z.IsOne)
+                {
+                    Y = Y.Divide(Z);
+                }
+
+                return Y;
+            }
+        }
+
+        protected internal override bool CompressionYTilde
+        {
+            get
+            {
+                ECFieldElement X = this.RawXCoord;
+                if (X.IsZero)
+                    return false;
+
+                ECFieldElement Y = this.RawYCoord;
+
+                // Y is actually Lambda (X + Y/X) here
+                return Y.TestBitZero() != X.TestBitZero();
+            }
+        }
+
+        public override ECPoint Add(ECPoint b)
+        {
+            if (this.IsInfinity)
+                return b;
+            if (b.IsInfinity)
+                return this;
+
+            ECCurve curve = this.Curve;
+
+            ECFieldElement X1 = this.RawXCoord;
+            ECFieldElement X2 = b.RawXCoord;
+
+            if (X1.IsZero)
+            {
+                if (X2.IsZero)
+                    return curve.Infinity;
+
+                return b.Add(this);
+            }
+
+            ECFieldElement L1 = this.RawYCoord, Z1 = this.RawZCoords[0];
+            ECFieldElement L2 = b.RawYCoord, Z2 = b.RawZCoords[0];
+
+            bool Z1IsOne = Z1.IsOne;
+            ECFieldElement U2 = X2, S2 = L2;
+            if (!Z1IsOne)
+            {
+                U2 = U2.Multiply(Z1);
+                S2 = S2.Multiply(Z1);
+            }
+
+            bool Z2IsOne = Z2.IsOne;
+            ECFieldElement U1 = X1, S1 = L1;
+            if (!Z2IsOne)
+            {
+                U1 = U1.Multiply(Z2);
+                S1 = S1.Multiply(Z2);
+            }
+
+            ECFieldElement A = S1.Add(S2);
+            ECFieldElement B = U1.Add(U2);
+
+            if (B.IsZero)
+            {
+                if (A.IsZero)
+                    return Twice();
+
+                return curve.Infinity;
+            }
+
+            ECFieldElement X3, L3, Z3;
+            if (X2.IsZero)
+            {
+                // TODO This can probably be optimized quite a bit
+                ECPoint p = this.Normalize();
+                X1 = p.XCoord;
+                ECFieldElement Y1 = p.YCoord;
+
+                ECFieldElement Y2 = L2;
+                ECFieldElement L = Y1.Add(Y2).Divide(X1);
+
+                X3 = L.Square().Add(L).Add(X1).Add(curve.A);
+                if (X3.IsZero)
+                {
+                    return new SecT113R1Point(curve, X3, curve.B.Sqrt(), IsCompressed);
+                }
+
+                ECFieldElement Y3 = L.Multiply(X1.Add(X3)).Add(X3).Add(Y1);
+                L3 = Y3.Divide(X3).Add(X3);
+                Z3 = curve.FromBigInteger(BigInteger.One);
+            }
+            else
+            {
+                B = B.Square();
+
+                ECFieldElement AU1 = A.Multiply(U1);
+                ECFieldElement AU2 = A.Multiply(U2);
+
+                X3 = AU1.Multiply(AU2);
+                if (X3.IsZero)
+                {
+                    return new SecT113R1Point(curve, X3, curve.B.Sqrt(), IsCompressed);
+                }
+
+                ECFieldElement ABZ2 = A.Multiply(B);
+                if (!Z2IsOne)
+                {
+                    ABZ2 = ABZ2.Multiply(Z2);
+                }
+
+                L3 = AU2.Add(B).SquarePlusProduct(ABZ2, L1.Add(Z1));
+
+                Z3 = ABZ2;
+                if (!Z1IsOne)
+                {
+                    Z3 = Z3.Multiply(Z1);
+                }
+            }
+
+            return new SecT113R1Point(curve, X3, L3, new ECFieldElement[]{ Z3 }, IsCompressed);
+        }
+
+        public override ECPoint Twice()
+        {
+            if (this.IsInfinity) 
+                return this;
+
+            ECCurve curve = this.Curve;
+
+            ECFieldElement X1 = this.RawXCoord;
+            if (X1.IsZero) 
+            {
+                // A point with X == 0 is it's own Additive inverse
+                return curve.Infinity;
+            }
+
+            ECFieldElement L1 = this.RawYCoord, Z1 = this.RawZCoords[0];
+
+            bool Z1IsOne = Z1.IsOne;
+            ECFieldElement L1Z1 = Z1IsOne ? L1 : L1.Multiply(Z1);
+            ECFieldElement Z1Sq = Z1IsOne ? Z1 : Z1.Square();
+            ECFieldElement a = curve.A;
+            ECFieldElement aZ1Sq = Z1IsOne ? a : a.Multiply(Z1Sq);
+            ECFieldElement T = L1.Square().Add(L1Z1).Add(aZ1Sq);
+            if (T.IsZero)
+            {
+                return new SecT113R1Point(curve, T, curve.B.Sqrt(), IsCompressed);
+            }
+
+            ECFieldElement X3 = T.Square();
+            ECFieldElement Z3 = Z1IsOne ? T : T.Multiply(Z1Sq);
+
+            ECFieldElement X1Z1 = Z1IsOne ? X1 : X1.Multiply(Z1);
+            ECFieldElement L3 = X1Z1.SquarePlusProduct(T, L1Z1).Add(X3).Add(Z3);
+
+            return new SecT113R1Point(curve, X3, L3, new ECFieldElement[]{ Z3 }, IsCompressed);
+        }
+
+        public override ECPoint TwicePlus(ECPoint b)
+        {
+            if (this.IsInfinity) 
+                return b;
+            if (b.IsInfinity)
+                return Twice();
+
+            ECCurve curve = this.Curve;
+
+            ECFieldElement X1 = this.RawXCoord;
+            if (X1.IsZero) 
+            {
+                // A point with X == 0 is it's own Additive inverse
+                return b;
+            }
+
+            ECFieldElement X2 = b.RawXCoord, Z2 = b.RawZCoords[0];
+            if (X2.IsZero || !Z2.IsOne)
+            {
+                return Twice().Add(b);
+            }
+
+            ECFieldElement L1 = this.RawYCoord, Z1 = this.RawZCoords[0];
+            ECFieldElement L2 = b.RawYCoord;
+
+            ECFieldElement X1Sq = X1.Square();
+            ECFieldElement L1Sq = L1.Square();
+            ECFieldElement Z1Sq = Z1.Square();
+            ECFieldElement L1Z1 = L1.Multiply(Z1);
+
+            ECFieldElement T = curve.A.Multiply(Z1Sq).Add(L1Sq).Add(L1Z1);
+            ECFieldElement L2plus1 = L2.AddOne();
+            ECFieldElement A = curve.A.Add(L2plus1).Multiply(Z1Sq).Add(L1Sq).MultiplyPlusProduct(T, X1Sq, Z1Sq);
+            ECFieldElement X2Z1Sq = X2.Multiply(Z1Sq);
+            ECFieldElement B = X2Z1Sq.Add(T).Square();
+
+            if (B.IsZero)
+            {
+                if (A.IsZero)
+                    return b.Twice();
+
+                return curve.Infinity;
+            }
+
+            if (A.IsZero)
+            {
+                return new SecT113R1Point(curve, A, curve.B.Sqrt(), IsCompressed);
+            }
+
+            ECFieldElement X3 = A.Square().Multiply(X2Z1Sq);
+            ECFieldElement Z3 = A.Multiply(B).Multiply(Z1Sq);
+            ECFieldElement L3 = A.Add(B).Square().MultiplyPlusProduct(T, L2plus1, Z3);
+
+            return new SecT113R1Point(curve, X3, L3, new ECFieldElement[]{ Z3 }, IsCompressed);
+        }
+
+        public override ECPoint Negate()
+        {
+            if (IsInfinity)
+                return this;
+
+            ECFieldElement X = this.RawXCoord;
+            if (X.IsZero)
+                return this;
+
+            // L is actually Lambda (X + Y/X) here
+            ECFieldElement L = this.RawYCoord, Z = this.RawZCoords[0];
+            return new SecT113R1Point(Curve, X, L.Add(Z), new ECFieldElement[]{ Z }, IsCompressed);
+        }
+    }
+}
diff --git a/crypto/src/math/ec/custom/sec/SecT113R2Curve.cs b/crypto/src/math/ec/custom/sec/SecT113R2Curve.cs
new file mode 100644
index 000000000..a02db6b25
--- /dev/null
+++ b/crypto/src/math/ec/custom/sec/SecT113R2Curve.cs
@@ -0,0 +1,190 @@
+using System;
+
+using Org.BouncyCastle.Utilities.Encoders;
+
+namespace Org.BouncyCastle.Math.EC.Custom.Sec
+{
+    internal class SecT113R2Curve
+        : AbstractF2mCurve
+    {
+        private const int SecT113R2_DEFAULT_COORDS = COORD_LAMBDA_PROJECTIVE;
+
+        protected readonly SecT113R2Point m_infinity;
+
+        public SecT113R2Curve()
+            : base(113, 9, 0, 0)
+        {
+            this.m_infinity = new SecT113R2Point(this, null, null);
+
+            this.m_a = FromBigInteger(new BigInteger(1, Hex.Decode("00689918DBEC7E5A0DD6DFC0AA55C7")));
+            this.m_b = FromBigInteger(new BigInteger(1, Hex.Decode("0095E9A9EC9B297BD4BF36E059184F")));
+            this.m_order = new BigInteger(1, Hex.Decode("010000000000000108789B2496AF93"));
+            this.m_cofactor = BigInteger.Two;
+
+            this.m_coord = SecT113R2_DEFAULT_COORDS;
+        }
+
+        protected override ECCurve CloneCurve()
+        {
+            return new SecT113R2Curve();
+        }
+
+        public override bool SupportsCoordinateSystem(int coord)
+        {
+            switch (coord)
+            {
+            case COORD_LAMBDA_PROJECTIVE:
+                return true;
+            default:
+                return false;
+            }
+        }
+
+        public override ECPoint Infinity
+        {
+            get { return m_infinity; }
+        }
+
+        public override int FieldSize
+        {
+            get { return 113; }
+        }
+
+        public override ECFieldElement FromBigInteger(BigInteger x)
+        {
+            return new SecT113FieldElement(x);
+        }
+
+        protected internal override ECPoint CreateRawPoint(ECFieldElement x, ECFieldElement y, bool withCompression)
+        {
+            return new SecT113R2Point(this, x, y, withCompression);
+        }
+
+        protected internal override ECPoint CreateRawPoint(ECFieldElement x, ECFieldElement y, ECFieldElement[] zs, bool withCompression)
+        {
+            return new SecT113R2Point(this, x, y, zs, withCompression);
+        }
+
+        public override bool IsKoblitz
+        {
+            get { return false; }
+        }
+
+        /**
+         * Decompresses a compressed point P = (xp, yp) (X9.62 s 4.2.2).
+         * 
+         * @param yTilde
+         *            ~yp, an indication bit for the decompression of yp.
+         * @param X1
+         *            The field element xp.
+         * @return the decompressed point.
+         */
+        protected override ECPoint DecompressPoint(int yTilde, BigInteger X1)
+        {
+            ECFieldElement x = FromBigInteger(X1), y = null;
+            if (x.IsZero)
+            {
+                y = B.Sqrt();
+            }
+            else
+            {
+                ECFieldElement beta = x.Square().Invert().Multiply(B).Add(A).Add(x);
+                ECFieldElement z = SolveQuadraticEquation(beta);
+                if (z != null)
+                {
+                    if (z.TestBitZero() != (yTilde == 1))
+                    {
+                        z = z.AddOne();
+                    }
+
+                    switch (this.CoordinateSystem)
+                    {
+                    case COORD_LAMBDA_AFFINE:
+                    case COORD_LAMBDA_PROJECTIVE:
+                    {
+                        y = z.Add(x);
+                        break;
+                    }
+                    default:
+                    {
+                        y = z.Multiply(x);
+                        break;
+                    }
+                    }
+                }
+            }
+
+            if (y == null)
+                throw new ArgumentException("Invalid point compression");
+
+            return this.CreateRawPoint(x, y, true);
+        }
+
+        /**
+         * Solves a quadratic equation <code>z<sup>2</sup> + z = beta</code>(X9.62
+         * D.1.6) The other solution is <code>z + 1</code>.
+         * 
+         * @param beta
+         *            The value to solve the quadratic equation for.
+         * @return the solution for <code>z<sup>2</sup> + z = beta</code> or
+         *         <code>null</code> if no solution exists.
+         */
+        private ECFieldElement SolveQuadraticEquation(ECFieldElement beta)
+        {
+            if (beta.IsZero)
+            {
+                return beta;
+            }
+
+            ECFieldElement zeroElement = FromBigInteger(BigInteger.Zero);
+
+            ECFieldElement z = null;
+            ECFieldElement gamma = null;
+
+            Random rand = new Random();
+            do
+            {
+                ECFieldElement t = FromBigInteger(new BigInteger(113, rand));
+                z = zeroElement;
+                ECFieldElement w = beta;
+                for (int i = 1; i < 113; i++)
+                {
+                    ECFieldElement w2 = w.Square();
+                    z = z.Square().Add(w2.Multiply(t));
+                    w = w2.Add(beta);
+                }
+                if (!w.IsZero)
+                    return null;
+                gamma = z.Square().Add(z);
+            }
+            while (gamma.IsZero);
+
+            return z;
+        }
+
+        public virtual int M
+        {
+            get { return 113; }
+        }
+
+        public virtual bool IsTrinomial
+        {
+            get { return true; }
+        }
+
+        public virtual int K1
+        {
+            get { return 9; }
+        }
+
+        public virtual int K2
+        {
+            get { return 0; }
+        }
+
+        public virtual int K3
+        {
+            get { return 0; }
+        }
+    }
+}
diff --git a/crypto/src/math/ec/custom/sec/SecT113R2Point.cs b/crypto/src/math/ec/custom/sec/SecT113R2Point.cs
new file mode 100644
index 000000000..1453d78c3
--- /dev/null
+++ b/crypto/src/math/ec/custom/sec/SecT113R2Point.cs
@@ -0,0 +1,291 @@
+using System;
+
+namespace Org.BouncyCastle.Math.EC.Custom.Sec
+{
+    internal class SecT113R2Point
+        : AbstractF2mPoint
+    {
+        /**
+         * @deprecated Use ECCurve.createPoint to construct points
+         */
+        public SecT113R2Point(ECCurve curve, ECFieldElement x, ECFieldElement y)
+            : this(curve, x, y, false)
+        {
+        }
+
+        /**
+         * @deprecated per-point compression property will be removed, refer {@link #getEncoded(bool)}
+         */
+        public SecT113R2Point(ECCurve curve, ECFieldElement x, ECFieldElement y, bool withCompression)
+            : base(curve, x, y, withCompression)
+        {
+            if ((x == null) != (y == null))
+                throw new ArgumentException("Exactly one of the field elements is null");
+        }
+
+        internal SecT113R2Point(ECCurve curve, ECFieldElement x, ECFieldElement y, ECFieldElement[] zs, bool withCompression)
+            : base(curve, x, y, zs, withCompression)
+        {
+        }
+
+        protected override ECPoint Detach()
+        {
+            return new SecT113R2Point(null, AffineXCoord, AffineYCoord);
+        }
+
+        public override ECFieldElement YCoord
+        {
+            get
+            {
+                ECFieldElement X = RawXCoord, L = RawYCoord;
+
+                if (this.IsInfinity || X.IsZero)
+                    return L;
+
+                // Y is actually Lambda (X + Y/X) here; convert to affine value on the fly
+                ECFieldElement Y = L.Add(X).Multiply(X);
+
+                ECFieldElement Z = RawZCoords[0];
+                if (!Z.IsOne)
+                {
+                    Y = Y.Divide(Z);
+                }
+
+                return Y;
+            }
+        }
+
+        protected internal override bool CompressionYTilde
+        {
+            get
+            {
+                ECFieldElement X = this.RawXCoord;
+                if (X.IsZero)
+                    return false;
+
+                ECFieldElement Y = this.RawYCoord;
+
+                // Y is actually Lambda (X + Y/X) here
+                return Y.TestBitZero() != X.TestBitZero();
+            }
+        }
+
+        public override ECPoint Add(ECPoint b)
+        {
+            if (this.IsInfinity)
+            {
+                return b;
+            }
+            if (b.IsInfinity)
+            {
+                return this;
+            }
+
+            ECCurve curve = this.Curve;
+
+            ECFieldElement X1 = this.RawXCoord;
+            ECFieldElement X2 = b.RawXCoord;
+
+            if (X1.IsZero)
+            {
+                if (X2.IsZero)
+                    return curve.Infinity;
+
+                return b.Add(this);
+            }
+
+            ECFieldElement L1 = this.RawYCoord, Z1 = this.RawZCoords[0];
+            ECFieldElement L2 = b.RawYCoord, Z2 = b.RawZCoords[0];
+
+            bool Z1IsOne = Z1.IsOne;
+            ECFieldElement U2 = X2, S2 = L2;
+            if (!Z1IsOne)
+            {
+                U2 = U2.Multiply(Z1);
+                S2 = S2.Multiply(Z1);
+            }
+
+            bool Z2IsOne = Z2.IsOne;
+            ECFieldElement U1 = X1, S1 = L1;
+            if (!Z2IsOne)
+            {
+                U1 = U1.Multiply(Z2);
+                S1 = S1.Multiply(Z2);
+            }
+
+            ECFieldElement A = S1.Add(S2);
+            ECFieldElement B = U1.Add(U2);
+
+            if (B.IsZero)
+            {
+                if (A.IsZero)
+                    return Twice();
+
+                return curve.Infinity;
+            }
+
+            ECFieldElement X3, L3, Z3;
+            if (X2.IsZero)
+            {
+                // TODO This can probably be optimized quite a bit
+                ECPoint p = this.Normalize();
+                X1 = p.XCoord;
+                ECFieldElement Y1 = p.YCoord;
+
+                ECFieldElement Y2 = L2;
+                ECFieldElement L = Y1.Add(Y2).Divide(X1);
+
+                X3 = L.Square().Add(L).Add(X1).Add(curve.A);
+                if (X3.IsZero)
+                {
+                    return new SecT113R2Point(curve, X3, curve.B.Sqrt(), IsCompressed);
+                }
+
+                ECFieldElement Y3 = L.Multiply(X1.Add(X3)).Add(X3).Add(Y1);
+                L3 = Y3.Divide(X3).Add(X3);
+                Z3 = curve.FromBigInteger(BigInteger.One);
+            }
+            else
+            {
+                B = B.Square();
+
+                ECFieldElement AU1 = A.Multiply(U1);
+                ECFieldElement AU2 = A.Multiply(U2);
+
+                X3 = AU1.Multiply(AU2);
+                if (X3.IsZero)
+                {
+                    return new SecT113R2Point(curve, X3, curve.B.Sqrt(), IsCompressed);
+                }
+
+                ECFieldElement ABZ2 = A.Multiply(B);
+                if (!Z2IsOne)
+                {
+                    ABZ2 = ABZ2.Multiply(Z2);
+                }
+
+                L3 = AU2.Add(B).SquarePlusProduct(ABZ2, L1.Add(Z1));
+
+                Z3 = ABZ2;
+                if (!Z1IsOne)
+                {
+                    Z3 = Z3.Multiply(Z1);
+                }
+            }
+
+            return new SecT113R2Point(curve, X3, L3, new ECFieldElement[]{ Z3 }, IsCompressed);
+        }
+
+        public override ECPoint Twice()
+        {
+            if (this.IsInfinity) 
+            {
+                return this;
+            }
+
+            ECCurve curve = this.Curve;
+
+            ECFieldElement X1 = this.RawXCoord;
+            if (X1.IsZero) 
+            {
+                // A point with X == 0 is it's own Additive inverse
+                return curve.Infinity;
+            }
+
+            ECFieldElement L1 = this.RawYCoord, Z1 = this.RawZCoords[0];
+
+            bool Z1IsOne = Z1.IsOne;
+            ECFieldElement L1Z1 = Z1IsOne ? L1 : L1.Multiply(Z1);
+            ECFieldElement Z1Sq = Z1IsOne ? Z1 : Z1.Square();
+            ECFieldElement a = curve.A;
+            ECFieldElement aZ1Sq = Z1IsOne ? a : a.Multiply(Z1Sq);
+            ECFieldElement T = L1.Square().Add(L1Z1).Add(aZ1Sq);
+            if (T.IsZero)
+            {
+                return new SecT113R2Point(curve, T, curve.B.Sqrt(), IsCompressed);
+            }
+
+            ECFieldElement X3 = T.Square();
+            ECFieldElement Z3 = Z1IsOne ? T : T.Multiply(Z1Sq);
+
+            ECFieldElement X1Z1 = Z1IsOne ? X1 : X1.Multiply(Z1);
+            ECFieldElement L3 = X1Z1.SquarePlusProduct(T, L1Z1).Add(X3).Add(Z3);
+
+            return new SecT113R2Point(curve, X3, L3, new ECFieldElement[]{ Z3 }, IsCompressed);
+        }
+
+        public override ECPoint TwicePlus(ECPoint b)
+        {
+            if (this.IsInfinity) 
+            {
+                return b;
+            }
+            if (b.IsInfinity)
+            {
+                return Twice();
+            }
+
+            ECCurve curve = this.Curve;
+
+            ECFieldElement X1 = this.RawXCoord;
+            if (X1.IsZero) 
+            {
+                // A point with X == 0 is it's own Additive inverse
+                return b;
+            }
+
+            ECFieldElement X2 = b.RawXCoord, Z2 = b.RawZCoords[0];
+            if (X2.IsZero || !Z2.IsOne)
+            {
+                return Twice().Add(b);
+            }
+
+            ECFieldElement L1 = this.RawYCoord, Z1 = this.RawZCoords[0];
+            ECFieldElement L2 = b.RawYCoord;
+
+            ECFieldElement X1Sq = X1.Square();
+            ECFieldElement L1Sq = L1.Square();
+            ECFieldElement Z1Sq = Z1.Square();
+            ECFieldElement L1Z1 = L1.Multiply(Z1);
+
+            ECFieldElement T = curve.A.Multiply(Z1Sq).Add(L1Sq).Add(L1Z1);
+            ECFieldElement L2plus1 = L2.AddOne();
+            ECFieldElement A = curve.A.Add(L2plus1).Multiply(Z1Sq).Add(L1Sq).MultiplyPlusProduct(T, X1Sq, Z1Sq);
+            ECFieldElement X2Z1Sq = X2.Multiply(Z1Sq);
+            ECFieldElement B = X2Z1Sq.Add(T).Square();
+
+            if (B.IsZero)
+            {
+                if (A.IsZero)
+                    return b.Twice();
+
+                return curve.Infinity;
+            }
+
+            if (A.IsZero)
+            {
+                return new SecT113R2Point(curve, A, curve.B.Sqrt(), IsCompressed);
+            }
+
+            ECFieldElement X3 = A.Square().Multiply(X2Z1Sq);
+            ECFieldElement Z3 = A.Multiply(B).Multiply(Z1Sq);
+            ECFieldElement L3 = A.Add(B).Square().MultiplyPlusProduct(T, L2plus1, Z3);
+
+            return new SecT113R2Point(curve, X3, L3, new ECFieldElement[]{ Z3 }, IsCompressed);
+        }
+
+        public override ECPoint Negate()
+        {
+            if (IsInfinity)
+                return this;
+
+            ECFieldElement X = this.RawXCoord;
+            if (X.IsZero)
+                return this;
+
+            // L is actually Lambda (X + Y/X) here
+            ECFieldElement L = this.RawYCoord, Z = this.RawZCoords[0];
+            return new SecT113R2Point(Curve, X, L.Add(Z), new ECFieldElement[]{ Z }, IsCompressed);
+        }
+    }
+}
diff --git a/crypto/src/math/ec/custom/sec/SecT131Field.cs b/crypto/src/math/ec/custom/sec/SecT131Field.cs
new file mode 100644
index 000000000..df75dfcd7
--- /dev/null
+++ b/crypto/src/math/ec/custom/sec/SecT131Field.cs
@@ -0,0 +1,274 @@
+using System;
+using System.Diagnostics;
+
+using Org.BouncyCastle.Math.Raw;
+
+namespace Org.BouncyCastle.Math.EC.Custom.Sec
+{
+    internal class SecT131Field
+    {
+        private const ulong M03 = ulong.MaxValue >> 61;
+        private const ulong M44 = ulong.MaxValue >> 20;
+
+        public static void Add(ulong[] x, ulong[] y, ulong[] z)
+        {
+            z[0] = x[0] ^ y[0];
+            z[1] = x[1] ^ y[1];
+            z[2] = x[2] ^ y[2];
+        }
+
+        public static void AddExt(ulong[] xx, ulong[] yy, ulong[] zz)
+        {
+            zz[0] = xx[0] ^ yy[0];
+            zz[1] = xx[1] ^ yy[1];
+            zz[2] = xx[2] ^ yy[2];
+            zz[3] = xx[3] ^ yy[3];
+            zz[4] = xx[4] ^ yy[4];
+        }
+
+        public static void AddOne(ulong[] x, ulong[] z)
+        {
+            z[0] = x[0] ^ 1UL;
+            z[1] = x[1];
+            z[2] = x[2];
+        }
+
+        public static ulong[] FromBigInteger(BigInteger x)
+        {
+            ulong[] z = Nat192.FromBigInteger64(x);
+            Reduce61(z, 0);
+            return z;
+        }
+
+        public static void Multiply(ulong[] x, ulong[] y, ulong[] z)
+        {
+            ulong[] tt = Nat192.CreateExt64();
+            ImplMultiply(x, y, tt);
+            Reduce(tt, z);
+        }
+
+        public static void MultiplyAddToExt(ulong[] x, ulong[] y, ulong[] zz)
+        {
+            ulong[] tt = Nat192.CreateExt64();
+            ImplMultiply(x, y, tt);
+            AddExt(zz, tt, zz);
+        }
+
+        public static void Reduce(ulong[] xx, ulong[] z)
+        {
+            ulong x0 = xx[0], x1 = xx[1], x2 = xx[2], x3 = xx[3], x4 = xx[4];
+
+            x1 ^= (x4 << 61) ^ (x4 << 63);
+            x2 ^= (x4 >>  3) ^ (x4 >>  1) ^ x4 ^ (x4 <<  5);
+            x3 ^=                                (x4 >> 59);
+
+            x0 ^= (x3 << 61) ^ (x3 << 63);
+            x1 ^= (x3 >>  3) ^ (x3 >>  1) ^ x3 ^ (x3 <<  5);
+            x2 ^=                                (x3 >> 59);
+
+            ulong t = x2 >> 3;
+            z[0]    = x0 ^ t ^ (t << 2) ^ (t << 3) ^ (t <<  8);
+            z[1]    = x1                           ^ (t >> 56);
+            z[2]    = x2 & M03;
+        }
+
+        public static void Reduce61(ulong[] z, int zOff)
+        {
+            ulong z2     = z[zOff + 2], t = z2 >> 3;
+            z[zOff    ] ^= t ^ (t << 2) ^ (t << 3) ^ (t <<  8);
+            z[zOff + 1] ^=                           (t >> 56);
+            z[zOff + 2]  = z2 & M03;
+        }
+
+        public static void Square(ulong[] x, ulong[] z)
+        {
+            ulong[] tt = Nat.Create64(5);
+            ImplSquare(x, tt);
+            Reduce(tt, z);
+        }
+
+        public static void SquareAddToExt(ulong[] x, ulong[] zz)
+        {
+            ulong[] tt = Nat.Create64(5);
+            ImplSquare(x, tt);
+            AddExt(zz, tt, zz);
+        }
+
+        public static void SquareN(ulong[] x, int n, ulong[] z)
+        {
+            Debug.Assert(n > 0);
+
+            ulong[] tt = Nat.Create64(5);
+            ImplSquare(x, tt);
+            Reduce(tt, z);
+
+            while (--n > 0)
+            {
+                ImplSquare(z, tt);
+                Reduce(tt, z);
+            }
+        }
+
+        protected static void ImplCompactExt(ulong[] zz)
+        {
+            ulong z0 = zz[0], z1 = zz[1], z2 = zz[2], z3 = zz[3], z4 = zz[4], z5 = zz[5];
+            zz[0] =  z0        ^ (z1 << 44);
+            zz[1] = (z1 >> 20) ^ (z2 << 24);
+            zz[2] = (z2 >> 40) ^ (z3 <<  4)
+                               ^ (z4 << 48);
+            zz[3] = (z3 >> 60) ^ (z5 << 28)
+                  ^ (z4 >> 16);
+            zz[4] = (z5 >> 36);
+            zz[5] = 0;
+        }
+
+        protected static void ImplMultiply(ulong[] x, ulong[] y, ulong[] zz)
+        {
+            /*
+             * "Five-way recursion" as described in "Batch binary Edwards", Daniel J. Bernstein.
+             */
+
+            ulong f0 = x[0], f1 = x[1], f2 = x[2];
+            f2  = ((f1 >> 24) ^ (f2 << 40)) & M44;
+            f1  = ((f0 >> 44) ^ (f1 << 20)) & M44;
+            f0 &= M44;
+
+            ulong g0 = y[0], g1 = y[1], g2 = y[2];
+            g2  = ((g1 >> 24) ^ (g2 << 40)) & M44;
+            g1  = ((g0 >> 44) ^ (g1 << 20)) & M44;
+            g0 &= M44;
+
+            ulong[] H = new ulong[10];
+
+            ImplMulw(f0, g0, H, 0);               // H(0)       44/43 bits
+            ImplMulw(f2, g2, H, 2);               // H(INF)     44/41 bits
+
+            ulong t0 = f0 ^ f1 ^ f2;
+            ulong t1 = g0 ^ g1 ^ g2;
+
+            ImplMulw(t0, t1, H, 4);               // H(1)       44/43 bits
+        
+            ulong t2 = (f1 << 1) ^ (f2 << 2);
+            ulong t3 = (g1 << 1) ^ (g2 << 2);
+
+            ImplMulw(f0 ^ t2, g0 ^ t3, H, 6);     // H(t)       44/45 bits
+            ImplMulw(t0 ^ t2, t1 ^ t3, H, 8);     // H(t + 1)   44/45 bits
+
+            ulong t4 = H[6] ^ H[8];
+            ulong t5 = H[7] ^ H[9];
+
+            Debug.Assert(t5 >> 44 == 0);
+
+            // Calculate V
+            ulong v0 =      (t4 << 1) ^ H[6];
+            ulong v1 = t4 ^ (t5 << 1) ^ H[7];
+            ulong v2 = t5;
+
+            // Calculate U
+            ulong u0 = H[0];
+            ulong u1 = H[1] ^ H[0] ^ H[4];
+            ulong u2 =        H[1] ^ H[5];
+        
+            // Calculate W
+            ulong w0 = u0 ^ v0 ^ (H[2] << 4) ^ (H[2] << 1);
+            ulong w1 = u1 ^ v1 ^ (H[3] << 4) ^ (H[3] << 1);
+            ulong w2 = u2 ^ v2;
+
+            // Propagate carries
+            w1 ^= (w0 >> 44); w0 &= M44;
+            w2 ^= (w1 >> 44); w1 &= M44;
+
+            Debug.Assert((w0 & 1UL) == 0);
+
+            // Divide W by t
+
+            w0 = (w0 >> 1) ^ ((w1 & 1UL) << 43);
+            w1 = (w1 >> 1) ^ ((w2 & 1UL) << 43);
+            w2 = (w2 >> 1);
+
+            // Divide W by (t + 1)
+
+            w0 ^= (w0 << 1);
+            w0 ^= (w0 << 2);
+            w0 ^= (w0 << 4);
+            w0 ^= (w0 << 8);
+            w0 ^= (w0 << 16);
+            w0 ^= (w0 << 32);
+
+            w0 &= M44; w1 ^= (w0 >> 43);
+
+            w1 ^= (w1 << 1);
+            w1 ^= (w1 << 2);
+            w1 ^= (w1 << 4);
+            w1 ^= (w1 << 8);
+            w1 ^= (w1 << 16);
+            w1 ^= (w1 << 32);
+
+            w1 &= M44; w2 ^= (w1 >> 43);
+
+            w2 ^= (w2 << 1);
+            w2 ^= (w2 << 2);
+            w2 ^= (w2 << 4);
+            w2 ^= (w2 << 8);
+            w2 ^= (w2 << 16);
+            w2 ^= (w2 << 32);
+
+            Debug.Assert(w2 >> 42 == 0);
+
+            zz[0] = u0; 
+            zz[1] = u1 ^ w0      ^ H[2]; 
+            zz[2] = u2 ^ w1 ^ w0 ^ H[3]; 
+            zz[3] =      w2 ^ w1; 
+            zz[4] =           w2 ^ H[2]; 
+            zz[5] =                H[3]; 
+
+            ImplCompactExt(zz);
+        }
+
+        protected static void ImplMulw(ulong x, ulong y, ulong[] z, int zOff)
+        {
+            Debug.Assert(x >> 45 == 0);
+            Debug.Assert(y >> 45 == 0);
+
+            ulong[] u = new ulong[8];
+    //      u[0] = 0;
+            u[1] = y;
+            u[2] = u[1] << 1;
+            u[3] = u[2] ^  y;
+            u[4] = u[2] << 1;
+            u[5] = u[4] ^  y;
+            u[6] = u[3] << 1;
+            u[7] = u[6] ^  y;
+
+            uint j = (uint)x;
+            ulong g, h = 0, l = u[j & 7]
+                              ^ u[(j >> 3) & 7] << 3
+                              ^ u[(j >> 6) & 7] << 6;
+            int k = 33;
+            do
+            {
+                j = (uint)(x >> k);
+                g  = u[j & 7]
+                   ^ u[(j >> 3) & 7] << 3
+                   ^ u[(j >> 6) & 7] << 6
+                   ^ u[(j >> 9) & 7] << 9;
+                l ^= (g <<  k);
+                h ^= (g >> -k);
+            }
+            while ((k -= 12) > 0);
+
+            Debug.Assert(h >> 25 == 0);
+
+            z[zOff    ] = l & M44;
+            z[zOff + 1] = (l >> 44) ^ (h << 20);
+        }
+
+        protected static void ImplSquare(ulong[] x, ulong[] zz)
+        {
+            Interleave.Expand64To128(x[0], zz, 0);
+            Interleave.Expand64To128(x[1], zz, 2);
+
+            zz[4] = Interleave.Expand8to16((uint)x[2]);
+        }
+    }
+}
diff --git a/crypto/src/math/ec/custom/sec/SecT131FieldElement.cs b/crypto/src/math/ec/custom/sec/SecT131FieldElement.cs
new file mode 100644
index 000000000..d60c7ed7d
--- /dev/null
+++ b/crypto/src/math/ec/custom/sec/SecT131FieldElement.cs
@@ -0,0 +1,213 @@
+using System;
+
+using Org.BouncyCastle.Math.Raw;
+using Org.BouncyCastle.Utilities;
+
+namespace Org.BouncyCastle.Math.EC.Custom.Sec
+{
+    internal class SecT131FieldElement
+        : ECFieldElement
+    {
+        protected readonly ulong[] x;
+
+        public SecT131FieldElement(BigInteger x)
+        {
+            if (x == null || x.SignValue < 0)
+                throw new ArgumentException("value invalid for SecT131FieldElement", "x");
+
+            this.x = SecT131Field.FromBigInteger(x);
+        }
+
+        public SecT131FieldElement()
+        {
+            this.x = Nat192.Create64();
+        }
+
+        protected internal SecT131FieldElement(ulong[] x)
+        {
+            this.x = x;
+        }
+
+        public override bool IsOne
+        {
+            get { return Nat192.IsOne64(x); }
+        }
+
+        public override bool IsZero
+        {
+            get { return Nat192.IsZero64(x); }
+        }
+
+        public override bool TestBitZero()
+        {
+            return (x[0] & 1UL) != 0UL;
+        }
+
+        public override BigInteger ToBigInteger()
+        {
+            return Nat192.ToBigInteger64(x);
+        }
+
+        public override string FieldName
+        {
+            get { return "SecT131Field"; }
+        }
+
+        public override int FieldSize
+        {
+            get { return 131; }
+        }
+
+        public override ECFieldElement Add(ECFieldElement b)
+        {
+            ulong[] z = Nat192.Create64();
+            SecT131Field.Add(x, ((SecT131FieldElement)b).x, z);
+            return new SecT131FieldElement(z);
+        }
+
+        public override ECFieldElement AddOne()
+        {
+            ulong[] z = Nat192.Create64();
+            SecT131Field.AddOne(x, z);
+            return new SecT131FieldElement(z);
+        }
+
+        public override ECFieldElement Subtract(ECFieldElement b)
+        {
+            // Addition and Subtraction are the same in F2m
+            return Add(b);
+        }
+
+        public override ECFieldElement Multiply(ECFieldElement b)
+        {
+            ulong[] z = Nat192.Create64();
+            SecT131Field.Multiply(x, ((SecT131FieldElement)b).x, z);
+            return new SecT131FieldElement(z);
+        }
+
+        public override ECFieldElement MultiplyMinusProduct(ECFieldElement b, ECFieldElement x, ECFieldElement y)
+        {
+            return MultiplyPlusProduct(b, x, y);
+        }
+
+        public override ECFieldElement MultiplyPlusProduct(ECFieldElement b, ECFieldElement x, ECFieldElement y)
+        {
+            ulong[] ax = this.x, bx = ((SecT131FieldElement)b).x;
+            ulong[] xx = ((SecT131FieldElement)x).x, yx = ((SecT131FieldElement)y).x;
+
+            ulong[] tt = Nat.Create64(5);
+            SecT131Field.MultiplyAddToExt(ax, bx, tt);
+            SecT131Field.MultiplyAddToExt(xx, yx, tt);
+
+            ulong[] z = Nat192.Create64();
+            SecT131Field.Reduce(tt, z);
+            return new SecT131FieldElement(z);
+        }
+
+        public override ECFieldElement Divide(ECFieldElement b)
+        {
+            return Multiply(b.Invert());
+        }
+
+        public override ECFieldElement Negate()
+        {
+            return this;
+        }
+
+        public override ECFieldElement Square()
+        {
+            ulong[] z = Nat192.Create64();
+            SecT131Field.Square(x, z);
+            return new SecT131FieldElement(z);
+        }
+
+        public override ECFieldElement SquareMinusProduct(ECFieldElement x, ECFieldElement y)
+        {
+            return SquarePlusProduct(x, y);
+        }
+
+        public override ECFieldElement SquarePlusProduct(ECFieldElement x, ECFieldElement y)
+        {
+            ulong[] ax = this.x;
+            ulong[] xx = ((SecT131FieldElement)x).x, yx = ((SecT131FieldElement)y).x;
+
+            ulong[] tt = Nat.Create64(5);
+            SecT131Field.SquareAddToExt(ax, tt);
+            SecT131Field.MultiplyAddToExt(xx, yx, tt);
+
+            ulong[] z = Nat192.Create64();
+            SecT131Field.Reduce(tt, z);
+            return new SecT131FieldElement(z);
+        }
+
+        public override ECFieldElement SquarePow(int pow)
+        {
+            if (pow < 1)
+                return this;
+
+            ulong[] z = Nat192.Create64();
+            SecT131Field.SquareN(x, pow, z);
+            return new SecT131FieldElement(z);
+        }
+
+        public override ECFieldElement Invert()
+        {
+            return new SecT131FieldElement(
+                AbstractF2mCurve.Inverse(131, new int[] { 2, 3, 8 }, ToBigInteger()));
+        }
+
+        public override ECFieldElement Sqrt()
+        {
+            return SquarePow(M - 1);
+        }
+
+        public virtual int Representation
+        {
+            get { return F2mFieldElement.Ppb; }
+        }
+
+        public virtual int M
+        {
+            get { return 131; }
+        }
+
+        public virtual int K1
+        {
+            get { return 2; }
+        }
+
+        public virtual int K2
+        {
+            get { return 3; }
+        }
+
+        public virtual int K3
+        {
+            get { return 8; }
+        }
+
+        public override bool Equals(object obj)
+        {
+            return Equals(obj as SecT131FieldElement);
+        }
+
+        public override bool Equals(ECFieldElement other)
+        {
+            return Equals(other as SecT131FieldElement);
+        }
+
+        public virtual bool Equals(SecT131FieldElement other)
+        {
+            if (this == other)
+                return true;
+            if (null == other)
+                return false;
+            return Nat192.Eq64(x, other.x);
+        }
+
+        public override int GetHashCode()
+        {
+            return 131832 ^ Arrays.GetHashCode(x, 0, 3);
+        }
+    }
+}
diff --git a/crypto/src/math/ec/custom/sec/SecT131R1Curve.cs b/crypto/src/math/ec/custom/sec/SecT131R1Curve.cs
new file mode 100644
index 000000000..789e3c0c3
--- /dev/null
+++ b/crypto/src/math/ec/custom/sec/SecT131R1Curve.cs
@@ -0,0 +1,188 @@
+using System;
+
+using Org.BouncyCastle.Utilities.Encoders;
+
+namespace Org.BouncyCastle.Math.EC.Custom.Sec
+{
+    internal class SecT131R1Curve
+        : AbstractF2mCurve
+    {
+        private const int SecT131R1_DEFAULT_COORDS = COORD_LAMBDA_PROJECTIVE;
+
+        protected readonly SecT131R1Point m_infinity;
+
+        public SecT131R1Curve()
+            : base(131, 2, 3, 8)
+        {
+            this.m_infinity = new SecT131R1Point(this, null, null);
+
+            this.m_a = FromBigInteger(new BigInteger(1, Hex.Decode("07A11B09A76B562144418FF3FF8C2570B8")));
+            this.m_b = FromBigInteger(new BigInteger(1, Hex.Decode("0217C05610884B63B9C6C7291678F9D341")));
+            this.m_order = new BigInteger(1, Hex.Decode("0400000000000000023123953A9464B54D"));
+            this.m_cofactor = BigInteger.Two;
+
+            this.m_coord = SecT131R1_DEFAULT_COORDS;
+        }
+
+        protected override ECCurve CloneCurve()
+        {
+            return new SecT131R1Curve();
+        }
+
+        public override bool SupportsCoordinateSystem(int coord)
+        {
+            switch (coord)
+            {
+            case COORD_LAMBDA_PROJECTIVE:
+                return true;
+            default:
+                return false;
+            }
+        }
+
+        public override ECPoint Infinity
+        {
+            get { return m_infinity; }
+        }
+
+        public override int FieldSize
+        {
+            get { return 131; }
+        }
+
+        public override ECFieldElement FromBigInteger(BigInteger x)
+        {
+            return new SecT131FieldElement(x);
+        }
+
+        protected internal override ECPoint CreateRawPoint(ECFieldElement x, ECFieldElement y, bool withCompression)
+        {
+            return new SecT131R1Point(this, x, y, withCompression);
+        }
+
+        protected internal override ECPoint CreateRawPoint(ECFieldElement x, ECFieldElement y, ECFieldElement[] zs, bool withCompression)
+        {
+            return new SecT131R1Point(this, x, y, zs, withCompression);
+        }
+
+        public override bool IsKoblitz
+        {
+            get { return false; }
+        }
+
+        /**
+         * Decompresses a compressed point P = (xp, yp) (X9.62 s 4.2.2).
+         * 
+         * @param yTilde
+         *            ~yp, an indication bit for the decompression of yp.
+         * @param X1
+         *            The field element xp.
+         * @return the decompressed point.
+         */
+        protected override ECPoint DecompressPoint(int yTilde, BigInteger X1)
+        {
+            ECFieldElement x = FromBigInteger(X1), y = null;
+            if (x.IsZero)
+            {
+                y = B.Sqrt();
+            }
+            else
+            {
+                ECFieldElement beta = x.Square().Invert().Multiply(B).Add(A).Add(x);
+                ECFieldElement z = SolveQuadraticEquation(beta);
+                if (z != null)
+                {
+                    if (z.TestBitZero() != (yTilde == 1))
+                    {
+                        z = z.AddOne();
+                    }
+
+                    switch (this.CoordinateSystem)
+                    {
+                    case COORD_LAMBDA_AFFINE:
+                    case COORD_LAMBDA_PROJECTIVE:
+                    {
+                        y = z.Add(x);
+                        break;
+                    }
+                    default:
+                    {
+                        y = z.Multiply(x);
+                        break;
+                    }
+                    }
+                }
+            }
+
+            if (y == null)
+                throw new ArgumentException("Invalid point compression");
+
+            return this.CreateRawPoint(x, y, true);
+        }
+
+        /**
+         * Solves a quadratic equation <code>z<sup>2</sup> + z = beta</code>(X9.62
+         * D.1.6) The other solution is <code>z + 1</code>.
+         * 
+         * @param beta
+         *            The value to solve the quadratic equation for.
+         * @return the solution for <code>z<sup>2</sup> + z = beta</code> or
+         *         <code>null</code> if no solution exists.
+         */
+        private ECFieldElement SolveQuadraticEquation(ECFieldElement beta)
+        {
+            if (beta.IsZero)
+                return beta;
+
+            ECFieldElement zeroElement = FromBigInteger(BigInteger.Zero);
+
+            ECFieldElement z = null;
+            ECFieldElement gamma = null;
+
+            Random rand = new Random();
+            do
+            {
+                ECFieldElement t = FromBigInteger(new BigInteger(131, rand));
+                z = zeroElement;
+                ECFieldElement w = beta;
+                for (int i = 1; i < 131; i++)
+                {
+                    ECFieldElement w2 = w.Square();
+                    z = z.Square().Add(w2.Multiply(t));
+                    w = w2.Add(beta);
+                }
+                if (!w.IsZero)
+                    return null;
+                gamma = z.Square().Add(z);
+            }
+            while (gamma.IsZero);
+
+            return z;
+        }
+
+        public virtual int M
+        {
+            get { return 131; }
+        }
+
+        public virtual bool IsTrinomial
+        {
+            get { return false; }
+        }
+
+        public virtual int K1
+        {
+            get { return 2; }
+        }
+
+        public virtual int K2
+        {
+            get { return 3; }
+        }
+
+        public virtual int K3
+        {
+            get { return 8; }
+        }
+    }
+}
diff --git a/crypto/src/math/ec/custom/sec/SecT131R1Point.cs b/crypto/src/math/ec/custom/sec/SecT131R1Point.cs
new file mode 100644
index 000000000..7afdad89c
--- /dev/null
+++ b/crypto/src/math/ec/custom/sec/SecT131R1Point.cs
@@ -0,0 +1,287 @@
+using System;
+
+namespace Org.BouncyCastle.Math.EC.Custom.Sec
+{
+    internal class SecT131R1Point
+        : AbstractF2mPoint
+    {
+        /**
+         * @deprecated Use ECCurve.createPoint to construct points
+         */
+        public SecT131R1Point(ECCurve curve, ECFieldElement x, ECFieldElement y)
+            : this(curve, x, y, false)
+        {
+        }
+
+        /**
+         * @deprecated per-point compression property will be removed, refer {@link #getEncoded(bool)}
+         */
+        public SecT131R1Point(ECCurve curve, ECFieldElement x, ECFieldElement y, bool withCompression)
+            : base(curve, x, y, withCompression)
+        {
+            if ((x == null) != (y == null))
+                throw new ArgumentException("Exactly one of the field elements is null");
+        }
+
+        internal SecT131R1Point(ECCurve curve, ECFieldElement x, ECFieldElement y, ECFieldElement[] zs, bool withCompression)
+            : base(curve, x, y, zs, withCompression)
+        {
+        }
+
+        protected override ECPoint Detach()
+        {
+            return new SecT131R1Point(null, AffineXCoord, AffineYCoord);
+        }
+
+        public override ECFieldElement YCoord
+        {
+            get
+            {
+                ECFieldElement X = RawXCoord, L = RawYCoord;
+
+                if (this.IsInfinity || X.IsZero)
+                    return L;
+
+                // Y is actually Lambda (X + Y/X) here; convert to affine value on the fly
+                ECFieldElement Y = L.Add(X).Multiply(X);
+
+                ECFieldElement Z = RawZCoords[0];
+                if (!Z.IsOne)
+                {
+                    Y = Y.Divide(Z);
+                }
+
+                return Y;
+            }
+        }
+
+        protected internal override bool CompressionYTilde
+        {
+            get
+            {
+                ECFieldElement X = this.RawXCoord;
+                if (X.IsZero)
+                    return false;
+
+                ECFieldElement Y = this.RawYCoord;
+
+                // Y is actually Lambda (X + Y/X) here
+                return Y.TestBitZero() != X.TestBitZero();
+            }
+        }
+
+        public override ECPoint Add(ECPoint b)
+        {
+            if (this.IsInfinity)
+                return b;
+            if (b.IsInfinity)
+                return this;
+
+            ECCurve curve = this.Curve;
+
+            ECFieldElement X1 = this.RawXCoord;
+            ECFieldElement X2 = b.RawXCoord;
+
+            if (X1.IsZero)
+            {
+                if (X2.IsZero)
+                    return curve.Infinity;
+
+                return b.Add(this);
+            }
+
+            ECFieldElement L1 = this.RawYCoord, Z1 = this.RawZCoords[0];
+            ECFieldElement L2 = b.RawYCoord, Z2 = b.RawZCoords[0];
+
+            bool Z1IsOne = Z1.IsOne;
+            ECFieldElement U2 = X2, S2 = L2;
+            if (!Z1IsOne)
+            {
+                U2 = U2.Multiply(Z1);
+                S2 = S2.Multiply(Z1);
+            }
+
+            bool Z2IsOne = Z2.IsOne;
+            ECFieldElement U1 = X1, S1 = L1;
+            if (!Z2IsOne)
+            {
+                U1 = U1.Multiply(Z2);
+                S1 = S1.Multiply(Z2);
+            }
+
+            ECFieldElement A = S1.Add(S2);
+            ECFieldElement B = U1.Add(U2);
+
+            if (B.IsZero)
+            {
+                if (A.IsZero)
+                    return Twice();
+
+                return curve.Infinity;
+            }
+
+            ECFieldElement X3, L3, Z3;
+            if (X2.IsZero)
+            {
+                // TODO This can probably be optimized quite a bit
+                ECPoint p = this.Normalize();
+                X1 = p.XCoord;
+                ECFieldElement Y1 = p.YCoord;
+
+                ECFieldElement Y2 = L2;
+                ECFieldElement L = Y1.Add(Y2).Divide(X1);
+
+                X3 = L.Square().Add(L).Add(X1).Add(curve.A);
+                if (X3.IsZero)
+                {
+                    return new SecT131R1Point(curve, X3, curve.B.Sqrt(), IsCompressed);
+                }
+
+                ECFieldElement Y3 = L.Multiply(X1.Add(X3)).Add(X3).Add(Y1);
+                L3 = Y3.Divide(X3).Add(X3);
+                Z3 = curve.FromBigInteger(BigInteger.One);
+            }
+            else
+            {
+                B = B.Square();
+
+                ECFieldElement AU1 = A.Multiply(U1);
+                ECFieldElement AU2 = A.Multiply(U2);
+
+                X3 = AU1.Multiply(AU2);
+                if (X3.IsZero)
+                {
+                    return new SecT131R1Point(curve, X3, curve.B.Sqrt(), IsCompressed);
+                }
+
+                ECFieldElement ABZ2 = A.Multiply(B);
+                if (!Z2IsOne)
+                {
+                    ABZ2 = ABZ2.Multiply(Z2);
+                }
+
+                L3 = AU2.Add(B).SquarePlusProduct(ABZ2, L1.Add(Z1));
+
+                Z3 = ABZ2;
+                if (!Z1IsOne)
+                {
+                    Z3 = Z3.Multiply(Z1);
+                }
+            }
+
+            return new SecT131R1Point(curve, X3, L3, new ECFieldElement[] { Z3 }, IsCompressed);
+        }
+
+        public override ECPoint Twice()
+        {
+            if (this.IsInfinity)
+            {
+                return this;
+            }
+
+            ECCurve curve = this.Curve;
+
+            ECFieldElement X1 = this.RawXCoord;
+            if (X1.IsZero)
+            {
+                // A point with X == 0 is it's own Additive inverse
+                return curve.Infinity;
+            }
+
+            ECFieldElement L1 = this.RawYCoord, Z1 = this.RawZCoords[0];
+
+            bool Z1IsOne = Z1.IsOne;
+            ECFieldElement L1Z1 = Z1IsOne ? L1 : L1.Multiply(Z1);
+            ECFieldElement Z1Sq = Z1IsOne ? Z1 : Z1.Square();
+            ECFieldElement a = curve.A;
+            ECFieldElement aZ1Sq = Z1IsOne ? a : a.Multiply(Z1Sq);
+            ECFieldElement T = L1.Square().Add(L1Z1).Add(aZ1Sq);
+            if (T.IsZero)
+            {
+                return new SecT131R1Point(curve, T, curve.B.Sqrt(), IsCompressed);
+            }
+
+            ECFieldElement X3 = T.Square();
+            ECFieldElement Z3 = Z1IsOne ? T : T.Multiply(Z1Sq);
+
+            ECFieldElement X1Z1 = Z1IsOne ? X1 : X1.Multiply(Z1);
+            ECFieldElement L3 = X1Z1.SquarePlusProduct(T, L1Z1).Add(X3).Add(Z3);
+
+            return new SecT131R1Point(curve, X3, L3, new ECFieldElement[] { Z3 }, IsCompressed);
+        }
+
+        public override ECPoint TwicePlus(ECPoint b)
+        {
+            if (this.IsInfinity)
+            {
+                return b;
+            }
+            if (b.IsInfinity)
+            {
+                return Twice();
+            }
+
+            ECCurve curve = this.Curve;
+
+            ECFieldElement X1 = this.RawXCoord;
+            if (X1.IsZero)
+            {
+                // A point with X == 0 is it's own Additive inverse
+                return b;
+            }
+
+            ECFieldElement X2 = b.RawXCoord, Z2 = b.RawZCoords[0];
+            if (X2.IsZero || !Z2.IsOne)
+            {
+                return Twice().Add(b);
+            }
+
+            ECFieldElement L1 = this.RawYCoord, Z1 = this.RawZCoords[0];
+            ECFieldElement L2 = b.RawYCoord;
+
+            ECFieldElement X1Sq = X1.Square();
+            ECFieldElement L1Sq = L1.Square();
+            ECFieldElement Z1Sq = Z1.Square();
+            ECFieldElement L1Z1 = L1.Multiply(Z1);
+
+            ECFieldElement T = curve.A.Multiply(Z1Sq).Add(L1Sq).Add(L1Z1);
+            ECFieldElement L2plus1 = L2.AddOne();
+            ECFieldElement A = curve.A.Add(L2plus1).Multiply(Z1Sq).Add(L1Sq).MultiplyPlusProduct(T, X1Sq, Z1Sq);
+            ECFieldElement X2Z1Sq = X2.Multiply(Z1Sq);
+            ECFieldElement B = X2Z1Sq.Add(T).Square();
+
+            if (B.IsZero)
+            {
+                if (A.IsZero)
+                    return b.Twice();
+
+                return curve.Infinity;
+            }
+
+            if (A.IsZero)
+            {
+                return new SecT131R1Point(curve, A, curve.B.Sqrt(), IsCompressed);
+            }
+
+            ECFieldElement X3 = A.Square().Multiply(X2Z1Sq);
+            ECFieldElement Z3 = A.Multiply(B).Multiply(Z1Sq);
+            ECFieldElement L3 = A.Add(B).Square().MultiplyPlusProduct(T, L2plus1, Z3);
+
+            return new SecT131R1Point(curve, X3, L3, new ECFieldElement[] { Z3 }, IsCompressed);
+        }
+
+        public override ECPoint Negate()
+        {
+            if (IsInfinity)
+                return this;
+
+            ECFieldElement X = this.RawXCoord;
+            if (X.IsZero)
+                return this;
+
+            // L is actually Lambda (X + Y/X) here
+            ECFieldElement L = this.RawYCoord, Z = this.RawZCoords[0];
+            return new SecT131R1Point(Curve, X, L.Add(Z), new ECFieldElement[] { Z }, IsCompressed);
+        }
+    }
+}
diff --git a/crypto/src/math/ec/custom/sec/SecT131R2Curve.cs b/crypto/src/math/ec/custom/sec/SecT131R2Curve.cs
new file mode 100644
index 000000000..2004f84ca
--- /dev/null
+++ b/crypto/src/math/ec/custom/sec/SecT131R2Curve.cs
@@ -0,0 +1,190 @@
+using System;
+
+using Org.BouncyCastle.Utilities.Encoders;
+
+namespace Org.BouncyCastle.Math.EC.Custom.Sec
+{
+    internal class SecT131R2Curve
+        : AbstractF2mCurve
+    {
+        private const int SecT131R2_DEFAULT_COORDS = COORD_LAMBDA_PROJECTIVE;
+
+        protected readonly SecT131R2Point m_infinity;
+
+        public SecT131R2Curve()
+            : base(131, 2, 3, 8)
+        {
+            this.m_infinity = new SecT131R2Point(this, null, null);
+
+            this.m_a = FromBigInteger(new BigInteger(1, Hex.Decode("03E5A88919D7CAFCBF415F07C2176573B2")));
+            this.m_b = FromBigInteger(new BigInteger(1, Hex.Decode("04B8266A46C55657AC734CE38F018F2192")));
+            this.m_order = new BigInteger(1, Hex.Decode("0400000000000000016954A233049BA98F"));
+            this.m_cofactor = BigInteger.Two;
+
+            this.m_coord = SecT131R2_DEFAULT_COORDS;
+        }
+
+        protected override ECCurve CloneCurve()
+        {
+            return new SecT131R2Curve();
+        }
+
+        public override bool SupportsCoordinateSystem(int coord)
+        {
+            switch (coord)
+            {
+            case COORD_LAMBDA_PROJECTIVE:
+                return true;
+            default:
+                return false;
+            }
+        }
+
+        public override int FieldSize
+        {
+            get { return 131; }
+        }
+
+        public override ECFieldElement FromBigInteger(BigInteger x)
+        {
+            return new SecT131FieldElement(x);
+        }
+
+        protected internal override ECPoint CreateRawPoint(ECFieldElement x, ECFieldElement y, bool withCompression)
+        {
+            return new SecT131R2Point(this, x, y, withCompression);
+        }
+
+        protected internal override ECPoint CreateRawPoint(ECFieldElement x, ECFieldElement y, ECFieldElement[] zs, bool withCompression)
+        {
+            return new SecT131R2Point(this, x, y, zs, withCompression);
+        }
+
+        public override ECPoint Infinity
+        {
+            get { return m_infinity; }
+        }
+
+        public override bool IsKoblitz
+        {
+            get { return false; }
+        }
+
+        /**
+         * Decompresses a compressed point P = (xp, yp) (X9.62 s 4.2.2).
+         * 
+         * @param yTilde
+         *            ~yp, an indication bit for the decompression of yp.
+         * @param X1
+         *            The field element xp.
+         * @return the decompressed point.
+         */
+        protected override ECPoint DecompressPoint(int yTilde, BigInteger X1)
+        {
+            ECFieldElement x = FromBigInteger(X1), y = null;
+            if (x.IsZero)
+            {
+                y = B.Sqrt();
+            }
+            else
+            {
+                ECFieldElement beta = x.Square().Invert().Multiply(B).Add(A).Add(x);
+                ECFieldElement z = SolveQuadraticEquation(beta);
+                if (z != null)
+                {
+                    if (z.TestBitZero() != (yTilde == 1))
+                    {
+                        z = z.AddOne();
+                    }
+
+                    switch (this.CoordinateSystem)
+                    {
+                    case COORD_LAMBDA_AFFINE:
+                    case COORD_LAMBDA_PROJECTIVE:
+                    {
+                        y = z.Add(x);
+                        break;
+                    }
+                    default:
+                    {
+                        y = z.Multiply(x);
+                        break;
+                    }
+                    }
+                }
+            }
+
+            if (y == null)
+                throw new ArgumentException("Invalid point compression");
+
+            return this.CreateRawPoint(x, y, true);
+        }
+
+        /**
+         * Solves a quadratic equation <code>z<sup>2</sup> + z = beta</code>(X9.62
+         * D.1.6) The other solution is <code>z + 1</code>.
+         * 
+         * @param beta
+         *            The value to solve the quadratic equation for.
+         * @return the solution for <code>z<sup>2</sup> + z = beta</code> or
+         *         <code>null</code> if no solution exists.
+         */
+        private ECFieldElement SolveQuadraticEquation(ECFieldElement beta)
+        {
+            if (beta.IsZero)
+            {
+                return beta;
+            }
+
+            ECFieldElement zeroElement = FromBigInteger(BigInteger.Zero);
+
+            ECFieldElement z = null;
+            ECFieldElement gamma = null;
+
+            Random rand = new Random();
+            do
+            {
+                ECFieldElement t = FromBigInteger(new BigInteger(131, rand));
+                z = zeroElement;
+                ECFieldElement w = beta;
+                for (int i = 1; i < 131; i++)
+                {
+                    ECFieldElement w2 = w.Square();
+                    z = z.Square().Add(w2.Multiply(t));
+                    w = w2.Add(beta);
+                }
+                if (!w.IsZero)
+                    return null;
+                gamma = z.Square().Add(z);
+            }
+            while (gamma.IsZero);
+
+            return z;
+        }
+
+        public virtual int M
+        {
+            get { return 131; }
+        }
+
+        public virtual bool IsTrinomial
+        {
+            get { return false; }
+        }
+
+        public virtual int K1
+        {
+            get { return 2; }
+        }
+
+        public virtual int K2
+        {
+            get { return 3; }
+        }
+
+        public virtual int K3
+        {
+            get { return 8; }
+        }
+    }
+}
diff --git a/crypto/src/math/ec/custom/sec/SecT131R2Point.cs b/crypto/src/math/ec/custom/sec/SecT131R2Point.cs
new file mode 100644
index 000000000..be61561da
--- /dev/null
+++ b/crypto/src/math/ec/custom/sec/SecT131R2Point.cs
@@ -0,0 +1,283 @@
+using System;
+
+namespace Org.BouncyCastle.Math.EC.Custom.Sec
+{
+    internal class SecT131R2Point
+        : AbstractF2mPoint
+    {
+        /**
+         * @deprecated Use ECCurve.createPoint to construct points
+         */
+        public SecT131R2Point(ECCurve curve, ECFieldElement x, ECFieldElement y)
+            : this(curve, x, y, false)
+        {
+        }
+
+        /**
+         * @deprecated per-point compression property will be removed, refer {@link #getEncoded(bool)}
+         */
+        public SecT131R2Point(ECCurve curve, ECFieldElement x, ECFieldElement y, bool withCompression)
+            : base(curve, x, y, withCompression)
+        {
+            if ((x == null) != (y == null))
+                throw new ArgumentException("Exactly one of the field elements is null");
+        }
+
+        internal SecT131R2Point(ECCurve curve, ECFieldElement x, ECFieldElement y, ECFieldElement[] zs, bool withCompression)
+            : base(curve, x, y, zs, withCompression)
+        {
+        }
+
+        protected override ECPoint Detach()
+        {
+            return new SecT131R2Point(null, AffineXCoord, AffineYCoord);
+        }
+
+        public override ECFieldElement YCoord
+        {
+            get
+            {
+                ECFieldElement X = RawXCoord, L = RawYCoord;
+
+                if (this.IsInfinity || X.IsZero)
+                    return L;
+
+                // Y is actually Lambda (X + Y/X) here; convert to affine value on the fly
+                ECFieldElement Y = L.Add(X).Multiply(X);
+
+                ECFieldElement Z = RawZCoords[0];
+                if (!Z.IsOne)
+                {
+                    Y = Y.Divide(Z);
+                }
+
+                return Y;
+            }
+        }
+
+        protected internal override bool CompressionYTilde
+        {
+            get
+            {
+                ECFieldElement X = this.RawXCoord;
+                if (X.IsZero)
+                    return false;
+
+                ECFieldElement Y = this.RawYCoord;
+
+                // Y is actually Lambda (X + Y/X) here
+                return Y.TestBitZero() != X.TestBitZero();
+            }
+        }
+
+        public override ECPoint Add(ECPoint b)
+        {
+            if (this.IsInfinity)
+                return b;
+            if (b.IsInfinity)
+                return this;
+
+            ECCurve curve = this.Curve;
+
+            ECFieldElement X1 = this.RawXCoord;
+            ECFieldElement X2 = b.RawXCoord;
+
+            if (X1.IsZero)
+            {
+                if (X2.IsZero)
+                    return curve.Infinity;
+
+                return b.Add(this);
+            }
+
+            ECFieldElement L1 = this.RawYCoord, Z1 = this.RawZCoords[0];
+            ECFieldElement L2 = b.RawYCoord, Z2 = b.RawZCoords[0];
+
+            bool Z1IsOne = Z1.IsOne;
+            ECFieldElement U2 = X2, S2 = L2;
+            if (!Z1IsOne)
+            {
+                U2 = U2.Multiply(Z1);
+                S2 = S2.Multiply(Z1);
+            }
+
+            bool Z2IsOne = Z2.IsOne;
+            ECFieldElement U1 = X1, S1 = L1;
+            if (!Z2IsOne)
+            {
+                U1 = U1.Multiply(Z2);
+                S1 = S1.Multiply(Z2);
+            }
+
+            ECFieldElement A = S1.Add(S2);
+            ECFieldElement B = U1.Add(U2);
+
+            if (B.IsZero)
+            {
+                if (A.IsZero)
+                    return Twice();
+
+                return curve.Infinity;
+            }
+
+            ECFieldElement X3, L3, Z3;
+            if (X2.IsZero)
+            {
+                // TODO This can probably be optimized quite a bit
+                ECPoint p = this.Normalize();
+                X1 = p.XCoord;
+                ECFieldElement Y1 = p.YCoord;
+
+                ECFieldElement Y2 = L2;
+                ECFieldElement L = Y1.Add(Y2).Divide(X1);
+
+                X3 = L.Square().Add(L).Add(X1).Add(curve.A);
+                if (X3.IsZero)
+                {
+                    return new SecT131R2Point(curve, X3, curve.B.Sqrt(), IsCompressed);
+                }
+
+                ECFieldElement Y3 = L.Multiply(X1.Add(X3)).Add(X3).Add(Y1);
+                L3 = Y3.Divide(X3).Add(X3);
+                Z3 = curve.FromBigInteger(BigInteger.One);
+            }
+            else
+            {
+                B = B.Square();
+
+                ECFieldElement AU1 = A.Multiply(U1);
+                ECFieldElement AU2 = A.Multiply(U2);
+
+                X3 = AU1.Multiply(AU2);
+                if (X3.IsZero)
+                {
+                    return new SecT131R2Point(curve, X3, curve.B.Sqrt(), IsCompressed);
+                }
+
+                ECFieldElement ABZ2 = A.Multiply(B);
+                if (!Z2IsOne)
+                {
+                    ABZ2 = ABZ2.Multiply(Z2);
+                }
+
+                L3 = AU2.Add(B).SquarePlusProduct(ABZ2, L1.Add(Z1));
+
+                Z3 = ABZ2;
+                if (!Z1IsOne)
+                {
+                    Z3 = Z3.Multiply(Z1);
+                }
+            }
+
+            return new SecT131R2Point(curve, X3, L3, new ECFieldElement[] { Z3 }, IsCompressed);
+        }
+
+        public override ECPoint Twice()
+        {
+            if (this.IsInfinity)
+            {
+                return this;
+            }
+
+            ECCurve curve = this.Curve;
+
+            ECFieldElement X1 = this.RawXCoord;
+            if (X1.IsZero)
+            {
+                // A point with X == 0 is it's own Additive inverse
+                return curve.Infinity;
+            }
+
+            ECFieldElement L1 = this.RawYCoord, Z1 = this.RawZCoords[0];
+
+            bool Z1IsOne = Z1.IsOne;
+            ECFieldElement L1Z1 = Z1IsOne ? L1 : L1.Multiply(Z1);
+            ECFieldElement Z1Sq = Z1IsOne ? Z1 : Z1.Square();
+            ECFieldElement a = curve.A;
+            ECFieldElement aZ1Sq = Z1IsOne ? a : a.Multiply(Z1Sq);
+            ECFieldElement T = L1.Square().Add(L1Z1).Add(aZ1Sq);
+            if (T.IsZero)
+            {
+                return new SecT131R2Point(curve, T, curve.B.Sqrt(), IsCompressed);
+            }
+
+            ECFieldElement X3 = T.Square();
+            ECFieldElement Z3 = Z1IsOne ? T : T.Multiply(Z1Sq);
+
+            ECFieldElement X1Z1 = Z1IsOne ? X1 : X1.Multiply(Z1);
+            ECFieldElement L3 = X1Z1.SquarePlusProduct(T, L1Z1).Add(X3).Add(Z3);
+
+            return new SecT131R2Point(curve, X3, L3, new ECFieldElement[] { Z3 }, IsCompressed);
+        }
+
+        public override ECPoint TwicePlus(ECPoint b)
+        {
+            if (this.IsInfinity)
+                return b;
+            if (b.IsInfinity)
+                return Twice();
+
+            ECCurve curve = this.Curve;
+
+            ECFieldElement X1 = this.RawXCoord;
+            if (X1.IsZero)
+            {
+                // A point with X == 0 is it's own Additive inverse
+                return b;
+            }
+
+            ECFieldElement X2 = b.RawXCoord, Z2 = b.RawZCoords[0];
+            if (X2.IsZero || !Z2.IsOne)
+            {
+                return Twice().Add(b);
+            }
+
+            ECFieldElement L1 = this.RawYCoord, Z1 = this.RawZCoords[0];
+            ECFieldElement L2 = b.RawYCoord;
+
+            ECFieldElement X1Sq = X1.Square();
+            ECFieldElement L1Sq = L1.Square();
+            ECFieldElement Z1Sq = Z1.Square();
+            ECFieldElement L1Z1 = L1.Multiply(Z1);
+
+            ECFieldElement T = curve.A.Multiply(Z1Sq).Add(L1Sq).Add(L1Z1);
+            ECFieldElement L2plus1 = L2.AddOne();
+            ECFieldElement A = curve.A.Add(L2plus1).Multiply(Z1Sq).Add(L1Sq).MultiplyPlusProduct(T, X1Sq, Z1Sq);
+            ECFieldElement X2Z1Sq = X2.Multiply(Z1Sq);
+            ECFieldElement B = X2Z1Sq.Add(T).Square();
+
+            if (B.IsZero)
+            {
+                if (A.IsZero)
+                    return b.Twice();
+
+                return curve.Infinity;
+            }
+
+            if (A.IsZero)
+            {
+                return new SecT131R2Point(curve, A, curve.B.Sqrt(), IsCompressed);
+            }
+
+            ECFieldElement X3 = A.Square().Multiply(X2Z1Sq);
+            ECFieldElement Z3 = A.Multiply(B).Multiply(Z1Sq);
+            ECFieldElement L3 = A.Add(B).Square().MultiplyPlusProduct(T, L2plus1, Z3);
+
+            return new SecT131R2Point(curve, X3, L3, new ECFieldElement[] { Z3 }, IsCompressed);
+        }
+
+        public override ECPoint Negate()
+        {
+            if (IsInfinity)
+                return this;
+
+            ECFieldElement X = this.RawXCoord;
+            if (X.IsZero)
+                return this;
+
+            // L is actually Lambda (X + Y/X) here
+            ECFieldElement L = this.RawYCoord, Z = this.RawZCoords[0];
+            return new SecT131R2Point(Curve, X, L.Add(Z), new ECFieldElement[] { Z }, IsCompressed);
+        }
+    }
+}
diff --git a/crypto/src/math/ec/custom/sec/SecT163Field.cs b/crypto/src/math/ec/custom/sec/SecT163Field.cs
new file mode 100644
index 000000000..2a775e20d
--- /dev/null
+++ b/crypto/src/math/ec/custom/sec/SecT163Field.cs
@@ -0,0 +1,272 @@
+using System;
+using System.Diagnostics;
+
+using Org.BouncyCastle.Math.Raw;
+
+namespace Org.BouncyCastle.Math.EC.Custom.Sec
+{
+    internal class SecT163Field
+    {
+        private const ulong M35 = ulong.MaxValue >> 29;
+        private const ulong M55 = ulong.MaxValue >> 9;
+
+        public static void Add(ulong[] x, ulong[] y, ulong[] z)
+        {
+            z[0] = x[0] ^ y[0];
+            z[1] = x[1] ^ y[1];
+            z[2] = x[2] ^ y[2];
+        }
+
+        public static void AddExt(ulong[] xx, ulong[] yy, ulong[] zz)
+        {
+            zz[0] = xx[0] ^ yy[0];
+            zz[1] = xx[1] ^ yy[1];
+            zz[2] = xx[2] ^ yy[2];
+            zz[3] = xx[3] ^ yy[3];
+            zz[4] = xx[4] ^ yy[4];
+            zz[5] = xx[5] ^ yy[5];
+        }
+
+        public static void AddOne(ulong[] x, ulong[] z)
+        {
+            z[0] = x[0] ^ 1UL;
+            z[1] = x[1];
+            z[2] = x[2];
+        }
+
+        public static ulong[] FromBigInteger(BigInteger x)
+        {
+            ulong[] z = Nat192.FromBigInteger64(x);
+            Reduce29(z, 0);
+            return z;
+        }
+
+        public static void Multiply(ulong[] x, ulong[] y, ulong[] z)
+        {
+            ulong[] tt = Nat192.CreateExt64();
+            ImplMultiply(x, y, tt);
+            Reduce(tt, z);
+        }
+
+        public static void MultiplyAddToExt(ulong[] x, ulong[] y, ulong[] zz)
+        {
+            ulong[] tt = Nat192.CreateExt64();
+            ImplMultiply(x, y, tt);
+            AddExt(zz, tt, zz);
+        }
+
+        public static void Reduce(ulong[] xx, ulong[] z)
+        {
+            ulong x0 = xx[0], x1 = xx[1], x2 = xx[2], x3 = xx[3], x4 = xx[4], x5 = xx[5];
+
+            x2 ^= (x5 << 29) ^ (x5 << 32) ^ (x5 << 35) ^ (x5 << 36);
+            x3 ^= (x5 >> 35) ^ (x5 >> 32) ^ (x5 >> 29) ^ (x5 >> 28);
+
+            x1 ^= (x4 << 29) ^ (x4 << 32) ^ (x4 << 35) ^ (x4 << 36);
+            x2 ^= (x4 >> 35) ^ (x4 >> 32) ^ (x4 >> 29) ^ (x4 >> 28);
+
+            x0 ^= (x3 << 29) ^ (x3 << 32) ^ (x3 << 35) ^ (x3 << 36);
+            x1 ^= (x3 >> 35) ^ (x3 >> 32) ^ (x3 >> 29) ^ (x3 >> 28);
+
+            ulong t = x2 >> 35;
+            z[0]    = x0 ^ t ^ (t << 3) ^ (t << 6) ^ (t << 7);
+            z[1]    = x1;
+            z[2]    = x2 & M35;
+        }
+
+        public static void Reduce29(ulong[] z, int zOff)
+        {
+            ulong z2     = z[zOff + 2], t = z2 >> 35;
+            z[zOff    ] ^= t ^ (t << 3) ^ (t << 6) ^ (t << 7);
+            z[zOff + 2]  = z2 & M35;
+        }
+
+        public static void Square(ulong[] x, ulong[] z)
+        {
+            ulong[] tt = Nat192.CreateExt64();
+            ImplSquare(x, tt);
+            Reduce(tt, z);
+        }
+
+        public static void SquareAddToExt(ulong[] x, ulong[] zz)
+        {
+            ulong[] tt = Nat192.CreateExt64();
+            ImplSquare(x, tt);
+            AddExt(zz, tt, zz);
+        }
+
+        public static void SquareN(ulong[] x, int n, ulong[] z)
+        {
+            Debug.Assert(n > 0);
+
+            ulong[] tt = Nat192.CreateExt64();
+            ImplSquare(x, tt);
+            Reduce(tt, z);
+
+            while (--n > 0)
+            {
+                ImplSquare(z, tt);
+                Reduce(tt, z);
+            }
+        }
+
+        protected static void ImplCompactExt(ulong[] zz)
+        {
+            ulong z0 = zz[0], z1 = zz[1], z2 = zz[2], z3 = zz[3], z4 = zz[4], z5 = zz[5];
+            zz[0] =  z0        ^ (z1 << 55);
+            zz[1] = (z1 >>  9) ^ (z2 << 46);
+            zz[2] = (z2 >> 18) ^ (z3 << 37);
+            zz[3] = (z3 >> 27) ^ (z4 << 28);
+            zz[4] = (z4 >> 36) ^ (z5 << 19);
+            zz[5] = (z5 >> 45);
+        }
+
+        protected static void ImplMultiply(ulong[] x, ulong[] y, ulong[] zz)
+        {
+            /*
+             * "Five-way recursion" as described in "Batch binary Edwards", Daniel J. Bernstein.
+             */
+
+            ulong f0 = x[0], f1 = x[1], f2 = x[2];
+            f2  = ((f1 >> 46) ^ (f2 << 18));
+            f1  = ((f0 >> 55) ^ (f1 <<  9)) & M55;
+            f0 &= M55;
+
+            ulong g0 = y[0], g1 = y[1], g2 = y[2];
+            g2  = ((g1 >> 46) ^ (g2 << 18));
+            g1  = ((g0 >> 55) ^ (g1 <<  9)) & M55;
+            g0 &= M55;
+
+            ulong[] H = new ulong[10];
+
+            ImplMulw(f0, g0, H, 0);               // H(0)       55/54 bits
+            ImplMulw(f2, g2, H, 2);               // H(INF)     55/50 bits
+
+            ulong t0 = f0 ^ f1 ^ f2;
+            ulong t1 = g0 ^ g1 ^ g2;
+
+            ImplMulw(t0, t1, H, 4);               // H(1)       55/54 bits
+        
+            ulong t2 = (f1 << 1) ^ (f2 << 2);
+            ulong t3 = (g1 << 1) ^ (g2 << 2);
+
+            ImplMulw(f0 ^ t2, g0 ^ t3, H, 6);     // H(t)       55/56 bits
+            ImplMulw(t0 ^ t2, t1 ^ t3, H, 8);     // H(t + 1)   55/56 bits
+
+            ulong t4 = H[6] ^ H[8];
+            ulong t5 = H[7] ^ H[9];
+
+            Debug.Assert(t5 >> 55 == 0);
+
+            // Calculate V
+            ulong v0 =      (t4 << 1) ^ H[6];
+            ulong v1 = t4 ^ (t5 << 1) ^ H[7];
+            ulong v2 = t5;
+
+            // Calculate U
+            ulong u0 = H[0];
+            ulong u1 = H[1] ^ H[0] ^ H[4];
+            ulong u2 =        H[1] ^ H[5];
+        
+            // Calculate W
+            ulong w0 = u0 ^ v0 ^ (H[2] << 4) ^ (H[2] << 1);
+            ulong w1 = u1 ^ v1 ^ (H[3] << 4) ^ (H[3] << 1);
+            ulong w2 = u2 ^ v2;
+
+            // Propagate carries
+            w1 ^= (w0 >> 55); w0 &= M55;
+            w2 ^= (w1 >> 55); w1 &= M55;
+
+            Debug.Assert((w0 & 1UL) == 0UL);
+
+            // Divide W by t
+
+            w0 = (w0 >> 1) ^ ((w1 & 1UL) << 54);
+            w1 = (w1 >> 1) ^ ((w2 & 1UL) << 54);
+            w2 = (w2 >> 1);
+
+            // Divide W by (t + 1)
+
+            w0 ^= (w0 << 1);
+            w0 ^= (w0 << 2);
+            w0 ^= (w0 << 4);
+            w0 ^= (w0 << 8);
+            w0 ^= (w0 << 16);
+            w0 ^= (w0 << 32);
+
+            w0 &= M55; w1 ^= (w0 >> 54);
+
+            w1 ^= (w1 << 1);
+            w1 ^= (w1 << 2);
+            w1 ^= (w1 << 4);
+            w1 ^= (w1 << 8);
+            w1 ^= (w1 << 16);
+            w1 ^= (w1 << 32);
+
+            w1 &= M55; w2 ^= (w1 >> 54);
+
+            w2 ^= (w2 << 1);
+            w2 ^= (w2 << 2);
+            w2 ^= (w2 << 4);
+            w2 ^= (w2 << 8);
+            w2 ^= (w2 << 16);
+            w2 ^= (w2 << 32);
+
+            Debug.Assert(w2 >> 52 == 0);
+
+            zz[0] = u0; 
+            zz[1] = u1 ^ w0      ^ H[2]; 
+            zz[2] = u2 ^ w1 ^ w0 ^ H[3]; 
+            zz[3] =      w2 ^ w1; 
+            zz[4] =           w2 ^ H[2]; 
+            zz[5] =                H[3]; 
+
+            ImplCompactExt(zz);
+        }
+
+        protected static void ImplMulw(ulong x, ulong y, ulong[] z, int zOff)
+        {
+            Debug.Assert(x >> 56 == 0);
+            Debug.Assert(y >> 56 == 0);
+
+            ulong[] u = new ulong[8];
+    //      u[0] = 0;
+            u[1] = y;
+            u[2] = u[1] << 1;
+            u[3] = u[2] ^  y;
+            u[4] = u[2] << 1;
+            u[5] = u[4] ^  y;
+            u[6] = u[3] << 1;
+            u[7] = u[6] ^  y;
+
+            uint j = (uint)x;
+            ulong g, h = 0, l = u[j & 3];
+            int k = 47;
+            do
+            {
+                j = (uint)(x >> k);
+                g  = u[j & 7]
+                   ^ u[(j >> 3) & 7] << 3
+                   ^ u[(j >> 6) & 7] << 6;
+                l ^= (g <<  k);
+                h ^= (g >> -k);
+            }
+            while ((k -= 9) > 0);
+
+            Debug.Assert(h >> 47 == 0);
+
+            z[zOff    ] = l & M55;
+            z[zOff + 1] = (l >> 55) ^ (h << 9);
+        }
+
+        protected static void ImplSquare(ulong[] x, ulong[] zz)
+        {
+            Interleave.Expand64To128(x[0], zz, 0);
+            Interleave.Expand64To128(x[1], zz, 2);
+
+            ulong x2 = x[2];
+            zz[4] = Interleave.Expand32to64((uint)x2);
+            zz[5] = Interleave.Expand8to16((uint)(x2 >> 32));
+        }
+    }
+}
diff --git a/crypto/src/math/ec/custom/sec/SecT163FieldElement.cs b/crypto/src/math/ec/custom/sec/SecT163FieldElement.cs
new file mode 100644
index 000000000..0ef421c71
--- /dev/null
+++ b/crypto/src/math/ec/custom/sec/SecT163FieldElement.cs
@@ -0,0 +1,213 @@
+using System;
+
+using Org.BouncyCastle.Math.Raw;
+using Org.BouncyCastle.Utilities;
+
+namespace Org.BouncyCastle.Math.EC.Custom.Sec
+{
+    internal class SecT163FieldElement
+        : ECFieldElement
+    {
+        protected readonly ulong[] x;
+
+        public SecT163FieldElement(BigInteger x)
+        {
+            if (x == null || x.SignValue < 0)
+                throw new ArgumentException("value invalid for SecT163FieldElement", "x");
+
+            this.x = SecT163Field.FromBigInteger(x);
+        }
+
+        public SecT163FieldElement()
+        {
+            this.x = Nat192.Create64();
+        }
+
+        protected internal SecT163FieldElement(ulong[] x)
+        {
+            this.x = x;
+        }
+
+        public override bool IsOne
+        {
+            get { return Nat192.IsOne64(x); }
+        }
+
+        public override bool IsZero
+        {
+            get { return Nat192.IsZero64(x); }
+        }
+
+        public override bool TestBitZero()
+        {
+            return (x[0] & 1L) != 0L;
+        }
+
+        public override BigInteger ToBigInteger()
+        {
+            return Nat192.ToBigInteger64(x);
+        }
+
+        public override string FieldName
+        {
+            get { return "SecT163Field"; }
+        }
+
+        public override int FieldSize
+        {
+            get { return 163; }
+        }
+
+        public override ECFieldElement Add(ECFieldElement b)
+        {
+            ulong[] z = Nat192.Create64();
+            SecT163Field.Add(x, ((SecT163FieldElement)b).x, z);
+            return new SecT163FieldElement(z);
+        }
+
+        public override ECFieldElement AddOne()
+        {
+            ulong[] z = Nat192.Create64();
+            SecT163Field.AddOne(x, z);
+            return new SecT163FieldElement(z);
+        }
+
+        public override ECFieldElement Subtract(ECFieldElement b)
+        {
+            // Addition and subtraction are the same in F2m
+            return Add(b);
+        }
+
+        public override ECFieldElement Multiply(ECFieldElement b)
+        {
+            ulong[] z = Nat192.Create64();
+            SecT163Field.Multiply(x, ((SecT163FieldElement)b).x, z);
+            return new SecT163FieldElement(z);
+        }
+
+        public override ECFieldElement MultiplyMinusProduct(ECFieldElement b, ECFieldElement x, ECFieldElement y)
+        {
+            return MultiplyPlusProduct(b, x, y);
+        }
+
+        public override ECFieldElement MultiplyPlusProduct(ECFieldElement b, ECFieldElement x, ECFieldElement y)
+        {
+            ulong[] ax = this.x, bx = ((SecT163FieldElement)b).x;
+            ulong[] xx = ((SecT163FieldElement)x).x, yx = ((SecT163FieldElement)y).x;
+
+            ulong[] tt = Nat192.CreateExt64();
+            SecT163Field.MultiplyAddToExt(ax, bx, tt);
+            SecT163Field.MultiplyAddToExt(xx, yx, tt);
+
+            ulong[] z = Nat192.Create64();
+            SecT163Field.Reduce(tt, z);
+            return new SecT163FieldElement(z);
+        }
+
+        public override ECFieldElement Divide(ECFieldElement b)
+        {
+            return Multiply(b.Invert());
+        }
+
+        public override ECFieldElement Negate()
+        {
+            return this;
+        }
+
+        public override ECFieldElement Square()
+        {
+            ulong[] z = Nat192.Create64();
+            SecT163Field.Square(x, z);
+            return new SecT163FieldElement(z);
+        }
+
+        public override ECFieldElement SquareMinusProduct(ECFieldElement x, ECFieldElement y)
+        {
+            return SquarePlusProduct(x, y);
+        }
+
+        public override ECFieldElement SquarePlusProduct(ECFieldElement x, ECFieldElement y)
+        {
+            ulong[] ax = this.x;
+            ulong[] xx = ((SecT163FieldElement)x).x, yx = ((SecT163FieldElement)y).x;
+
+            ulong[] tt = Nat192.CreateExt64();
+            SecT163Field.SquareAddToExt(ax, tt);
+            SecT163Field.MultiplyAddToExt(xx, yx, tt);
+
+            ulong[] z = Nat192.Create64();
+            SecT163Field.Reduce(tt, z);
+            return new SecT163FieldElement(z);
+        }
+
+        public override ECFieldElement SquarePow(int pow)
+        {
+            if (pow < 1)
+                return this;
+
+            ulong[] z = Nat192.Create64();
+            SecT163Field.SquareN(x, pow, z);
+            return new SecT163FieldElement(z);
+        }
+
+        public override ECFieldElement Invert()
+        {
+            return new SecT163FieldElement(
+                AbstractF2mCurve.Inverse(163, new int[] { 3, 6, 7 }, ToBigInteger()));
+        }
+
+        public override ECFieldElement Sqrt()
+        {
+            return SquarePow(M - 1);
+        }
+
+        public virtual int Representation
+        {
+            get { return F2mFieldElement.Ppb; }
+        }
+
+        public virtual int M
+        {
+            get { return 163; }
+        }
+
+        public virtual int K1
+        {
+            get { return 3; }
+        }
+
+        public virtual int K2
+        {
+            get { return 6; }
+        }
+
+        public virtual int K3
+        {
+            get { return 7; }
+        }
+
+        public override bool Equals(object obj)
+        {
+            return Equals(obj as SecT163FieldElement);
+        }
+
+        public override bool Equals(ECFieldElement other)
+        {
+            return Equals(other as SecT163FieldElement);
+        }
+
+        public virtual bool Equals(SecT163FieldElement other)
+        {
+            if (this == other)
+                return true;
+            if (null == other)
+                return false;
+            return Nat192.Eq64(x, other.x);
+        }
+
+        public override int GetHashCode()
+        {
+            return 163763 ^ Arrays.GetHashCode(x, 0, 3);
+        }
+    }
+}
diff --git a/crypto/src/math/ec/custom/sec/SecT163K1Curve.cs b/crypto/src/math/ec/custom/sec/SecT163K1Curve.cs
new file mode 100644
index 000000000..1cfd09e1c
--- /dev/null
+++ b/crypto/src/math/ec/custom/sec/SecT163K1Curve.cs
@@ -0,0 +1,194 @@
+using System;
+
+using Org.BouncyCastle.Math.EC.Multiplier;
+using Org.BouncyCastle.Utilities.Encoders;
+
+namespace Org.BouncyCastle.Math.EC.Custom.Sec
+{
+    internal class SecT163K1Curve
+        : AbstractF2mCurve
+    {
+        private const int SecT163K1_DEFAULT_COORDS = COORD_LAMBDA_PROJECTIVE;
+
+        protected readonly SecT163K1Point m_infinity;
+
+        public SecT163K1Curve()
+            : base(163, 3, 6, 7)
+        {
+            this.m_infinity = new SecT163K1Point(this, null, null);
+
+            this.m_a = FromBigInteger(BigInteger.One);
+            this.m_b = this.m_a;
+            this.m_order = new BigInteger(1, Hex.Decode("04000000000000000000020108A2E0CC0D99F8A5EF"));
+            this.m_cofactor = BigInteger.Two;
+
+            this.m_coord = SecT163K1_DEFAULT_COORDS;
+        }
+
+        protected override ECCurve CloneCurve()
+        {
+            return new SecT163K1Curve();
+        }
+
+        public override bool SupportsCoordinateSystem(int coord)
+        {
+            switch (coord)
+            {
+            case COORD_LAMBDA_PROJECTIVE:
+                return true;
+            default:
+                return false;
+            }
+        }
+
+        protected override ECMultiplier CreateDefaultMultiplier()
+        {
+            return new WTauNafMultiplier();
+        }
+
+        public override ECPoint Infinity
+        {
+            get { return m_infinity; }
+        }
+
+        public override int FieldSize
+        {
+            get { return 163; }
+        }
+
+        public override ECFieldElement FromBigInteger(BigInteger x)
+        {
+            return new SecT163FieldElement(x);
+        }
+
+        protected internal override ECPoint CreateRawPoint(ECFieldElement x, ECFieldElement y, bool withCompression)
+        {
+            return new SecT163K1Point(this, x, y, withCompression);
+        }
+
+        protected internal override ECPoint CreateRawPoint(ECFieldElement x, ECFieldElement y, ECFieldElement[] zs, bool withCompression)
+        {
+            return new SecT163K1Point(this, x, y, zs, withCompression);
+        }
+
+        public override bool IsKoblitz
+        {
+            get { return true; }
+        }
+
+        /**
+         * Decompresses a compressed point P = (xp, yp) (X9.62 s 4.2.2).
+         * 
+         * @param yTilde
+         *            ~yp, an indication bit for the decompression of yp.
+         * @param X1
+         *            The field element xp.
+         * @return the decompressed point.
+         */
+        protected override ECPoint DecompressPoint(int yTilde, BigInteger X1)
+        {
+            ECFieldElement x = FromBigInteger(X1), y = null;
+            if (x.IsZero)
+            {
+                y = B.Sqrt();
+            }
+            else
+            {
+                ECFieldElement beta = x.Square().Invert().Multiply(B).Add(A).Add(x);
+                ECFieldElement z = SolveQuadraticEquation(beta);
+                if (z != null)
+                {
+                    if (z.TestBitZero() != (yTilde == 1))
+                    {
+                        z = z.AddOne();
+                    }
+
+                    switch (this.CoordinateSystem)
+                    {
+                    case COORD_LAMBDA_AFFINE:
+                    case COORD_LAMBDA_PROJECTIVE:
+                    {
+                        y = z.Add(x);
+                        break;
+                    }
+                    default:
+                    {
+                        y = z.Multiply(x);
+                        break;
+                    }
+                    }
+                }
+            }
+
+            if (y == null)
+                throw new ArgumentException("Invalid point compression");
+
+            return this.CreateRawPoint(x, y, true);
+        }
+
+        /**
+         * Solves a quadratic equation <code>z<sup>2</sup> + z = beta</code>(X9.62
+         * D.1.6) The other solution is <code>z + 1</code>.
+         * 
+         * @param beta
+         *            The value to solve the quadratic equation for.
+         * @return the solution for <code>z<sup>2</sup> + z = beta</code> or
+         *         <code>null</code> if no solution exists.
+         */
+        private ECFieldElement SolveQuadraticEquation(ECFieldElement beta)
+        {
+            if (beta.IsZero)
+                return beta;
+
+            ECFieldElement zeroElement = FromBigInteger(BigInteger.Zero);
+
+            ECFieldElement z = null;
+            ECFieldElement gamma = null;
+
+            Random rand = new Random();
+            do
+            {
+                ECFieldElement t = FromBigInteger(new BigInteger(163, rand));
+                z = zeroElement;
+                ECFieldElement w = beta;
+                for (int i = 1; i < 163; i++)
+                {
+                    ECFieldElement w2 = w.Square();
+                    z = z.Square().Add(w2.Multiply(t));
+                    w = w2.Add(beta);
+                }
+                if (!w.IsZero)
+                    return null;
+                gamma = z.Square().Add(z);
+            }
+            while (gamma.IsZero);
+
+            return z;
+        }
+
+        public virtual int M
+        {
+            get { return 163; }
+        }
+
+        public virtual bool IsTrinomial
+        {
+            get { return false; }
+        }
+
+        public virtual int K1
+        {
+            get { return 3; }
+        }
+
+        public virtual int K2
+        {
+            get { return 6; }
+        }
+
+        public virtual int K3
+        {
+            get { return 7; }
+        }
+    }
+}
diff --git a/crypto/src/math/ec/custom/sec/SecT163K1Point.cs b/crypto/src/math/ec/custom/sec/SecT163K1Point.cs
new file mode 100644
index 000000000..2e3ba57d0
--- /dev/null
+++ b/crypto/src/math/ec/custom/sec/SecT163K1Point.cs
@@ -0,0 +1,289 @@
+using System;
+
+namespace Org.BouncyCastle.Math.EC.Custom.Sec
+{
+    internal class SecT163K1Point
+        : AbstractF2mPoint
+    {
+        /**
+         * @deprecated Use ECCurve.createPoint to construct points
+         */
+        public SecT163K1Point(ECCurve curve, ECFieldElement x, ECFieldElement y)
+            : this(curve, x, y, false)
+        {
+        }
+
+        /**
+         * @deprecated per-point compression property will be removed, refer {@link #getEncoded(bool)}
+         */
+        public SecT163K1Point(ECCurve curve, ECFieldElement x, ECFieldElement y, bool withCompression)
+            : base(curve, x, y, withCompression)
+        {
+            if ((x == null) != (y == null))
+                throw new ArgumentException("Exactly one of the field elements is null");
+        }
+
+        internal SecT163K1Point(ECCurve curve, ECFieldElement x, ECFieldElement y, ECFieldElement[] zs, bool withCompression)
+            : base(curve, x, y, zs, withCompression)
+        {
+        }
+
+        protected override ECPoint Detach()
+        {
+            return new SecT163K1Point(null, this.AffineXCoord, this.AffineYCoord);
+        }
+
+        public override ECFieldElement YCoord
+        {
+            get
+            {
+                ECFieldElement X = RawXCoord, L = RawYCoord;
+
+                if (this.IsInfinity || X.IsZero)
+                    return L;
+
+                // Y is actually Lambda (X + Y/X) here; convert to affine value on the fly
+                ECFieldElement Y = L.Add(X).Multiply(X);
+
+                ECFieldElement Z = RawZCoords[0];
+                if (!Z.IsOne)
+                {
+                    Y = Y.Divide(Z);
+                }
+
+                return Y;
+            }
+        }
+
+        protected internal override bool CompressionYTilde
+        {
+            get
+            {
+                ECFieldElement X = this.RawXCoord;
+                if (X.IsZero)
+                    return false;
+
+                ECFieldElement Y = this.RawYCoord;
+
+                // Y is actually Lambda (X + Y/X) here
+                return Y.TestBitZero() != X.TestBitZero();
+            }
+        }
+
+        public override ECPoint Add(ECPoint b)
+        {
+            if (this.IsInfinity)
+                return b;
+            if (b.IsInfinity)
+                return this;
+
+            ECCurve curve = this.Curve;
+
+            ECFieldElement X1 = this.RawXCoord;
+            ECFieldElement X2 = b.RawXCoord;
+
+            if (X1.IsZero)
+            {
+                if (X2.IsZero)
+                    return curve.Infinity;
+
+                return b.Add(this);
+            }
+
+            ECFieldElement L1 = this.RawYCoord, Z1 = this.RawZCoords[0];
+            ECFieldElement L2 = b.RawYCoord, Z2 = b.RawZCoords[0];
+
+            bool Z1IsOne = Z1.IsOne;
+            ECFieldElement U2 = X2, S2 = L2;
+            if (!Z1IsOne)
+            {
+                U2 = U2.Multiply(Z1);
+                S2 = S2.Multiply(Z1);
+            }
+
+            bool Z2IsOne = Z2.IsOne;
+            ECFieldElement U1 = X1, S1 = L1;
+            if (!Z2IsOne)
+            {
+                U1 = U1.Multiply(Z2);
+                S1 = S1.Multiply(Z2);
+            }
+
+            ECFieldElement A = S1.Add(S2);
+            ECFieldElement B = U1.Add(U2);
+
+            if (B.IsZero)
+            {
+                if (A.IsZero)
+                    return Twice();
+
+                return curve.Infinity;
+            }
+
+            ECFieldElement X3, L3, Z3;
+            if (X2.IsZero)
+            {
+                // TODO This can probably be optimized quite a bit
+                ECPoint p = this.Normalize();
+                X1 = p.XCoord;
+                ECFieldElement Y1 = p.YCoord;
+
+                ECFieldElement Y2 = L2;
+                ECFieldElement L = Y1.Add(Y2).Divide(X1);
+
+                //X3 = L.Square().Add(L).Add(X1).Add(curve.getA());
+                X3 = L.Square().Add(L).Add(X1).AddOne();
+                if (X3.IsZero)
+                {
+                    //return new SecT163K1Point(curve, X3, curve.B.sqrt(), IsCompressed);
+                    return new SecT163K1Point(curve, X3, curve.B, IsCompressed);
+                }
+
+                ECFieldElement Y3 = L.Multiply(X1.Add(X3)).Add(X3).Add(Y1);
+                L3 = Y3.Divide(X3).Add(X3);
+                Z3 = curve.FromBigInteger(BigInteger.One);
+            }
+            else
+            {
+                B = B.Square();
+
+                ECFieldElement AU1 = A.Multiply(U1);
+                ECFieldElement AU2 = A.Multiply(U2);
+
+                X3 = AU1.Multiply(AU2);
+                if (X3.IsZero)
+                {
+                    //return new SecT163K1Point(curve, X3, curve.B.sqrt(), IsCompressed);
+                    return new SecT163K1Point(curve, X3, curve.B, IsCompressed);
+                }
+
+                ECFieldElement ABZ2 = A.Multiply(B);
+                if (!Z2IsOne)
+                {
+                    ABZ2 = ABZ2.Multiply(Z2);
+                }
+
+                L3 = AU2.Add(B).SquarePlusProduct(ABZ2, L1.Add(Z1));
+
+                Z3 = ABZ2;
+                if (!Z1IsOne)
+                {
+                    Z3 = Z3.Multiply(Z1);
+                }
+            }
+
+            return new SecT163K1Point(curve, X3, L3, new ECFieldElement[] { Z3 }, IsCompressed);
+        }
+
+        public override ECPoint Twice()
+        {
+            if (this.IsInfinity)
+            {
+                return this;
+            }
+
+            ECCurve curve = this.Curve;
+
+            ECFieldElement X1 = this.RawXCoord;
+            if (X1.IsZero)
+            {
+                // A point with X == 0 is it's own Additive inverse
+                return curve.Infinity;
+            }
+
+            ECFieldElement L1 = this.RawYCoord, Z1 = this.RawZCoords[0];
+
+            bool Z1IsOne = Z1.IsOne;
+            ECFieldElement L1Z1 = Z1IsOne ? L1 : L1.Multiply(Z1);
+            ECFieldElement Z1Sq = Z1IsOne ? Z1 : Z1.Square();
+            ECFieldElement T = L1.Square().Add(L1Z1).Add(Z1Sq);
+            if (T.IsZero)
+            {
+                //return new SecT163K1Point(curve, T, curve.B.sqrt(), withCompression);
+                return new SecT163K1Point(curve, T, curve.B, IsCompressed);
+            }
+
+            ECFieldElement X3 = T.Square();
+            ECFieldElement Z3 = Z1IsOne ? T : T.Multiply(Z1Sq);
+
+            ECFieldElement t1 = L1.Add(X1).Square();
+            ECFieldElement L3 = t1.Add(T).Add(Z1Sq).Multiply(t1).Add(X3);
+
+            return new SecT163K1Point(curve, X3, L3, new ECFieldElement[] { Z3 }, IsCompressed);
+        }
+
+        public override ECPoint TwicePlus(ECPoint b)
+        {
+            if (this.IsInfinity)
+                return b;
+            if (b.IsInfinity)
+                return Twice();
+
+            ECCurve curve = this.Curve;
+
+            ECFieldElement X1 = this.RawXCoord;
+            if (X1.IsZero)
+            {
+                // A point with X == 0 is it's own Additive inverse
+                return b;
+            }
+
+            // NOTE: TwicePlus() only optimized for lambda-affine argument
+            ECFieldElement X2 = b.RawXCoord, Z2 = b.RawZCoords[0];
+            if (X2.IsZero || !Z2.IsOne)
+            {
+                return Twice().Add(b);
+            }
+
+            ECFieldElement L1 = this.RawYCoord, Z1 = this.RawZCoords[0];
+            ECFieldElement L2 = b.RawYCoord;
+
+            ECFieldElement X1Sq = X1.Square();
+            ECFieldElement L1Sq = L1.Square();
+            ECFieldElement Z1Sq = Z1.Square();
+            ECFieldElement L1Z1 = L1.Multiply(Z1);
+
+            //ECFieldElement T = curve.getA().Multiply(Z1Sq).Add(L1Sq).Add(L1Z1);
+            ECFieldElement T = Z1Sq.Add(L1Sq).Add(L1Z1);
+            ECFieldElement L2plus1 = L2.AddOne();
+            //ECFieldElement A = curve.getA().Add(L2plus1).Multiply(Z1Sq).Add(L1Sq).MultiplyPlusProduct(T, X1Sq, Z1Sq);
+            ECFieldElement A = L2.Multiply(Z1Sq).Add(L1Sq).MultiplyPlusProduct(T, X1Sq, Z1Sq);
+            ECFieldElement X2Z1Sq = X2.Multiply(Z1Sq);
+            ECFieldElement B = X2Z1Sq.Add(T).Square();
+
+            if (B.IsZero)
+            {
+                if (A.IsZero)
+                    return b.Twice();
+
+                return curve.Infinity;
+            }
+
+            if (A.IsZero)
+            {
+                //return new SecT163K1Point(curve, A, curve.B.sqrt(), withCompression);
+                return new SecT163K1Point(curve, A, curve.B, IsCompressed);
+            }
+
+            ECFieldElement X3 = A.Square().Multiply(X2Z1Sq);
+            ECFieldElement Z3 = A.Multiply(B).Multiply(Z1Sq);
+            ECFieldElement L3 = A.Add(B).Square().MultiplyPlusProduct(T, L2plus1, Z3);
+
+            return new SecT163K1Point(curve, X3, L3, new ECFieldElement[] { Z3 }, IsCompressed);
+        }
+
+        public override ECPoint Negate()
+        {
+            if (this.IsInfinity)
+                return this;
+
+            ECFieldElement X = this.RawXCoord;
+            if (X.IsZero)
+                return this;
+
+            // L is actually Lambda (X + Y/X) here
+            ECFieldElement L = this.RawYCoord, Z = this.RawZCoords[0];
+            return new SecT163K1Point(Curve, X, L.Add(Z), new ECFieldElement[] { Z }, IsCompressed);
+        }
+    }
+}
diff --git a/crypto/src/math/ec/custom/sec/SecT163R1Curve.cs b/crypto/src/math/ec/custom/sec/SecT163R1Curve.cs
new file mode 100644
index 000000000..fc18e1094
--- /dev/null
+++ b/crypto/src/math/ec/custom/sec/SecT163R1Curve.cs
@@ -0,0 +1,190 @@
+using System;
+
+using Org.BouncyCastle.Utilities.Encoders;
+
+namespace Org.BouncyCastle.Math.EC.Custom.Sec
+{
+    internal class SecT163R1Curve
+        : AbstractF2mCurve
+    {
+        private const int SecT163R1_DEFAULT_COORDS = COORD_LAMBDA_PROJECTIVE;
+
+        protected readonly SecT163R1Point m_infinity;
+
+        public SecT163R1Curve()
+            : base(163, 3, 6, 7)
+        {
+            this.m_infinity = new SecT163R1Point(this, null, null);
+
+            this.m_a = FromBigInteger(new BigInteger(1, Hex.Decode("07B6882CAAEFA84F9554FF8428BD88E246D2782AE2")));
+            this.m_b = FromBigInteger(new BigInteger(1, Hex.Decode("0713612DCDDCB40AAB946BDA29CA91F73AF958AFD9")));
+            this.m_order = new BigInteger(1, Hex.Decode("03FFFFFFFFFFFFFFFFFFFF48AAB689C29CA710279B"));
+            this.m_cofactor = BigInteger.Two;
+
+            this.m_coord = SecT163R1_DEFAULT_COORDS;
+        }
+
+        protected override ECCurve CloneCurve()
+        {
+            return new SecT163R1Curve();
+        }
+
+        public override bool SupportsCoordinateSystem(int coord)
+        {
+            switch (coord)
+            {
+            case COORD_LAMBDA_PROJECTIVE:
+                return true;
+            default:
+                return false;
+            }
+        }
+
+        public override ECPoint Infinity
+        {
+            get { return m_infinity; }
+        }
+
+        public override int FieldSize
+        {
+            get { return 163; }
+        }
+
+        public override ECFieldElement FromBigInteger(BigInteger x)
+        {
+            return new SecT163FieldElement(x);
+        }
+
+        protected internal override ECPoint CreateRawPoint(ECFieldElement x, ECFieldElement y, bool withCompression)
+        {
+            return new SecT163R1Point(this, x, y, withCompression);
+        }
+
+        protected internal override ECPoint CreateRawPoint(ECFieldElement x, ECFieldElement y, ECFieldElement[] zs, bool withCompression)
+        {
+            return new SecT163R1Point(this, x, y, zs, withCompression);
+        }
+
+        public override bool IsKoblitz
+        {
+            get { return false; }
+        }
+
+        /**
+         * Decompresses a compressed point P = (xp, yp) (X9.62 s 4.2.2).
+         * 
+         * @param yTilde
+         *            ~yp, an indication bit for the decompression of yp.
+         * @param X1
+         *            The field element xp.
+         * @return the decompressed point.
+         */
+        protected override ECPoint DecompressPoint(int yTilde, BigInteger X1)
+        {
+            ECFieldElement x = FromBigInteger(X1), y = null;
+            if (x.IsZero)
+            {
+                y = B.Sqrt();
+            }
+            else
+            {
+                ECFieldElement beta = x.Square().Invert().Multiply(B).Add(A).Add(x);
+                ECFieldElement z = SolveQuadraticEquation(beta);
+                if (z != null)
+                {
+                    if (z.TestBitZero() != (yTilde == 1))
+                    {
+                        z = z.AddOne();
+                    }
+
+                    switch (this.CoordinateSystem)
+                    {
+                    case COORD_LAMBDA_AFFINE:
+                    case COORD_LAMBDA_PROJECTIVE:
+                    {
+                        y = z.Add(x);
+                        break;
+                    }
+                    default:
+                    {
+                        y = z.Multiply(x);
+                        break;
+                    }
+                    }
+                }
+            }
+
+            if (y == null)
+                throw new ArgumentException("Invalid point compression");
+
+            return this.CreateRawPoint(x, y, true);
+        }
+
+        /**
+         * Solves a quadratic equation <code>z<sup>2</sup> + z = beta</code>(X9.62
+         * D.1.6) The other solution is <code>z + 1</code>.
+         * 
+         * @param beta
+         *            The value to solve the quadratic equation for.
+         * @return the solution for <code>z<sup>2</sup> + z = beta</code> or
+         *         <code>null</code> if no solution exists.
+         */
+        private ECFieldElement SolveQuadraticEquation(ECFieldElement beta)
+        {
+            if (beta.IsZero)
+            {
+                return beta;
+            }
+
+            ECFieldElement zeroElement = FromBigInteger(BigInteger.Zero);
+
+            ECFieldElement z = null;
+            ECFieldElement gamma = null;
+
+            Random rand = new Random();
+            do
+            {
+                ECFieldElement t = FromBigInteger(new BigInteger(163, rand));
+                z = zeroElement;
+                ECFieldElement w = beta;
+                for (int i = 1; i < 163; i++)
+                {
+                    ECFieldElement w2 = w.Square();
+                    z = z.Square().Add(w2.Multiply(t));
+                    w = w2.Add(beta);
+                }
+                if (!w.IsZero)
+                    return null;
+                gamma = z.Square().Add(z);
+            }
+            while (gamma.IsZero);
+
+            return z;
+        }
+
+        public virtual int M
+        {
+            get { return 163; }
+        }
+
+        public virtual bool IsTrinomial
+        {
+            get { return false; }
+        }
+
+        public virtual int K1
+        {
+            get { return 3; }
+        }
+
+        public virtual int K2
+        {
+            get { return 6; }
+        }
+
+        public virtual int K3
+        {
+            get { return 7; }
+        }
+    }
+}
diff --git a/crypto/src/math/ec/custom/sec/SecT163R1Point.cs b/crypto/src/math/ec/custom/sec/SecT163R1Point.cs
new file mode 100644
index 000000000..811a09f14
--- /dev/null
+++ b/crypto/src/math/ec/custom/sec/SecT163R1Point.cs
@@ -0,0 +1,283 @@
+using System;
+
+namespace Org.BouncyCastle.Math.EC.Custom.Sec
+{
+    internal class SecT163R1Point
+        : AbstractF2mPoint
+    {
+        /**
+         * @deprecated Use ECCurve.createPoint to construct points
+         */
+        public SecT163R1Point(ECCurve curve, ECFieldElement x, ECFieldElement y)
+            : this(curve, x, y, false)
+        {
+        }
+
+        /**
+         * @deprecated per-point compression property will be removed, refer {@link #getEncoded(bool)}
+         */
+        public SecT163R1Point(ECCurve curve, ECFieldElement x, ECFieldElement y, bool withCompression)
+            : base(curve, x, y, withCompression)
+        {
+            if ((x == null) != (y == null))
+                throw new ArgumentException("Exactly one of the field elements is null");
+        }
+
+        internal SecT163R1Point(ECCurve curve, ECFieldElement x, ECFieldElement y, ECFieldElement[] zs, bool withCompression)
+            : base(curve, x, y, zs, withCompression)
+        {
+        }
+
+        protected override ECPoint Detach()
+        {
+            return new SecT163R1Point(null, AffineXCoord, AffineYCoord);
+        }
+
+        public override ECFieldElement YCoord
+        {
+            get
+            {
+                ECFieldElement X = RawXCoord, L = RawYCoord;
+
+                if (this.IsInfinity || X.IsZero)
+                    return L;
+
+                // Y is actually Lambda (X + Y/X) here; convert to affine value on the fly
+                ECFieldElement Y = L.Add(X).Multiply(X);
+
+                ECFieldElement Z = RawZCoords[0];
+                if (!Z.IsOne)
+                {
+                    Y = Y.Divide(Z);
+                }
+
+                return Y;
+            }
+        }
+
+        protected internal override bool CompressionYTilde
+        {
+            get
+            {
+                ECFieldElement X = this.RawXCoord;
+                if (X.IsZero)
+                    return false;
+
+                ECFieldElement Y = this.RawYCoord;
+
+                // Y is actually Lambda (X + Y/X) here
+                return Y.TestBitZero() != X.TestBitZero();
+            }
+        }
+
+        public override ECPoint Add(ECPoint b)
+        {
+            if (this.IsInfinity)
+                return b;
+            if (b.IsInfinity)
+                return this;
+
+            ECCurve curve = this.Curve;
+
+            ECFieldElement X1 = this.RawXCoord;
+            ECFieldElement X2 = b.RawXCoord;
+
+            if (X1.IsZero)
+            {
+                if (X2.IsZero)
+                    return curve.Infinity;
+
+                return b.Add(this);
+            }
+
+            ECFieldElement L1 = this.RawYCoord, Z1 = this.RawZCoords[0];
+            ECFieldElement L2 = b.RawYCoord, Z2 = b.RawZCoords[0];
+
+            bool Z1IsOne = Z1.IsOne;
+            ECFieldElement U2 = X2, S2 = L2;
+            if (!Z1IsOne)
+            {
+                U2 = U2.Multiply(Z1);
+                S2 = S2.Multiply(Z1);
+            }
+
+            bool Z2IsOne = Z2.IsOne;
+            ECFieldElement U1 = X1, S1 = L1;
+            if (!Z2IsOne)
+            {
+                U1 = U1.Multiply(Z2);
+                S1 = S1.Multiply(Z2);
+            }
+
+            ECFieldElement A = S1.Add(S2);
+            ECFieldElement B = U1.Add(U2);
+
+            if (B.IsZero)
+            {
+                if (A.IsZero)
+                    return Twice();
+
+                return curve.Infinity;
+            }
+
+            ECFieldElement X3, L3, Z3;
+            if (X2.IsZero)
+            {
+                // TODO This can probably be optimized quite a bit
+                ECPoint p = this.Normalize();
+                X1 = p.XCoord;
+                ECFieldElement Y1 = p.YCoord;
+
+                ECFieldElement Y2 = L2;
+                ECFieldElement L = Y1.Add(Y2).Divide(X1);
+
+                X3 = L.Square().Add(L).Add(X1).Add(curve.A);
+                if (X3.IsZero)
+                {
+                    return new SecT163R1Point(curve, X3, curve.B.Sqrt(), IsCompressed);
+                }
+
+                ECFieldElement Y3 = L.Multiply(X1.Add(X3)).Add(X3).Add(Y1);
+                L3 = Y3.Divide(X3).Add(X3);
+                Z3 = curve.FromBigInteger(BigInteger.One);
+            }
+            else
+            {
+                B = B.Square();
+
+                ECFieldElement AU1 = A.Multiply(U1);
+                ECFieldElement AU2 = A.Multiply(U2);
+
+                X3 = AU1.Multiply(AU2);
+                if (X3.IsZero)
+                {
+                    return new SecT163R1Point(curve, X3, curve.B.Sqrt(), IsCompressed);
+                }
+
+                ECFieldElement ABZ2 = A.Multiply(B);
+                if (!Z2IsOne)
+                {
+                    ABZ2 = ABZ2.Multiply(Z2);
+                }
+
+                L3 = AU2.Add(B).SquarePlusProduct(ABZ2, L1.Add(Z1));
+
+                Z3 = ABZ2;
+                if (!Z1IsOne)
+                {
+                    Z3 = Z3.Multiply(Z1);
+                }
+            }
+
+            return new SecT163R1Point(curve, X3, L3, new ECFieldElement[] { Z3 }, IsCompressed);
+        }
+
+        public override ECPoint Twice()
+        {
+            if (this.IsInfinity)
+            {
+                return this;
+            }
+
+            ECCurve curve = this.Curve;
+
+            ECFieldElement X1 = this.RawXCoord;
+            if (X1.IsZero)
+            {
+                // A point with X == 0 is it's own Additive inverse
+                return curve.Infinity;
+            }
+
+            ECFieldElement L1 = this.RawYCoord, Z1 = this.RawZCoords[0];
+
+            bool Z1IsOne = Z1.IsOne;
+            ECFieldElement L1Z1 = Z1IsOne ? L1 : L1.Multiply(Z1);
+            ECFieldElement Z1Sq = Z1IsOne ? Z1 : Z1.Square();
+            ECFieldElement a = curve.A;
+            ECFieldElement aZ1Sq = Z1IsOne ? a : a.Multiply(Z1Sq);
+            ECFieldElement T = L1.Square().Add(L1Z1).Add(aZ1Sq);
+            if (T.IsZero)
+            {
+                return new SecT163R1Point(curve, T, curve.B.Sqrt(), IsCompressed);
+            }
+
+            ECFieldElement X3 = T.Square();
+            ECFieldElement Z3 = Z1IsOne ? T : T.Multiply(Z1Sq);
+
+            ECFieldElement X1Z1 = Z1IsOne ? X1 : X1.Multiply(Z1);
+            ECFieldElement L3 = X1Z1.SquarePlusProduct(T, L1Z1).Add(X3).Add(Z3);
+
+            return new SecT163R1Point(curve, X3, L3, new ECFieldElement[] { Z3 }, IsCompressed);
+        }
+
+        public override ECPoint TwicePlus(ECPoint b)
+        {
+            if (this.IsInfinity)
+                return b;
+            if (b.IsInfinity)
+                return Twice();
+
+            ECCurve curve = this.Curve;
+
+            ECFieldElement X1 = this.RawXCoord;
+            if (X1.IsZero)
+            {
+                // A point with X == 0 is it's own Additive inverse
+                return b;
+            }
+
+            ECFieldElement X2 = b.RawXCoord, Z2 = b.RawZCoords[0];
+            if (X2.IsZero || !Z2.IsOne)
+            {
+                return Twice().Add(b);
+            }
+
+            ECFieldElement L1 = this.RawYCoord, Z1 = this.RawZCoords[0];
+            ECFieldElement L2 = b.RawYCoord;
+
+            ECFieldElement X1Sq = X1.Square();
+            ECFieldElement L1Sq = L1.Square();
+            ECFieldElement Z1Sq = Z1.Square();
+            ECFieldElement L1Z1 = L1.Multiply(Z1);
+
+            ECFieldElement T = curve.A.Multiply(Z1Sq).Add(L1Sq).Add(L1Z1);
+            ECFieldElement L2plus1 = L2.AddOne();
+            ECFieldElement A = curve.A.Add(L2plus1).Multiply(Z1Sq).Add(L1Sq).MultiplyPlusProduct(T, X1Sq, Z1Sq);
+            ECFieldElement X2Z1Sq = X2.Multiply(Z1Sq);
+            ECFieldElement B = X2Z1Sq.Add(T).Square();
+
+            if (B.IsZero)
+            {
+                if (A.IsZero)
+                    return b.Twice();
+
+                return curve.Infinity;
+            }
+
+            if (A.IsZero)
+            {
+                return new SecT163R1Point(curve, A, curve.B.Sqrt(), IsCompressed);
+            }
+
+            ECFieldElement X3 = A.Square().Multiply(X2Z1Sq);
+            ECFieldElement Z3 = A.Multiply(B).Multiply(Z1Sq);
+            ECFieldElement L3 = A.Add(B).Square().MultiplyPlusProduct(T, L2plus1, Z3);
+
+            return new SecT163R1Point(curve, X3, L3, new ECFieldElement[] { Z3 }, IsCompressed);
+        }
+
+        public override ECPoint Negate()
+        {
+            if (this.IsInfinity)
+                return this;
+
+            ECFieldElement X = this.RawXCoord;
+            if (X.IsZero)
+                return this;
+
+            // L is actually Lambda (X + Y/X) here
+            ECFieldElement L = this.RawYCoord, Z = this.RawZCoords[0];
+            return new SecT163R1Point(Curve, X, L.Add(Z), new ECFieldElement[] { Z }, IsCompressed);
+        }
+    }
+}
diff --git a/crypto/src/math/ec/custom/sec/SecT163R2Curve.cs b/crypto/src/math/ec/custom/sec/SecT163R2Curve.cs
new file mode 100644
index 000000000..9efe11c3e
--- /dev/null
+++ b/crypto/src/math/ec/custom/sec/SecT163R2Curve.cs
@@ -0,0 +1,188 @@
+using System;
+
+using Org.BouncyCastle.Utilities.Encoders;
+
+namespace Org.BouncyCastle.Math.EC.Custom.Sec
+{
+    internal class SecT163R2Curve
+        : AbstractF2mCurve
+    {
+        private const int SecT163R2_DEFAULT_COORDS = COORD_LAMBDA_PROJECTIVE;
+
+        protected readonly SecT163R2Point m_infinity;
+
+        public SecT163R2Curve()
+            : base(163, 3, 6, 7)
+        {
+            this.m_infinity = new SecT163R2Point(this, null, null);
+
+            this.m_a = FromBigInteger(BigInteger.One);
+            this.m_b = FromBigInteger(new BigInteger(1, Hex.Decode("020A601907B8C953CA1481EB10512F78744A3205FD")));
+            this.m_order = new BigInteger(1, Hex.Decode("040000000000000000000292FE77E70C12A4234C33"));
+            this.m_cofactor = BigInteger.Two;
+
+            this.m_coord = SecT163R2_DEFAULT_COORDS;
+        }
+
+        protected override ECCurve CloneCurve()
+        {
+            return new SecT163R2Curve();
+        }
+
+        public override bool SupportsCoordinateSystem(int coord)
+        {
+            switch (coord)
+            {
+            case COORD_LAMBDA_PROJECTIVE:
+                return true;
+            default:
+                return false;
+            }
+        }
+
+        public override ECPoint Infinity
+        {
+            get { return m_infinity; }
+        }
+
+        public override int FieldSize
+        {
+            get { return 163; }
+        }
+
+        public override ECFieldElement FromBigInteger(BigInteger x)
+        {
+            return new SecT163FieldElement(x);
+        }
+
+        protected internal override ECPoint CreateRawPoint(ECFieldElement x, ECFieldElement y, bool withCompression)
+        {
+            return new SecT163R2Point(this, x, y, withCompression);
+        }
+
+        protected internal override ECPoint CreateRawPoint(ECFieldElement x, ECFieldElement y, ECFieldElement[] zs, bool withCompression)
+        {
+            return new SecT163R2Point(this, x, y, zs, withCompression);
+        }
+
+        public override bool IsKoblitz
+        {
+            get { return false; }
+        }
+
+        /**
+         * Decompresses a compressed point P = (xp, yp) (X9.62 s 4.2.2).
+         * 
+         * @param yTilde
+         *            ~yp, an indication bit for the decompression of yp.
+         * @param X1
+         *            The field element xp.
+         * @return the decompressed point.
+         */
+        protected override ECPoint DecompressPoint(int yTilde, BigInteger X1)
+        {
+            ECFieldElement x = FromBigInteger(X1), y = null;
+            if (x.IsZero)
+            {
+                y = B.Sqrt();
+            }
+            else
+            {
+                ECFieldElement beta = x.Square().Invert().Multiply(B).Add(A).Add(x);
+                ECFieldElement z = SolveQuadraticEquation(beta);
+                if (z != null)
+                {
+                    if (z.TestBitZero() != (yTilde == 1))
+                    {
+                        z = z.AddOne();
+                    }
+
+                    switch (this.CoordinateSystem)
+                    {
+                    case COORD_LAMBDA_AFFINE:
+                    case COORD_LAMBDA_PROJECTIVE:
+                    {
+                        y = z.Add(x);
+                        break;
+                    }
+                    default:
+                    {
+                        y = z.Multiply(x);
+                        break;
+                    }
+                    }
+                }
+            }
+
+            if (y == null)
+                throw new ArgumentException("Invalid point compression");
+
+            return this.CreateRawPoint(x, y, true);
+        }
+
+        /**
+         * Solves a quadratic equation <code>z<sup>2</sup> + z = beta</code>(X9.62
+         * D.1.6) The other solution is <code>z + 1</code>.
+         * 
+         * @param beta
+         *            The value to solve the quadratic equation for.
+         * @return the solution for <code>z<sup>2</sup> + z = beta</code> or
+         *         <code>null</code> if no solution exists.
+         */
+        private ECFieldElement SolveQuadraticEquation(ECFieldElement beta)
+        {
+            if (beta.IsZero)
+                return beta;
+
+            ECFieldElement zeroElement = FromBigInteger(BigInteger.Zero);
+
+            ECFieldElement z = null;
+            ECFieldElement gamma = null;
+
+            Random rand = new Random();
+            do
+            {
+                ECFieldElement t = FromBigInteger(new BigInteger(163, rand));
+                z = zeroElement;
+                ECFieldElement w = beta;
+                for (int i = 1; i < 163; i++)
+                {
+                    ECFieldElement w2 = w.Square();
+                    z = z.Square().Add(w2.Multiply(t));
+                    w = w2.Add(beta);
+                }
+                if (!w.IsZero)
+                    return null;
+                gamma = z.Square().Add(z);
+            }
+            while (gamma.IsZero);
+
+            return z;
+        }
+
+        public virtual int M
+        {
+            get { return 163; }
+        }
+
+        public virtual bool IsTrinomial
+        {
+            get { return false; }
+        }
+
+        public virtual int K1
+        {
+            get { return 3; }
+        }
+
+        public virtual int K2
+        {
+            get { return 6; }
+        }
+
+        public virtual int K3
+        {
+            get { return 7; }
+        }
+    }
+}
diff --git a/crypto/src/math/ec/custom/sec/SecT163R2Point.cs b/crypto/src/math/ec/custom/sec/SecT163R2Point.cs
new file mode 100644
index 000000000..07b3f1fd9
--- /dev/null
+++ b/crypto/src/math/ec/custom/sec/SecT163R2Point.cs
@@ -0,0 +1,290 @@
+using System;
+
+namespace Org.BouncyCastle.Math.EC.Custom.Sec
+{
+    internal class SecT163R2Point
+        : AbstractF2mPoint
+    {
+        /**
+         * @deprecated Use ECCurve.createPoint to construct points
+         */
+        public SecT163R2Point(ECCurve curve, ECFieldElement x, ECFieldElement y)
+            : this(curve, x, y, false)
+        {
+        }
+
+        /**
+         * @deprecated per-point compression property will be removed, refer {@link #getEncoded(bool)}
+         */
+        public SecT163R2Point(ECCurve curve, ECFieldElement x, ECFieldElement y, bool withCompression)
+            : base(curve, x, y, withCompression)
+        {
+            if ((x == null) != (y == null))
+                throw new ArgumentException("Exactly one of the field elements is null");
+        }
+
+        internal SecT163R2Point(ECCurve curve, ECFieldElement x, ECFieldElement y, ECFieldElement[] zs, bool withCompression)
+            : base(curve, x, y, zs, withCompression)
+        {
+        }
+
+        protected override ECPoint Detach()
+        {
+            return new SecT163R2Point(null, AffineXCoord, AffineYCoord);
+        }
+
+        public override ECFieldElement YCoord
+        {
+            get
+            {
+                ECFieldElement X = RawXCoord, L = RawYCoord;
+
+                if (this.IsInfinity || X.IsZero)
+                    return L;
+
+                // Y is actually Lambda (X + Y/X) here; convert to affine value on the fly
+                ECFieldElement Y = L.Add(X).Multiply(X);
+
+                ECFieldElement Z = RawZCoords[0];
+                if (!Z.IsOne)
+                {
+                    Y = Y.Divide(Z);
+                }
+
+                return Y;
+            }
+        }
+
+        protected internal override bool CompressionYTilde
+        {
+            get
+            {
+                ECFieldElement X = this.RawXCoord;
+                if (X.IsZero)
+                    return false;
+
+                ECFieldElement Y = this.RawYCoord;
+
+                // Y is actually Lambda (X + Y/X) here
+                return Y.TestBitZero() != X.TestBitZero();
+            }
+        }
+
+        public override ECPoint Add(ECPoint b)
+        {
+            if (this.IsInfinity)
+                return b;
+            if (b.IsInfinity)
+                return this;
+
+            ECCurve curve = this.Curve;
+
+            ECFieldElement X1 = this.RawXCoord;
+            ECFieldElement X2 = b.RawXCoord;
+
+            if (X1.IsZero)
+            {
+                if (X2.IsZero)
+                    return curve.Infinity;
+
+                return b.Add(this);
+            }
+
+            ECFieldElement L1 = this.RawYCoord, Z1 = this.RawZCoords[0];
+            ECFieldElement L2 = b.RawYCoord, Z2 = b.RawZCoords[0];
+
+            bool Z1IsOne = Z1.IsOne;
+            ECFieldElement U2 = X2, S2 = L2;
+            if (!Z1IsOne)
+            {
+                U2 = U2.Multiply(Z1);
+                S2 = S2.Multiply(Z1);
+            }
+
+            bool Z2IsOne = Z2.IsOne;
+            ECFieldElement U1 = X1, S1 = L1;
+            if (!Z2IsOne)
+            {
+                U1 = U1.Multiply(Z2);
+                S1 = S1.Multiply(Z2);
+            }
+
+            ECFieldElement A = S1.Add(S2);
+            ECFieldElement B = U1.Add(U2);
+
+            if (B.IsZero)
+            {
+                if (A.IsZero)
+                {
+                    return Twice();
+                }
+
+                return curve.Infinity;
+            }
+
+            ECFieldElement X3, L3, Z3;
+            if (X2.IsZero)
+            {
+                // TODO This can probably be optimized quite a bit
+                ECPoint p = this.Normalize();
+                X1 = p.XCoord;
+                ECFieldElement Y1 = p.YCoord;
+
+                ECFieldElement Y2 = L2;
+                ECFieldElement L = Y1.Add(Y2).Divide(X1);
+
+                //X3 = L.Square().Add(L).Add(X1).Add(curve.A);
+                X3 = L.Square().Add(L).Add(X1).AddOne();
+                if (X3.IsZero)
+                {
+                    return new SecT163R2Point(curve, X3, curve.B.Sqrt(), IsCompressed);
+                }
+
+                ECFieldElement Y3 = L.Multiply(X1.Add(X3)).Add(X3).Add(Y1);
+                L3 = Y3.Divide(X3).Add(X3);
+                Z3 = curve.FromBigInteger(BigInteger.One);
+            }
+            else
+            {
+                B = B.Square();
+
+                ECFieldElement AU1 = A.Multiply(U1);
+                ECFieldElement AU2 = A.Multiply(U2);
+
+                X3 = AU1.Multiply(AU2);
+                if (X3.IsZero)
+                {
+                    return new SecT163R2Point(curve, X3, curve.B.Sqrt(), IsCompressed);
+                }
+
+                ECFieldElement ABZ2 = A.Multiply(B);
+                if (!Z2IsOne)
+                {
+                    ABZ2 = ABZ2.Multiply(Z2);
+                }
+
+                L3 = AU2.Add(B).SquarePlusProduct(ABZ2, L1.Add(Z1));
+
+                Z3 = ABZ2;
+                if (!Z1IsOne)
+                {
+                    Z3 = Z3.Multiply(Z1);
+                }
+            }
+
+            return new SecT163R2Point(curve, X3, L3, new ECFieldElement[] { Z3 }, IsCompressed);
+        }
+
+        public override ECPoint Twice()
+        {
+            if (this.IsInfinity)
+            {
+                return this;
+            }
+
+            ECCurve curve = this.Curve;
+
+            ECFieldElement X1 = this.RawXCoord;
+            if (X1.IsZero)
+            {
+                // A point with X == 0 is it's own Additive inverse
+                return curve.Infinity;
+            }
+
+            ECFieldElement L1 = this.RawYCoord, Z1 = this.RawZCoords[0];
+
+            bool Z1IsOne = Z1.IsOne;
+            ECFieldElement L1Z1 = Z1IsOne ? L1 : L1.Multiply(Z1);
+            ECFieldElement Z1Sq = Z1IsOne ? Z1 : Z1.Square();
+            ECFieldElement T = L1.Square().Add(L1Z1).Add(Z1Sq);
+            if (T.IsZero)
+            {
+                return new SecT163R2Point(curve, T, curve.B.Sqrt(), IsCompressed);
+            }
+
+            ECFieldElement X3 = T.Square();
+            ECFieldElement Z3 = Z1IsOne ? T : T.Multiply(Z1Sq);
+
+            ECFieldElement X1Z1 = Z1IsOne ? X1 : X1.Multiply(Z1);
+            ECFieldElement L3 = X1Z1.SquarePlusProduct(T, L1Z1).Add(X3).Add(Z3);
+
+            return new SecT163R2Point(curve, X3, L3, new ECFieldElement[] { Z3 }, IsCompressed);
+        }
+
+        public override ECPoint TwicePlus(ECPoint b)
+        {
+            if (this.IsInfinity)
+            {
+                return b;
+            }
+            if (b.IsInfinity)
+            {
+                return Twice();
+            }
+
+            ECCurve curve = this.Curve;
+
+            ECFieldElement X1 = this.RawXCoord;
+            if (X1.IsZero)
+            {
+                // A point with X == 0 is it's own Additive inverse
+                return b;
+            }
+
+            ECFieldElement X2 = b.RawXCoord, Z2 = b.RawZCoords[0];
+            if (X2.IsZero || !Z2.IsOne)
+            {
+                return Twice().Add(b);
+            }
+
+            ECFieldElement L1 = this.RawYCoord, Z1 = this.RawZCoords[0];
+            ECFieldElement L2 = b.RawYCoord;
+
+            ECFieldElement X1Sq = X1.Square();
+            ECFieldElement L1Sq = L1.Square();
+            ECFieldElement Z1Sq = Z1.Square();
+            ECFieldElement L1Z1 = L1.Multiply(Z1);
+
+            //ECFieldElement T = curve.A.Multiply(Z1Sq).Add(L1Sq).Add(L1Z1);
+            ECFieldElement T = Z1Sq.Add(L1Sq).Add(L1Z1);
+            ECFieldElement L2plus1 = L2.AddOne();
+            //ECFieldElement A = curve.A.Add(L2plus1).Multiply(Z1Sq).Add(L1Sq).MultiplyPlusProduct(T, X1Sq, Z1Sq);
+            ECFieldElement A = L2.Multiply(Z1Sq).Add(L1Sq).MultiplyPlusProduct(T, X1Sq, Z1Sq);
+            ECFieldElement X2Z1Sq = X2.Multiply(Z1Sq);
+            ECFieldElement B = X2Z1Sq.Add(T).Square();
+
+            if (B.IsZero)
+            {
+                if (A.IsZero)
+                    return b.Twice();
+
+                return curve.Infinity;
+            }
+
+            if (A.IsZero)
+            {
+                return new SecT163R2Point(curve, A, curve.B.Sqrt(), IsCompressed);
+            }
+
+            ECFieldElement X3 = A.Square().Multiply(X2Z1Sq);
+            ECFieldElement Z3 = A.Multiply(B).Multiply(Z1Sq);
+            ECFieldElement L3 = A.Add(B).Square().MultiplyPlusProduct(T, L2plus1, Z3);
+
+            return new SecT163R2Point(curve, X3, L3, new ECFieldElement[] { Z3 }, IsCompressed);
+        }
+
+        public override ECPoint Negate()
+        {
+            if (this.IsInfinity)
+                return this;
+
+            ECFieldElement X = this.RawXCoord;
+            if (X.IsZero)
+                return this;
+
+            // L is actually Lambda (X + Y/X) here
+            ECFieldElement L = this.RawYCoord, Z = this.RawZCoords[0];
+            return new SecT163R2Point(Curve, X, L.Add(Z), new ECFieldElement[] { Z }, IsCompressed);
+        }
+    }
+}
diff --git a/crypto/src/math/ec/custom/sec/SecT233Field.cs b/crypto/src/math/ec/custom/sec/SecT233Field.cs
new file mode 100644
index 000000000..165fadbf3
--- /dev/null
+++ b/crypto/src/math/ec/custom/sec/SecT233Field.cs
@@ -0,0 +1,243 @@
+using System;
+using System.Diagnostics;
+
+using Org.BouncyCastle.Math.Raw;
+
+namespace Org.BouncyCastle.Math.EC.Custom.Sec
+{
+    internal class SecT233Field
+    {
+        private const ulong M41 = ulong.MaxValue >> 23;
+        private const ulong M59 = ulong.MaxValue >> 5;
+
+        public static void Add(ulong[] x, ulong[] y, ulong[] z)
+        {
+            z[0] = x[0] ^ y[0];
+            z[1] = x[1] ^ y[1];
+            z[2] = x[2] ^ y[2];
+            z[3] = x[3] ^ y[3];
+        }
+
+        public static void AddExt(ulong[] xx, ulong[] yy, ulong[] zz)
+        {
+            zz[0] = xx[0] ^ yy[0];
+            zz[1] = xx[1] ^ yy[1];
+            zz[2] = xx[2] ^ yy[2];
+            zz[3] = xx[3] ^ yy[3];
+            zz[4] = xx[4] ^ yy[4];
+            zz[5] = xx[5] ^ yy[5];
+            zz[6] = xx[6] ^ yy[6];
+            zz[7] = xx[7] ^ yy[7];
+        }
+
+        public static void AddOne(ulong[] x, ulong[] z)
+        {
+            z[0] = x[0] ^ 1UL;
+            z[1] = x[1];
+            z[2] = x[2];
+            z[3] = x[3];
+        }
+
+        public static ulong[] FromBigInteger(BigInteger x)
+        {
+            ulong[] z = Nat256.FromBigInteger64(x);
+            Reduce23(z, 0);
+            return z;
+        }
+
+        public static void Multiply(ulong[] x, ulong[] y, ulong[] z)
+        {
+            ulong[] tt = Nat256.CreateExt64();
+            ImplMultiply(x, y, tt);
+            Reduce(tt, z);
+        }
+
+        public static void MultiplyAddToExt(ulong[] x, ulong[] y, ulong[] zz)
+        {
+            ulong[] tt = Nat256.CreateExt64();
+            ImplMultiply(x, y, tt);
+            AddExt(zz, tt, zz);
+        }
+
+        public static void Reduce(ulong[] xx, ulong[] z)
+        {
+            ulong x0 = xx[0], x1 = xx[1], x2 = xx[2], x3 = xx[3];
+            ulong x4 = xx[4], x5 = xx[5], x6 = xx[6], x7 = xx[7];
+
+            x3 ^= (x7 << 23);
+            x4 ^= (x7 >> 41) ^ (x7 << 33);
+            x5 ^= (x7 >> 31);
+
+            x2 ^= (x6 << 23);
+            x3 ^= (x6 >> 41) ^ (x6 << 33);
+            x4 ^= (x6 >> 31);
+
+            x1 ^= (x5 << 23);
+            x2 ^= (x5 >> 41) ^ (x5 << 33);
+            x3 ^= (x5 >> 31);
+
+            x0 ^= (x4 << 23);
+            x1 ^= (x4 >> 41) ^ (x4 << 33);
+            x2 ^= (x4 >> 31);
+
+            ulong t = x3 >> 41;
+            z[0]    = x0 ^ t;
+            z[1]    = x1 ^ (t << 10);
+            z[2]    = x2;
+            z[3]    = x3 & M41;
+        }
+
+        public static void Reduce23(ulong[] z, int zOff)
+        {
+            ulong z3     = z[zOff + 3], t = z3 >> 41;
+            z[zOff    ] ^= t;
+            z[zOff + 1] ^= (t << 10);
+            z[zOff + 3]  = z3 & M41;
+        }
+
+        public static void Square(ulong[] x, ulong[] z)
+        {
+            ulong[] tt = Nat256.CreateExt64();
+            ImplSquare(x, tt);
+            Reduce(tt, z);
+        }
+
+        public static void SquareAddToExt(ulong[] x, ulong[] zz)
+        {
+            ulong[] tt = Nat256.CreateExt64();
+            ImplSquare(x, tt);
+            AddExt(zz, tt, zz);
+        }
+
+        public static void SquareN(ulong[] x, int n, ulong[] z)
+        {
+            Debug.Assert(n > 0);
+
+            ulong[] tt = Nat256.CreateExt64();
+            ImplSquare(x, tt);
+            Reduce(tt, z);
+
+            while (--n > 0)
+            {
+                ImplSquare(z, tt);
+                Reduce(tt, z);
+            }
+        }
+
+        protected static void ImplCompactExt(ulong[] zz)
+        {
+            ulong z0 = zz[0], z1 = zz[1], z2 = zz[2], z3 = zz[3], z4 = zz[4], z5 = zz[5], z6 = zz[6], z7 = zz[7];
+            zz[0] =  z0         ^ (z1 << 59);
+            zz[1] = (z1 >>  5) ^ (z2 << 54);
+            zz[2] = (z2 >> 10) ^ (z3 << 49);
+            zz[3] = (z3 >> 15) ^ (z4 << 44);
+            zz[4] = (z4 >> 20) ^ (z5 << 39);
+            zz[5] = (z5 >> 25) ^ (z6 << 34);
+            zz[6] = (z6 >> 30) ^ (z7 << 29);
+            zz[7] = (z7 >> 35);
+        }
+
+        protected static void ImplExpand(ulong[] x, ulong[] z)
+        {
+            ulong x0 = x[0], x1 = x[1], x2 = x[2], x3 = x[3];
+            z[0] = x0 & M59;
+            z[1] = ((x0 >> 59) ^ (x1 <<  5)) & M59;
+            z[2] = ((x1 >> 54) ^ (x2 << 10)) & M59;
+            z[3] = ((x2 >> 49) ^ (x3 << 15));
+        }
+
+        protected static void ImplMultiply(ulong[] x, ulong[] y, ulong[] zz)
+        {
+            /*
+             * "Two-level seven-way recursion" as described in "Batch binary Edwards", Daniel J. Bernstein.
+             */
+
+            ulong[] f = new ulong[4], g = new ulong[4];
+            ImplExpand(x, f);
+            ImplExpand(y, g);
+
+            ImplMulwAcc(f[0], g[0], zz, 0);
+            ImplMulwAcc(f[1], g[1], zz, 1);
+            ImplMulwAcc(f[2], g[2], zz, 2);
+            ImplMulwAcc(f[3], g[3], zz, 3);
+
+            // U *= (1 - t^n)
+            for (int i = 5; i > 0; --i)
+            {
+                zz[i] ^= zz[i - 1];
+            }
+
+            ImplMulwAcc(f[0] ^ f[1], g[0] ^ g[1], zz, 1);
+            ImplMulwAcc(f[2] ^ f[3], g[2] ^ g[3], zz, 3);
+
+            // V *= (1 - t^2n)
+            for (int i = 7; i > 1; --i)
+            {
+                zz[i] ^= zz[i - 2];
+            }
+
+            // Double-length recursion
+            {
+                ulong c0 = f[0] ^ f[2], c1 = f[1] ^ f[3];
+                ulong d0 = g[0] ^ g[2], d1 = g[1] ^ g[3];
+                ImplMulwAcc(c0 ^ c1, d0 ^ d1, zz, 3);
+                ulong[] t = new ulong[3];
+                ImplMulwAcc(c0, d0, t, 0);
+                ImplMulwAcc(c1, d1, t, 1);
+                ulong t0 = t[0], t1 = t[1], t2 = t[2];
+                zz[2] ^= t0;
+                zz[3] ^= t0 ^ t1;
+                zz[4] ^= t2 ^ t1;
+                zz[5] ^= t2;
+            }
+
+            ImplCompactExt(zz);
+        }
+
+        protected static void ImplMulwAcc(ulong x, ulong y, ulong[] z, int zOff)
+        {
+            Debug.Assert(x >> 59 == 0);
+            Debug.Assert(y >> 59 == 0);
+
+            ulong[] u = new ulong[8];
+    //      u[0] = 0;
+            u[1] = y;
+            u[2] = u[1] << 1;
+            u[3] = u[2] ^  y;
+            u[4] = u[2] << 1;
+            u[5] = u[4] ^  y;
+            u[6] = u[3] << 1;
+            u[7] = u[6] ^  y;
+
+            uint j = (uint)x;
+            ulong g, h = 0, l = u[j & 7]
+                              ^ (u[(j >> 3) & 7] << 3);
+            int k = 54;
+            do
+            {
+                j = (uint)(x >> k);
+                g  = u[j & 7]
+                   ^ u[(j >> 3) & 7] << 3;
+                l ^= (g <<  k);
+                h ^= (g >> -k);
+            }
+            while ((k -= 6) > 0);
+
+            Debug.Assert(h >> 53 == 0);
+
+            z[zOff    ] ^= l & M59;
+            z[zOff + 1] ^= (l >> 59) ^ (h << 5);
+        }
+
+        protected static void ImplSquare(ulong[] x, ulong[] zz)
+        {
+            Interleave.Expand64To128(x[0], zz, 0);
+            Interleave.Expand64To128(x[1], zz, 2);
+            Interleave.Expand64To128(x[2], zz, 4);
+
+            ulong x3 = x[3];
+            zz[6] = Interleave.Expand32to64((uint)x3);
+            zz[7] = Interleave.Expand16to32((uint)(x3 >> 32));
+        }
+    }
+}
diff --git a/crypto/src/math/ec/custom/sec/SecT233FieldElement.cs b/crypto/src/math/ec/custom/sec/SecT233FieldElement.cs
new file mode 100644
index 000000000..439c41d37
--- /dev/null
+++ b/crypto/src/math/ec/custom/sec/SecT233FieldElement.cs
@@ -0,0 +1,213 @@
+using System;
+
+using Org.BouncyCastle.Math.Raw;
+using Org.BouncyCastle.Utilities;
+
+namespace Org.BouncyCastle.Math.EC.Custom.Sec
+{
+    internal class SecT233FieldElement
+        : ECFieldElement
+    {
+        protected readonly ulong[] x;
+
+        public SecT233FieldElement(BigInteger x)
+        {
+            if (x == null || x.SignValue < 0)
+                throw new ArgumentException("value invalid for SecT233FieldElement", "x");
+
+            this.x = SecT233Field.FromBigInteger(x);
+        }
+
+        public SecT233FieldElement()
+        {
+            this.x = Nat256.Create64();
+        }
+
+        protected internal SecT233FieldElement(ulong[] x)
+        {
+            this.x = x;
+        }
+
+        public override bool IsOne
+        {
+            get { return Nat256.IsOne64(x); }
+        }
+
+        public override bool IsZero
+        {
+            get { return Nat256.IsZero64(x); }
+        }
+
+        public override bool TestBitZero()
+        {
+            return (x[0] & 1UL) != 0UL;
+        }
+
+        public override BigInteger ToBigInteger()
+        {
+            return Nat256.ToBigInteger64(x);
+        }
+
+        public override string FieldName
+        {
+            get { return "SecT233Field"; }
+        }
+
+        public override int FieldSize
+        {
+            get { return 233; }
+        }
+
+        public override ECFieldElement Add(ECFieldElement b)
+        {
+            ulong[] z = Nat256.Create64();
+            SecT233Field.Add(x, ((SecT233FieldElement)b).x, z);
+            return new SecT233FieldElement(z);
+        }
+
+        public override ECFieldElement AddOne()
+        {
+            ulong[] z = Nat256.Create64();
+            SecT233Field.AddOne(x, z);
+            return new SecT233FieldElement(z);
+        }
+
+        public override ECFieldElement Subtract(ECFieldElement b)
+        {
+            // Addition and Subtraction are the same in F2m
+            return Add(b);
+        }
+
+        public override ECFieldElement Multiply(ECFieldElement b)
+        {
+            ulong[] z = Nat256.Create64();
+            SecT233Field.Multiply(x, ((SecT233FieldElement)b).x, z);
+            return new SecT233FieldElement(z);
+        }
+
+        public override ECFieldElement MultiplyMinusProduct(ECFieldElement b, ECFieldElement x, ECFieldElement y)
+        {
+            return MultiplyPlusProduct(b, x, y);
+        }
+
+        public override ECFieldElement MultiplyPlusProduct(ECFieldElement b, ECFieldElement x, ECFieldElement y)
+        {
+            ulong[] ax = this.x, bx = ((SecT233FieldElement)b).x;
+            ulong[] xx = ((SecT233FieldElement)x).x, yx = ((SecT233FieldElement)y).x;
+
+            ulong[] tt = Nat256.CreateExt64();
+            SecT233Field.MultiplyAddToExt(ax, bx, tt);
+            SecT233Field.MultiplyAddToExt(xx, yx, tt);
+
+            ulong[] z = Nat256.Create64();
+            SecT233Field.Reduce(tt, z);
+            return new SecT233FieldElement(z);
+        }
+
+        public override ECFieldElement Divide(ECFieldElement b)
+        {
+            return Multiply(b.Invert());
+        }
+
+        public override ECFieldElement Negate()
+        {
+            return this;
+        }
+
+        public override ECFieldElement Square()
+        {
+            ulong[] z = Nat256.Create64();
+            SecT233Field.Square(x, z);
+            return new SecT233FieldElement(z);
+        }
+
+        public override ECFieldElement SquareMinusProduct(ECFieldElement x, ECFieldElement y)
+        {
+            return SquarePlusProduct(x, y);
+        }
+
+        public override ECFieldElement SquarePlusProduct(ECFieldElement x, ECFieldElement y)
+        {
+            ulong[] ax = this.x;
+            ulong[] xx = ((SecT233FieldElement)x).x, yx = ((SecT233FieldElement)y).x;
+
+            ulong[] tt = Nat256.CreateExt64();
+            SecT233Field.SquareAddToExt(ax, tt);
+            SecT233Field.MultiplyAddToExt(xx, yx, tt);
+
+            ulong[] z = Nat256.Create64();
+            SecT233Field.Reduce(tt, z);
+            return new SecT233FieldElement(z);
+        }
+
+        public override ECFieldElement SquarePow(int pow)
+        {
+            if (pow < 1)
+                return this;
+
+            ulong[] z = Nat256.Create64();
+            SecT233Field.SquareN(x, pow, z);
+            return new SecT233FieldElement(z);
+        }
+
+        public override ECFieldElement Invert()
+        {
+            return new SecT233FieldElement(
+                AbstractF2mCurve.Inverse(233, new int[] { 74 }, ToBigInteger()));
+        }
+
+        public override ECFieldElement Sqrt()
+        {
+            return SquarePow(M - 1);
+        }
+
+        public virtual int Representation
+        {
+            get { return F2mFieldElement.Tpb; }
+        }
+
+        public virtual int M
+        {
+            get { return 233; }
+        }
+
+        public virtual int K1
+        {
+            get { return 74; }
+        }
+
+        public virtual int K2
+        {
+            get { return 0; }
+        }
+
+        public virtual int K3
+        {
+            get { return 0; }
+        }
+
+        public override bool Equals(object obj)
+        {
+            return Equals(obj as SecT233FieldElement);
+        }
+
+        public override bool Equals(ECFieldElement other)
+        {
+            return Equals(other as SecT233FieldElement);
+        }
+
+        public virtual bool Equals(SecT233FieldElement other)
+        {
+            if (this == other)
+                return true;
+            if (null == other)
+                return false;
+            return Nat256.Eq64(x, other.x);
+        }
+
+        public override int GetHashCode()
+        {
+            return 2330074 ^ Arrays.GetHashCode(x, 0, 4);
+        }
+    }
+}
diff --git a/crypto/src/math/ec/custom/sec/SecT233K1Curve.cs b/crypto/src/math/ec/custom/sec/SecT233K1Curve.cs
new file mode 100644
index 000000000..8768eaa81
--- /dev/null
+++ b/crypto/src/math/ec/custom/sec/SecT233K1Curve.cs
@@ -0,0 +1,196 @@
+using System;
+
+using Org.BouncyCastle.Math.EC.Multiplier;
+using Org.BouncyCastle.Utilities.Encoders;
+
+namespace Org.BouncyCastle.Math.EC.Custom.Sec
+{
+    internal class SecT233K1Curve
+        : AbstractF2mCurve
+    {
+        private const int SecT233K1_DEFAULT_COORDS = COORD_LAMBDA_PROJECTIVE;
+
+        protected readonly SecT233K1Point m_infinity;
+
+        public SecT233K1Curve()
+            : base(233, 74, 0, 0)
+        {
+            this.m_infinity = new SecT233K1Point(this, null, null);
+
+            this.m_a = FromBigInteger(BigInteger.Zero);
+            this.m_b = FromBigInteger(BigInteger.One);
+            this.m_order = new BigInteger(1, Hex.Decode("8000000000000000000000000000069D5BB915BCD46EFB1AD5F173ABDF"));
+            this.m_cofactor = BigInteger.ValueOf(4);
+
+            this.m_coord = SecT233K1_DEFAULT_COORDS;
+        }
+
+        protected override ECCurve CloneCurve()
+        {
+            return new SecT233K1Curve();
+        }
+
+        public override bool SupportsCoordinateSystem(int coord)
+        {
+            switch (coord)
+            {
+            case COORD_LAMBDA_PROJECTIVE:
+                return true;
+            default:
+                return false;
+            }
+        }
+
+        protected override ECMultiplier CreateDefaultMultiplier()
+        {
+            return new WTauNafMultiplier();
+        }
+
+        public override int FieldSize
+        {
+            get { return 233; }
+        }
+
+        public override ECFieldElement FromBigInteger(BigInteger x)
+        {
+            return new SecT233FieldElement(x);
+        }
+
+        protected internal override ECPoint CreateRawPoint(ECFieldElement x, ECFieldElement y, bool withCompression)
+        {
+            return new SecT233K1Point(this, x, y, withCompression);
+        }
+
+        protected internal override ECPoint CreateRawPoint(ECFieldElement x, ECFieldElement y, ECFieldElement[] zs, bool withCompression)
+        {
+            return new SecT233K1Point(this, x, y, zs, withCompression);
+        }
+
+        public override ECPoint Infinity
+        {
+            get { return m_infinity; }
+        }
+
+        public override bool IsKoblitz
+        {
+            get { return true; }
+        }
+
+        /**
+         * Decompresses a compressed point P = (xp, yp) (X9.62 s 4.2.2).
+         * 
+         * @param yTilde
+         *            ~yp, an indication bit for the decompression of yp.
+         * @param X1
+         *            The field element xp.
+         * @return the decompressed point.
+         */
+        protected override ECPoint DecompressPoint(int yTilde, BigInteger X1)
+        {
+            ECFieldElement x = FromBigInteger(X1), y = null;
+            if (x.IsZero)
+            {
+                y = B.Sqrt();
+            }
+            else
+            {
+                ECFieldElement beta = x.Square().Invert().Multiply(B).Add(A).Add(x);
+                ECFieldElement z = SolveQuadraticEquation(beta);
+                if (z != null)
+                {
+                    if (z.TestBitZero() != (yTilde == 1))
+                    {
+                        z = z.AddOne();
+                    }
+
+                    switch (this.CoordinateSystem)
+                    {
+                    case COORD_LAMBDA_AFFINE:
+                    case COORD_LAMBDA_PROJECTIVE:
+                    {
+                        y = z.Add(x);
+                        break;
+                    }
+                    default:
+                    {
+                        y = z.Multiply(x);
+                        break;
+                    }
+                    }
+                }
+            }
+
+            if (y == null)
+                throw new ArgumentException("Invalid point compression");
+
+            return this.CreateRawPoint(x, y, true);
+        }
+
+        /**
+         * Solves a quadratic equation <code>z<sup>2</sup> + z = beta</code>(X9.62
+         * D.1.6) The other solution is <code>z + 1</code>.
+         * 
+         * @param beta
+         *            The value to solve the quadratic equation for.
+         * @return the solution for <code>z<sup>2</sup> + z = beta</code> or
+         *         <code>null</code> if no solution exists.
+         */
+        private ECFieldElement SolveQuadraticEquation(ECFieldElement beta)
+        {
+            if (beta.IsZero)
+            {
+                return beta;
+            }
+
+            ECFieldElement zeroElement = FromBigInteger(BigInteger.Zero);
+
+            ECFieldElement z = null;
+            ECFieldElement gamma = null;
+
+            Random rand = new Random();
+            do
+            {
+                ECFieldElement t = FromBigInteger(new BigInteger(233, rand));
+                z = zeroElement;
+                ECFieldElement w = beta;
+                for (int i = 1; i < 233; i++)
+                {
+                    ECFieldElement w2 = w.Square();
+                    z = z.Square().Add(w2.Multiply(t));
+                    w = w2.Add(beta);
+                }
+                if (!w.IsZero)
+                    return null;
+                gamma = z.Square().Add(z);
+            }
+            while (gamma.IsZero);
+
+            return z;
+        }
+
+        public virtual int M
+        {
+            get { return 233; }
+        }
+
+        public virtual bool IsTrinomial
+        {
+            get { return true; }
+        }
+
+        public virtual int K1
+        {
+            get { return 74; }
+        }
+
+        public virtual int K2
+        {
+            get { return 0; }
+        }
+
+        public virtual int K3
+        {
+            get { return 0; }
+        }
+    }
+}
diff --git a/crypto/src/math/ec/custom/sec/SecT233K1Point.cs b/crypto/src/math/ec/custom/sec/SecT233K1Point.cs
new file mode 100644
index 000000000..7e7ee8f0b
--- /dev/null
+++ b/crypto/src/math/ec/custom/sec/SecT233K1Point.cs
@@ -0,0 +1,302 @@
+using System;
+
+namespace Org.BouncyCastle.Math.EC.Custom.Sec
+{
+    internal class SecT233K1Point
+        : AbstractF2mPoint
+    {
+        /**
+         * @deprecated Use ECCurve.createPoint to construct points
+         */
+        public SecT233K1Point(ECCurve curve, ECFieldElement x, ECFieldElement y)
+            : this(curve, x, y, false)
+        {
+        }
+
+        /**
+         * @deprecated per-point compression property will be removed, refer {@link #getEncoded(bool)}
+         */
+        public SecT233K1Point(ECCurve curve, ECFieldElement x, ECFieldElement y, bool withCompression)
+            : base(curve, x, y, withCompression)
+        {
+            if ((x == null) != (y == null))
+                throw new ArgumentException("Exactly one of the field elements is null");
+        }
+
+        internal SecT233K1Point(ECCurve curve, ECFieldElement x, ECFieldElement y, ECFieldElement[] zs, bool withCompression)
+            : base(curve, x, y, zs, withCompression)
+        {
+        }
+
+        protected override ECPoint Detach()
+        {
+            return new SecT233K1Point(null, this.AffineXCoord, this.AffineYCoord); // earlier JDK
+        }
+
+        public override ECFieldElement YCoord
+        {
+            get
+            {
+                ECFieldElement X = RawXCoord, L = RawYCoord;
+
+                if (this.IsInfinity || X.IsZero)
+                    return L;
+
+                // Y is actually Lambda (X + Y/X) here; convert to affine value on the fly
+                ECFieldElement Y = L.Add(X).Multiply(X);
+
+                ECFieldElement Z = RawZCoords[0];
+                if (!Z.IsOne)
+                {
+                    Y = Y.Divide(Z);
+                }
+
+                return Y;
+            }
+        }
+
+        protected internal override bool CompressionYTilde
+        {
+            get
+            {
+                ECFieldElement X = this.RawXCoord;
+                if (X.IsZero)
+                    return false;
+
+                ECFieldElement Y = this.RawYCoord;
+
+                // Y is actually Lambda (X + Y/X) here
+                return Y.TestBitZero() != X.TestBitZero();
+            }
+        }
+
+        public override ECPoint Add(ECPoint b)
+        {
+            if (this.IsInfinity)
+                return b;
+            if (b.IsInfinity)
+                return this;
+
+            ECCurve curve = this.Curve;
+
+            ECFieldElement X1 = this.RawXCoord;
+            ECFieldElement X2 = b.RawXCoord;
+
+            if (X1.IsZero)
+            {
+                if (X2.IsZero)
+                {
+                    return curve.Infinity;
+                }
+
+                return b.Add(this);
+            }
+
+            ECFieldElement L1 = this.RawYCoord, Z1 = this.RawZCoords[0];
+            ECFieldElement L2 = b.RawYCoord, Z2 = b.RawZCoords[0];
+
+            bool Z1IsOne = Z1.IsOne;
+            ECFieldElement U2 = X2, S2 = L2;
+            if (!Z1IsOne)
+            {
+                U2 = U2.Multiply(Z1);
+                S2 = S2.Multiply(Z1);
+            }
+
+            bool Z2IsOne = Z2.IsOne;
+            ECFieldElement U1 = X1, S1 = L1;
+            if (!Z2IsOne)
+            {
+                U1 = U1.Multiply(Z2);
+                S1 = S1.Multiply(Z2);
+            }
+
+            ECFieldElement A = S1.Add(S2);
+            ECFieldElement B = U1.Add(U2);
+
+            if (B.IsZero)
+            {
+                if (A.IsZero)
+                    return Twice();
+
+                return curve.Infinity;
+            }
+
+            ECFieldElement X3, L3, Z3;
+            if (X2.IsZero)
+            {
+                // TODO This can probably be optimized quite a bit
+                ECPoint p = this.Normalize();
+                X1 = p.XCoord;
+                ECFieldElement Y1 = p.YCoord;
+
+                ECFieldElement Y2 = L2;
+                ECFieldElement L = Y1.Add(Y2).Divide(X1);
+
+                //X3 = L.Square().Add(L).Add(X1).Add(curve.A);
+                X3 = L.Square().Add(L).Add(X1);
+                if (X3.IsZero)
+                {
+                    //return new SecT233K1Point(curve, X3, curve.B.sqrt(), IsCompressed);
+                    return new SecT233K1Point(curve, X3, curve.B, IsCompressed);
+                }
+
+                ECFieldElement Y3 = L.Multiply(X1.Add(X3)).Add(X3).Add(Y1);
+                L3 = Y3.Divide(X3).Add(X3);
+                Z3 = curve.FromBigInteger(BigInteger.One);
+            }
+            else
+            {
+                B = B.Square();
+
+                ECFieldElement AU1 = A.Multiply(U1);
+                ECFieldElement AU2 = A.Multiply(U2);
+
+                X3 = AU1.Multiply(AU2);
+                if (X3.IsZero)
+                {
+                    //return new SecT233K1Point(curve, X3, curve.B.sqrt(), IsCompressed);
+                    return new SecT233K1Point(curve, X3, curve.B, IsCompressed);
+                }
+
+                ECFieldElement ABZ2 = A.Multiply(B);
+                if (!Z2IsOne)
+                {
+                    ABZ2 = ABZ2.Multiply(Z2);
+                }
+
+                L3 = AU2.Add(B).SquarePlusProduct(ABZ2, L1.Add(Z1));
+
+                Z3 = ABZ2;
+                if (!Z1IsOne)
+                {
+                    Z3 = Z3.Multiply(Z1);
+                }
+            }
+
+            return new SecT233K1Point(curve, X3, L3, new ECFieldElement[] { Z3 }, IsCompressed);
+        }
+
+        public override ECPoint Twice()
+        {
+            if (this.IsInfinity)
+            {
+                return this;
+            }
+
+            ECCurve curve = this.Curve;
+
+            ECFieldElement X1 = this.RawXCoord;
+            if (X1.IsZero)
+            {
+                // A point with X == 0 is it's own Additive inverse
+                return curve.Infinity;
+            }
+
+            ECFieldElement L1 = this.RawYCoord, Z1 = this.RawZCoords[0];
+
+            bool Z1IsOne = Z1.IsOne;
+            ECFieldElement Z1Sq = Z1IsOne ? Z1 : Z1.Square();
+            ECFieldElement T;
+            if (Z1IsOne)
+            {
+                T = L1.Square().Add(L1);
+            }
+            else
+            {
+                T = L1.Add(Z1).Multiply(L1);
+            }
+
+            if (T.IsZero)
+            {
+                //return new SecT233K1Point(curve, T, curve.B.sqrt(), withCompression);
+                return new SecT233K1Point(curve, T, curve.B, IsCompressed);
+            }
+
+            ECFieldElement X3 = T.Square();
+            ECFieldElement Z3 = Z1IsOne ? T : T.Multiply(Z1Sq);
+
+            ECFieldElement t1 = L1.Add(X1).Square();
+            ECFieldElement t2 = Z1IsOne ? Z1 : Z1Sq.Square();
+            ECFieldElement L3 = t1.Add(T).Add(Z1Sq).Multiply(t1).Add(t2).Add(X3).Add(Z3);
+
+            return new SecT233K1Point(curve, X3, L3, new ECFieldElement[] { Z3 }, IsCompressed);
+        }
+
+        public override ECPoint TwicePlus(ECPoint b)
+        {
+            if (this.IsInfinity)
+                return b;
+            if (b.IsInfinity)
+                return Twice();
+
+            ECCurve curve = this.Curve;
+
+            ECFieldElement X1 = this.RawXCoord;
+            if (X1.IsZero)
+            {
+                // A point with X == 0 is it's own Additive inverse
+                return b;
+            }
+
+            // NOTE: TwicePlus() only optimized for lambda-affine argument
+            ECFieldElement X2 = b.RawXCoord, Z2 = b.RawZCoords[0];
+            if (X2.IsZero || !Z2.IsOne)
+            {
+                return Twice().Add(b);
+            }
+
+            ECFieldElement L1 = this.RawYCoord, Z1 = this.RawZCoords[0];
+            ECFieldElement L2 = b.RawYCoord;
+
+            ECFieldElement X1Sq = X1.Square();
+            ECFieldElement L1Sq = L1.Square();
+            ECFieldElement Z1Sq = Z1.Square();
+            ECFieldElement L1Z1 = L1.Multiply(Z1);
+
+            //ECFieldElement T = curve.A.Multiply(Z1Sq).Add(L1Sq).Add(L1Z1);
+            ECFieldElement T = L1Sq.Add(L1Z1);
+            ECFieldElement L2plus1 = L2.AddOne();
+            //ECFieldElement A = curve.A.Add(L2plus1).Multiply(Z1Sq).Add(L1Sq).MultiplyPlusProduct(T, X1Sq, Z1Sq);
+            ECFieldElement A = L2plus1.Multiply(Z1Sq).Add(L1Sq).MultiplyPlusProduct(T, X1Sq, Z1Sq);
+            ECFieldElement X2Z1Sq = X2.Multiply(Z1Sq);
+            ECFieldElement B = X2Z1Sq.Add(T).Square();
+
+            if (B.IsZero)
+            {
+                if (A.IsZero)
+                {
+                    return b.Twice();
+                }
+
+                return curve.Infinity;
+            }
+
+            if (A.IsZero)
+            {
+                //return new SecT233K1Point(curve, A, curve.B.sqrt(), withCompression);
+                return new SecT233K1Point(curve, A, curve.B, IsCompressed);
+            }
+
+            ECFieldElement X3 = A.Square().Multiply(X2Z1Sq);
+            ECFieldElement Z3 = A.Multiply(B).Multiply(Z1Sq);
+            ECFieldElement L3 = A.Add(B).Square().MultiplyPlusProduct(T, L2plus1, Z3);
+
+            return new SecT233K1Point(curve, X3, L3, new ECFieldElement[] { Z3 }, IsCompressed);
+        }
+
+        public override ECPoint Negate()
+        {
+            if (this.IsInfinity)
+                return this;
+
+            ECFieldElement X = this.RawXCoord;
+            if (X.IsZero)
+                return this;
+
+            // L is actually Lambda (X + Y/X) here
+            ECFieldElement L = this.RawYCoord, Z = this.RawZCoords[0];
+            return new SecT233K1Point(Curve, X, L.Add(Z), new ECFieldElement[] { Z }, IsCompressed);
+        }
+    }
+}
diff --git a/crypto/src/math/ec/custom/sec/SecT233R1Curve.cs b/crypto/src/math/ec/custom/sec/SecT233R1Curve.cs
new file mode 100644
index 000000000..92795b8a7
--- /dev/null
+++ b/crypto/src/math/ec/custom/sec/SecT233R1Curve.cs
@@ -0,0 +1,188 @@
+using System;
+
+using Org.BouncyCastle.Utilities.Encoders;
+
+namespace Org.BouncyCastle.Math.EC.Custom.Sec
+{
+    internal class SecT233R1Curve
+        : AbstractF2mCurve
+    {
+        private const int SecT233R1_DEFAULT_COORDS = COORD_LAMBDA_PROJECTIVE;
+
+        protected readonly SecT233R1Point m_infinity;
+
+        public SecT233R1Curve()
+            : base(233, 74, 0, 0)
+        {
+            this.m_infinity = new SecT233R1Point(this, null, null);
+
+            this.m_a = FromBigInteger(BigInteger.One);
+            this.m_b = FromBigInteger(new BigInteger(1, Hex.Decode("0066647EDE6C332C7F8C0923BB58213B333B20E9CE4281FE115F7D8F90AD")));
+            this.m_order = new BigInteger(1, Hex.Decode("01000000000000000000000000000013E974E72F8A6922031D2603CFE0D7"));
+            this.m_cofactor = BigInteger.Two;
+
+            this.m_coord = SecT233R1_DEFAULT_COORDS;
+        }
+
+        protected override ECCurve CloneCurve()
+        {
+            return new SecT233R1Curve();
+        }
+
+        public override bool SupportsCoordinateSystem(int coord)
+        {
+            switch (coord)
+            {
+            case COORD_LAMBDA_PROJECTIVE:
+                return true;
+            default:
+                return false;
+            }
+        }
+
+        public override ECPoint Infinity
+        {
+            get { return m_infinity; }
+        }
+
+        public override int FieldSize
+        {
+            get { return 233; }
+        }
+
+        public override ECFieldElement FromBigInteger(BigInteger x)
+        {
+            return new SecT233FieldElement(x);
+        }
+
+        protected internal override ECPoint CreateRawPoint(ECFieldElement x, ECFieldElement y, bool withCompression)
+        {
+            return new SecT233R1Point(this, x, y, withCompression);
+        }
+
+        protected internal override ECPoint CreateRawPoint(ECFieldElement x, ECFieldElement y, ECFieldElement[] zs, bool withCompression)
+        {
+            return new SecT233R1Point(this, x, y, zs, withCompression);
+        }
+
+        public override bool IsKoblitz
+        {
+            get { return false; }
+        }
+
+        /**
+         * Decompresses a compressed point P = (xp, yp) (X9.62 s 4.2.2).
+         * 
+         * @param yTilde
+         *            ~yp, an indication bit for the decompression of yp.
+         * @param X1
+         *            The field element xp.
+         * @return the decompressed point.
+         */
+        protected override ECPoint DecompressPoint(int yTilde, BigInteger X1)
+        {
+            ECFieldElement x = FromBigInteger(X1), y = null;
+            if (x.IsZero)
+            {
+                y = B.Sqrt();
+            }
+            else
+            {
+                ECFieldElement beta = x.Square().Invert().Multiply(B).Add(A).Add(x);
+                ECFieldElement z = SolveQuadraticEquation(beta);
+                if (z != null)
+                {
+                    if (z.TestBitZero() != (yTilde == 1))
+                    {
+                        z = z.AddOne();
+                    }
+
+                    switch (this.CoordinateSystem)
+                    {
+                    case COORD_LAMBDA_AFFINE:
+                    case COORD_LAMBDA_PROJECTIVE:
+                    {
+                        y = z.Add(x);
+                        break;
+                    }
+                    default:
+                    {
+                        y = z.Multiply(x);
+                        break;
+                    }
+                    }
+                }
+            }
+
+            if (y == null)
+                throw new ArgumentException("Invalid point compression");
+
+            return this.CreateRawPoint(x, y, true);
+        }
+
+        /**
+         * Solves a quadratic equation <code>z<sup>2</sup> + z = beta</code>(X9.62
+         * D.1.6) The other solution is <code>z + 1</code>.
+         * 
+         * @param beta
+         *            The value to solve the quadratic equation for.
+         * @return the solution for <code>z<sup>2</sup> + z = beta</code> or
+         *         <code>null</code> if no solution exists.
+         */
+        private ECFieldElement SolveQuadraticEquation(ECFieldElement beta)
+        {
+            if (beta.IsZero)
+                return beta;
+
+            ECFieldElement zeroElement = FromBigInteger(BigInteger.Zero);
+
+            ECFieldElement z = null;
+            ECFieldElement gamma = null;
+
+            Random rand = new Random();
+            do
+            {
+                ECFieldElement t = FromBigInteger(new BigInteger(233, rand));
+                z = zeroElement;
+                ECFieldElement w = beta;
+                for (int i = 1; i < 233; i++)
+                {
+                    ECFieldElement w2 = w.Square();
+                    z = z.Square().Add(w2.Multiply(t));
+                    w = w2.Add(beta);
+                }
+                if (!w.IsZero)
+                    return null;
+                gamma = z.Square().Add(z);
+            }
+            while (gamma.IsZero);
+
+            return z;
+        }
+
+        public virtual int M
+        {
+            get { return 233; }
+        }
+
+        public virtual bool IsTrinomial
+        {
+            get { return true; }
+        }
+
+        public virtual int K1
+        {
+            get { return 74; }
+        }
+
+        public virtual int K2
+        {
+            get { return 0; }
+        }
+
+        public virtual int K3
+        {
+            get { return 0; }
+        }
+    }
+}
diff --git a/crypto/src/math/ec/custom/sec/SecT233R1Point.cs b/crypto/src/math/ec/custom/sec/SecT233R1Point.cs
new file mode 100644
index 000000000..ffac89d15
--- /dev/null
+++ b/crypto/src/math/ec/custom/sec/SecT233R1Point.cs
@@ -0,0 +1,282 @@
+using System;
+
+namespace Org.BouncyCastle.Math.EC.Custom.Sec
+{
+    internal class SecT233R1Point
+        : AbstractF2mPoint
+    {
+        /**
+         * @deprecated Use ECCurve.createPoint to construct points
+         */
+        public SecT233R1Point(ECCurve curve, ECFieldElement x, ECFieldElement y)
+            : this(curve, x, y, false)
+        {
+        }
+
+        /**
+         * @deprecated per-point compression property will be removed, refer {@link #getEncoded(bool)}
+         */
+        public SecT233R1Point(ECCurve curve, ECFieldElement x, ECFieldElement y, bool withCompression)
+            : base(curve, x, y, withCompression)
+        {
+            if ((x == null) != (y == null))
+                throw new ArgumentException("Exactly one of the field elements is null");
+        }
+
+        internal SecT233R1Point(ECCurve curve, ECFieldElement x, ECFieldElement y, ECFieldElement[] zs, bool withCompression)
+            : base(curve, x, y, zs, withCompression)
+        {
+        }
+
+        protected override ECPoint Detach()
+        {
+            return new SecT233R1Point(null, AffineXCoord, AffineYCoord);
+        }
+
+        public override ECFieldElement YCoord
+        {
+            get
+            {
+                ECFieldElement X = RawXCoord, L = RawYCoord;
+
+                if (this.IsInfinity || X.IsZero)
+                    return L;
+
+                // Y is actually Lambda (X + Y/X) here; convert to affine value on the fly
+                ECFieldElement Y = L.Add(X).Multiply(X);
+
+                ECFieldElement Z = RawZCoords[0];
+                if (!Z.IsOne)
+                {
+                    Y = Y.Divide(Z);
+                }
+
+                return Y;
+            }
+        }
+
+        protected internal override bool CompressionYTilde
+        {
+            get
+            {
+                ECFieldElement X = this.RawXCoord;
+                if (X.IsZero)
+                    return false;
+
+                ECFieldElement Y = this.RawYCoord;
+
+                // Y is actually Lambda (X + Y/X) here
+                return Y.TestBitZero() != X.TestBitZero();
+            }
+        }
+
+        public override ECPoint Add(ECPoint b)
+        {
+            if (this.IsInfinity)
+                return b;
+            if (b.IsInfinity)
+                return this;
+
+            ECCurve curve = this.Curve;
+
+            ECFieldElement X1 = this.RawXCoord;
+            ECFieldElement X2 = b.RawXCoord;
+
+            if (X1.IsZero)
+            {
+                if (X2.IsZero)
+                    return curve.Infinity;
+
+                return b.Add(this);
+            }
+
+            ECFieldElement L1 = this.RawYCoord, Z1 = this.RawZCoords[0];
+            ECFieldElement L2 = b.RawYCoord, Z2 = b.RawZCoords[0];
+
+            bool Z1IsOne = Z1.IsOne;
+            ECFieldElement U2 = X2, S2 = L2;
+            if (!Z1IsOne)
+            {
+                U2 = U2.Multiply(Z1);
+                S2 = S2.Multiply(Z1);
+            }
+
+            bool Z2IsOne = Z2.IsOne;
+            ECFieldElement U1 = X1, S1 = L1;
+            if (!Z2IsOne)
+            {
+                U1 = U1.Multiply(Z2);
+                S1 = S1.Multiply(Z2);
+            }
+
+            ECFieldElement A = S1.Add(S2);
+            ECFieldElement B = U1.Add(U2);
+
+            if (B.IsZero)
+            {
+                if (A.IsZero)
+                    return Twice();
+
+                return curve.Infinity;
+            }
+
+            ECFieldElement X3, L3, Z3;
+            if (X2.IsZero)
+            {
+                // TODO This can probably be optimized quite a bit
+                ECPoint p = this.Normalize();
+                X1 = p.XCoord;
+                ECFieldElement Y1 = p.YCoord;
+
+                ECFieldElement Y2 = L2;
+                ECFieldElement L = Y1.Add(Y2).Divide(X1);
+
+                //X3 = L.Square().Add(L).Add(X1).Add(curve.A);
+                X3 = L.Square().Add(L).Add(X1).AddOne();
+                if (X3.IsZero)
+                {
+                    return new SecT233R1Point(curve, X3, curve.B.Sqrt(), IsCompressed);
+                }
+
+                ECFieldElement Y3 = L.Multiply(X1.Add(X3)).Add(X3).Add(Y1);
+                L3 = Y3.Divide(X3).Add(X3);
+                Z3 = curve.FromBigInteger(BigInteger.One);
+            }
+            else
+            {
+                B = B.Square();
+
+                ECFieldElement AU1 = A.Multiply(U1);
+                ECFieldElement AU2 = A.Multiply(U2);
+
+                X3 = AU1.Multiply(AU2);
+                if (X3.IsZero)
+                {
+                    return new SecT233R1Point(curve, X3, curve.B.Sqrt(), IsCompressed);
+                }
+
+                ECFieldElement ABZ2 = A.Multiply(B);
+                if (!Z2IsOne)
+                {
+                    ABZ2 = ABZ2.Multiply(Z2);
+                }
+
+                L3 = AU2.Add(B).SquarePlusProduct(ABZ2, L1.Add(Z1));
+
+                Z3 = ABZ2;
+                if (!Z1IsOne)
+                {
+                    Z3 = Z3.Multiply(Z1);
+                }
+            }
+
+            return new SecT233R1Point(curve, X3, L3, new ECFieldElement[] { Z3 }, IsCompressed);
+        }
+
+        public override ECPoint Twice()
+        {
+            if (this.IsInfinity)
+                return this;
+
+            ECCurve curve = this.Curve;
+
+            ECFieldElement X1 = this.RawXCoord;
+            if (X1.IsZero)
+            {
+                // A point with X == 0 is it's own Additive inverse
+                return curve.Infinity;
+            }
+
+            ECFieldElement L1 = this.RawYCoord, Z1 = this.RawZCoords[0];
+
+            bool Z1IsOne = Z1.IsOne;
+            ECFieldElement L1Z1 = Z1IsOne ? L1 : L1.Multiply(Z1);
+            ECFieldElement Z1Sq = Z1IsOne ? Z1 : Z1.Square();
+            ECFieldElement T = L1.Square().Add(L1Z1).Add(Z1Sq);
+            if (T.IsZero)
+            {
+                return new SecT233R1Point(curve, T, curve.B.Sqrt(), IsCompressed);
+            }
+
+            ECFieldElement X3 = T.Square();
+            ECFieldElement Z3 = Z1IsOne ? T : T.Multiply(Z1Sq);
+
+            ECFieldElement X1Z1 = Z1IsOne ? X1 : X1.Multiply(Z1);
+            ECFieldElement L3 = X1Z1.SquarePlusProduct(T, L1Z1).Add(X3).Add(Z3);
+
+            return new SecT233R1Point(curve, X3, L3, new ECFieldElement[] { Z3 }, IsCompressed);
+        }
+
+        public override ECPoint TwicePlus(ECPoint b)
+        {
+            if (this.IsInfinity)
+                return b;
+            if (b.IsInfinity)
+                return Twice();
+
+            ECCurve curve = this.Curve;
+
+            ECFieldElement X1 = this.RawXCoord;
+            if (X1.IsZero)
+            {
+                // A point with X == 0 is it's own Additive inverse
+                return b;
+            }
+
+            ECFieldElement X2 = b.RawXCoord, Z2 = b.RawZCoords[0];
+            if (X2.IsZero || !Z2.IsOne)
+            {
+                return Twice().Add(b);
+            }
+
+            ECFieldElement L1 = this.RawYCoord, Z1 = this.RawZCoords[0];
+            ECFieldElement L2 = b.RawYCoord;
+
+            ECFieldElement X1Sq = X1.Square();
+            ECFieldElement L1Sq = L1.Square();
+            ECFieldElement Z1Sq = Z1.Square();
+            ECFieldElement L1Z1 = L1.Multiply(Z1);
+
+            //ECFieldElement T = curve.A.Multiply(Z1Sq).Add(L1Sq).Add(L1Z1);
+            ECFieldElement T = Z1Sq.Add(L1Sq).Add(L1Z1);
+            ECFieldElement L2plus1 = L2.AddOne();
+            //ECFieldElement A = curve.A.Add(L2plus1).Multiply(Z1Sq).Add(L1Sq).MultiplyPlusProduct(T, X1Sq, Z1Sq);
+            ECFieldElement A = L2.Multiply(Z1Sq).Add(L1Sq).MultiplyPlusProduct(T, X1Sq, Z1Sq);
+            ECFieldElement X2Z1Sq = X2.Multiply(Z1Sq);
+            ECFieldElement B = X2Z1Sq.Add(T).Square();
+
+            if (B.IsZero)
+            {
+                if (A.IsZero)
+                    return b.Twice();
+
+                return curve.Infinity;
+            }
+
+            if (A.IsZero)
+            {
+                return new SecT233R1Point(curve, A, curve.B.Sqrt(), IsCompressed);
+            }
+
+            ECFieldElement X3 = A.Square().Multiply(X2Z1Sq);
+            ECFieldElement Z3 = A.Multiply(B).Multiply(Z1Sq);
+            ECFieldElement L3 = A.Add(B).Square().MultiplyPlusProduct(T, L2plus1, Z3);
+
+            return new SecT233R1Point(curve, X3, L3, new ECFieldElement[] { Z3 }, IsCompressed);
+        }
+
+        public override ECPoint Negate()
+        {
+            if (this.IsInfinity)
+                return this;
+
+            ECFieldElement X = this.RawXCoord;
+            if (X.IsZero)
+                return this;
+
+            // L is actually Lambda (X + Y/X) here
+            ECFieldElement L = this.RawYCoord, Z = this.RawZCoords[0];
+            return new SecT233R1Point(Curve, X, L.Add(Z), new ECFieldElement[] { Z }, IsCompressed);
+        }
+    }
+}
diff --git a/crypto/src/math/ec/custom/sec/SecT239Field.cs b/crypto/src/math/ec/custom/sec/SecT239Field.cs
new file mode 100644
index 000000000..1e0824af9
--- /dev/null
+++ b/crypto/src/math/ec/custom/sec/SecT239Field.cs
@@ -0,0 +1,249 @@
+using System;
+using System.Diagnostics;
+
+using Org.BouncyCastle.Math.Raw;
+
+namespace Org.BouncyCastle.Math.EC.Custom.Sec
+{
+    internal class SecT239Field
+    {
+        private const ulong M47 = ulong.MaxValue >> 17;
+        private const ulong M60 = ulong.MaxValue >> 4;
+
+        public static void Add(ulong[] x, ulong[] y, ulong[] z)
+        {
+            z[0] = x[0] ^ y[0];
+            z[1] = x[1] ^ y[1];
+            z[2] = x[2] ^ y[2];
+            z[3] = x[3] ^ y[3];
+        }
+
+        public static void AddExt(ulong[] xx, ulong[] yy, ulong[] zz)
+        {
+            zz[0] = xx[0] ^ yy[0];
+            zz[1] = xx[1] ^ yy[1];
+            zz[2] = xx[2] ^ yy[2];
+            zz[3] = xx[3] ^ yy[3];
+            zz[4] = xx[4] ^ yy[4];
+            zz[5] = xx[5] ^ yy[5];
+            zz[6] = xx[6] ^ yy[6];
+            zz[7] = xx[7] ^ yy[7];
+        }
+
+        public static void AddOne(ulong[] x, ulong[] z)
+        {
+            z[0] = x[0] ^ 1UL;
+            z[1] = x[1];
+            z[2] = x[2];
+            z[3] = x[3];
+        }
+
+        public static ulong[] FromBigInteger(BigInteger x)
+        {
+            ulong[] z = Nat256.FromBigInteger64(x);
+            Reduce17(z, 0);
+            return z;
+        }
+
+        public static void Multiply(ulong[] x, ulong[] y, ulong[] z)
+        {
+            ulong[] tt = Nat256.CreateExt64();
+            ImplMultiply(x, y, tt);
+            Reduce(tt, z);
+        }
+
+        public static void MultiplyAddToExt(ulong[] x, ulong[] y, ulong[] zz)
+        {
+            ulong[] tt = Nat256.CreateExt64();
+            ImplMultiply(x, y, tt);
+            AddExt(zz, tt, zz);
+        }
+
+        public static void Reduce(ulong[] xx, ulong[] z)
+        {
+            ulong x0 = xx[0], x1 = xx[1], x2 = xx[2], x3 = xx[3];
+            ulong x4 = xx[4], x5 = xx[5], x6 = xx[6], x7 = xx[7];
+
+            x3 ^= (x7 << 17);
+            x4 ^= (x7 >> 47);
+            x5 ^= (x7 << 47);
+            x6 ^= (x7 >> 17);
+
+            x2 ^= (x6 << 17);
+            x3 ^= (x6 >> 47);
+            x4 ^= (x6 << 47);
+            x5 ^= (x6 >> 17);
+
+            x1 ^= (x5 << 17);
+            x2 ^= (x5 >> 47);
+            x3 ^= (x5 << 47);
+            x4 ^= (x5 >> 17);
+
+            x0 ^= (x4 << 17);
+            x1 ^= (x4 >> 47);
+            x2 ^= (x4 << 47);
+            x3 ^= (x4 >> 17);
+
+            ulong t = x3 >> 47;
+            z[0]    = x0 ^ t;
+            z[1]    = x1;
+            z[2]    = x2 ^ (t << 30);
+            z[3]    = x3 & M47;
+        }
+
+        public static void Reduce17(ulong[] z, int zOff)
+        {
+            ulong z3     = z[zOff + 3], t = z3 >> 47;
+            z[zOff    ] ^= t;
+            z[zOff + 2] ^= (t << 30);
+            z[zOff + 3]  = z3 & M47;
+        }
+
+        public static void Square(ulong[] x, ulong[] z)
+        {
+            ulong[] tt = Nat256.CreateExt64();
+            ImplSquare(x, tt);
+            Reduce(tt, z);
+        }
+
+        public static void SquareAddToExt(ulong[] x, ulong[] zz)
+        {
+            ulong[] tt = Nat256.CreateExt64();
+            ImplSquare(x, tt);
+            AddExt(zz, tt, zz);
+        }
+
+        public static void SquareN(ulong[] x, int n, ulong[] z)
+        {
+            Debug.Assert(n > 0);
+
+            ulong[] tt = Nat256.CreateExt64();
+            ImplSquare(x, tt);
+            Reduce(tt, z);
+
+            while (--n > 0)
+            {
+                ImplSquare(z, tt);
+                Reduce(tt, z);
+            }
+        }
+
+        protected static void ImplCompactExt(ulong[] zz)
+        {
+            ulong z0 = zz[0], z1 = zz[1], z2 = zz[2], z3 = zz[3], z4 = zz[4], z5 = zz[5], z6 = zz[6], z7 = zz[7];
+            zz[0] =  z0        ^ (z1 << 60);
+            zz[1] = (z1 >>  4) ^ (z2 << 56);
+            zz[2] = (z2 >>  8) ^ (z3 << 52);
+            zz[3] = (z3 >> 12) ^ (z4 << 48);
+            zz[4] = (z4 >> 16) ^ (z5 << 44);
+            zz[5] = (z5 >> 20) ^ (z6 << 40);
+            zz[6] = (z6 >> 24) ^ (z7 << 36);
+            zz[7] = (z7 >> 28);
+        }
+
+        protected static void ImplExpand(ulong[] x, ulong[] z)
+        {
+            ulong x0 = x[0], x1 = x[1], x2 = x[2], x3 = x[3];
+            z[0] = x0 & M60;
+            z[1] = ((x0 >> 60) ^ (x1 <<  4)) & M60;
+            z[2] = ((x1 >> 56) ^ (x2 <<  8)) & M60;
+            z[3] = ((x2 >> 52) ^ (x3 << 12));
+        }
+
+        protected static void ImplMultiply(ulong[] x, ulong[] y, ulong[] zz)
+        {
+            /*
+             * "Two-level seven-way recursion" as described in "Batch binary Edwards", Daniel J. Bernstein.
+             */
+
+            ulong[] f = new ulong[4], g = new ulong[4];
+            ImplExpand(x, f);
+            ImplExpand(y, g);
+
+            ImplMulwAcc(f[0], g[0], zz, 0);
+            ImplMulwAcc(f[1], g[1], zz, 1);
+            ImplMulwAcc(f[2], g[2], zz, 2);
+            ImplMulwAcc(f[3], g[3], zz, 3);
+
+            // U *= (1 - t^n)
+            for (int i = 5; i > 0; --i)
+            {
+                zz[i] ^= zz[i - 1];
+            }
+
+            ImplMulwAcc(f[0] ^ f[1], g[0] ^ g[1], zz, 1);
+            ImplMulwAcc(f[2] ^ f[3], g[2] ^ g[3], zz, 3);
+
+            // V *= (1 - t^2n)
+            for (int i = 7; i > 1; --i)
+            {
+                zz[i] ^= zz[i - 2];
+            }
+
+            // Double-length recursion
+            {
+                ulong c0 = f[0] ^ f[2], c1 = f[1] ^ f[3];
+                ulong d0 = g[0] ^ g[2], d1 = g[1] ^ g[3];
+                ImplMulwAcc(c0 ^ c1, d0 ^ d1, zz, 3);
+                ulong[] t = new ulong[3];
+                ImplMulwAcc(c0, d0, t, 0);
+                ImplMulwAcc(c1, d1, t, 1);
+                ulong t0 = t[0], t1 = t[1], t2 = t[2];
+                zz[2] ^= t0;
+                zz[3] ^= t0 ^ t1;
+                zz[4] ^= t2 ^ t1;
+                zz[5] ^= t2;
+            }
+
+            ImplCompactExt(zz);
+        }
+
+        protected static void ImplMulwAcc(ulong x, ulong y, ulong[] z, int zOff)
+        {
+            Debug.Assert(x >> 60 == 0);
+            Debug.Assert(y >> 60 == 0);
+
+            ulong[] u = new ulong[8];
+    //      u[0] = 0;
+            u[1] = y;
+            u[2] = u[1] << 1;
+            u[3] = u[2] ^  y;
+            u[4] = u[2] << 1;
+            u[5] = u[4] ^  y;
+            u[6] = u[3] << 1;
+            u[7] = u[6] ^  y;
+
+            uint j = (uint)x;
+            ulong g, h = 0, l = u[j & 7]
+                              ^ (u[(j >> 3) & 7] << 3);
+            int k = 54;
+            do
+            {
+                j = (uint)(x >> k);
+                g  = u[j & 7]
+                   ^ u[(j >> 3) & 7] << 3;
+                l ^= (g <<  k);
+                h ^= (g >> -k);
+            }
+            while ((k -= 6) > 0);
+
+            h ^= ((x & 0x0820820820820820L) & (ulong)(((long)y << 4) >> 63)) >> 5;
+
+            Debug.Assert(h >> 55 == 0);
+
+            z[zOff    ] ^= l & M60;
+            z[zOff + 1] ^= (l >> 60) ^ (h << 4);
+        }
+
+        protected static void ImplSquare(ulong[] x, ulong[] zz)
+        {
+            Interleave.Expand64To128(x[0], zz, 0);
+            Interleave.Expand64To128(x[1], zz, 2);
+            Interleave.Expand64To128(x[2], zz, 4);
+
+            ulong x3 = x[3];
+            zz[6] = Interleave.Expand32to64((uint)x3);
+            zz[7] = Interleave.Expand16to32((uint)(x3 >> 32));
+        }
+    }
+}
diff --git a/crypto/src/math/ec/custom/sec/SecT239FieldElement.cs b/crypto/src/math/ec/custom/sec/SecT239FieldElement.cs
new file mode 100644
index 000000000..c89b484b1
--- /dev/null
+++ b/crypto/src/math/ec/custom/sec/SecT239FieldElement.cs
@@ -0,0 +1,213 @@
+using System;
+
+using Org.BouncyCastle.Math.Raw;
+using Org.BouncyCastle.Utilities;
+
+namespace Org.BouncyCastle.Math.EC.Custom.Sec
+{
+    internal class SecT239FieldElement
+        : ECFieldElement
+    {
+        protected ulong[] x;
+
+        public SecT239FieldElement(BigInteger x)
+        {
+            if (x == null || x.SignValue < 0)
+                throw new ArgumentException("value invalid for SecT239FieldElement", "x");
+
+            this.x = SecT239Field.FromBigInteger(x);
+        }
+
+        public SecT239FieldElement()
+        {
+            this.x = Nat256.Create64();
+        }
+
+        protected internal SecT239FieldElement(ulong[] x)
+        {
+            this.x = x;
+        }
+
+        public override bool IsOne
+        {
+            get { return Nat256.IsOne64(x); }
+        }
+
+        public override bool IsZero
+        {
+            get { return Nat256.IsZero64(x); }
+        }
+
+        public override bool TestBitZero()
+        {
+            return (x[0] & 1L) != 0L;
+        }
+
+        public override BigInteger ToBigInteger()
+        {
+            return Nat256.ToBigInteger64(x);
+        }
+
+        public override string FieldName
+        {
+            get { return "SecT239Field"; }
+        }
+
+        public override int FieldSize
+        {
+            get { return 239; }
+        }
+
+        public override ECFieldElement Add(ECFieldElement b)
+        {
+            ulong[] z = Nat256.Create64();
+            SecT239Field.Add(x, ((SecT239FieldElement)b).x, z);
+            return new SecT239FieldElement(z);
+        }
+
+        public override ECFieldElement AddOne()
+        {
+            ulong[] z = Nat256.Create64();
+            SecT239Field.AddOne(x, z);
+            return new SecT239FieldElement(z);
+        }
+
+        public override ECFieldElement Subtract(ECFieldElement b)
+        {
+            // Addition and Subtraction are the same in F2m
+            return Add(b);
+        }
+
+        public override ECFieldElement Multiply(ECFieldElement b)
+        {
+            ulong[] z = Nat256.Create64();
+            SecT239Field.Multiply(x, ((SecT239FieldElement)b).x, z);
+            return new SecT239FieldElement(z);
+        }
+
+        public override ECFieldElement MultiplyMinusProduct(ECFieldElement b, ECFieldElement x, ECFieldElement y)
+        {
+            return MultiplyPlusProduct(b, x, y);
+        }
+
+        public override ECFieldElement MultiplyPlusProduct(ECFieldElement b, ECFieldElement x, ECFieldElement y)
+        {
+            ulong[] ax = this.x, bx = ((SecT239FieldElement)b).x;
+            ulong[] xx = ((SecT239FieldElement)x).x, yx = ((SecT239FieldElement)y).x;
+
+            ulong[] tt = Nat256.CreateExt64();
+            SecT239Field.MultiplyAddToExt(ax, bx, tt);
+            SecT239Field.MultiplyAddToExt(xx, yx, tt);
+
+            ulong[] z = Nat256.Create64();
+            SecT239Field.Reduce(tt, z);
+            return new SecT239FieldElement(z);
+        }
+
+        public override ECFieldElement Divide(ECFieldElement b)
+        {
+            return Multiply(b.Invert());
+        }
+
+        public override ECFieldElement Negate()
+        {
+            return this;
+        }
+
+        public override ECFieldElement Square()
+        {
+            ulong[] z = Nat256.Create64();
+            SecT239Field.Square(x, z);
+            return new SecT239FieldElement(z);
+        }
+
+        public override ECFieldElement SquareMinusProduct(ECFieldElement x, ECFieldElement y)
+        {
+            return SquarePlusProduct(x, y);
+        }
+
+        public override ECFieldElement SquarePlusProduct(ECFieldElement x, ECFieldElement y)
+        {
+            ulong[] ax = this.x;
+            ulong[] xx = ((SecT239FieldElement)x).x, yx = ((SecT239FieldElement)y).x;
+
+            ulong[] tt = Nat256.CreateExt64();
+            SecT239Field.SquareAddToExt(ax, tt);
+            SecT239Field.MultiplyAddToExt(xx, yx, tt);
+
+            ulong[] z = Nat256.Create64();
+            SecT239Field.Reduce(tt, z);
+            return new SecT239FieldElement(z);
+        }
+
+        public override ECFieldElement SquarePow(int pow)
+        {
+            if (pow < 1)
+                return this;
+
+            ulong[] z = Nat256.Create64();
+            SecT239Field.SquareN(x, pow, z);
+            return new SecT239FieldElement(z);
+        }
+
+        public override ECFieldElement Invert()
+        {
+            return new SecT239FieldElement(
+                AbstractF2mCurve.Inverse(239, new int[] { 158 }, ToBigInteger()));
+        }
+
+        public override ECFieldElement Sqrt()
+        {
+            return SquarePow(M - 1);
+        }
+
+        public virtual int Representation
+        {
+            get { return F2mFieldElement.Tpb; }
+        }
+
+        public virtual int M
+        {
+            get { return 239; }
+        }
+
+        public virtual int K1
+        {
+            get { return 158; }
+        }
+
+        public virtual int K2
+        {
+            get { return 0; }
+        }
+
+        public virtual int K3
+        {
+            get { return 0; }
+        }
+
+        public override bool Equals(object obj)
+        {
+            return Equals(obj as SecT239FieldElement);
+        }
+
+        public override bool Equals(ECFieldElement other)
+        {
+            return Equals(other as SecT239FieldElement);
+        }
+
+        public virtual bool Equals(SecT239FieldElement other)
+        {
+            if (this == other)
+                return true;
+            if (null == other)
+                return false;
+            return Nat256.Eq64(x, other.x);
+        }
+
+        public override int GetHashCode()
+        {
+            return 23900158 ^ Arrays.GetHashCode(x, 0, 4);
+        }
+    }
+}
diff --git a/crypto/src/math/ec/custom/sec/SecT239K1Curve.cs b/crypto/src/math/ec/custom/sec/SecT239K1Curve.cs
new file mode 100644
index 000000000..2c73d941f
--- /dev/null
+++ b/crypto/src/math/ec/custom/sec/SecT239K1Curve.cs
@@ -0,0 +1,194 @@
+using System;
+
+using Org.BouncyCastle.Math.EC.Multiplier;
+using Org.BouncyCastle.Utilities.Encoders;
+
+namespace Org.BouncyCastle.Math.EC.Custom.Sec
+{
+    internal class SecT239K1Curve
+        : AbstractF2mCurve
+    {
+        private const int SecT239K1_DEFAULT_COORDS = COORD_LAMBDA_PROJECTIVE;
+
+        protected readonly SecT239K1Point m_infinity;
+
+        public SecT239K1Curve()
+            : base(239, 158, 0, 0)
+        {
+            this.m_infinity = new SecT239K1Point(this, null, null);
+
+            this.m_a = FromBigInteger(BigInteger.Zero);
+            this.m_b = FromBigInteger(BigInteger.One);
+            this.m_order = new BigInteger(1, Hex.Decode("2000000000000000000000000000005A79FEC67CB6E91F1C1DA800E478A5"));
+            this.m_cofactor = BigInteger.ValueOf(4);
+
+            this.m_coord = SecT239K1_DEFAULT_COORDS;
+        }
+
+        protected override ECCurve CloneCurve()
+        {
+            return new SecT239K1Curve();
+        }
+
+        public override bool SupportsCoordinateSystem(int coord)
+        {
+            switch (coord)
+            {
+            case COORD_LAMBDA_PROJECTIVE:
+                return true;
+            default:
+                return false;
+            }
+        }
+
+        protected override ECMultiplier CreateDefaultMultiplier()
+        {
+            return new WTauNafMultiplier();
+        }
+
+        public override ECPoint Infinity
+        {
+            get { return m_infinity; }
+        }
+
+        public override int FieldSize
+        {
+            get { return 239; }
+        }
+
+        public override ECFieldElement FromBigInteger(BigInteger x)
+        {
+            return new SecT239FieldElement(x);
+        }
+
+        protected internal override ECPoint CreateRawPoint(ECFieldElement x, ECFieldElement y, bool withCompression)
+        {
+            return new SecT239K1Point(this, x, y, withCompression);
+        }
+
+        protected internal override ECPoint CreateRawPoint(ECFieldElement x, ECFieldElement y, ECFieldElement[] zs, bool withCompression)
+        {
+            return new SecT239K1Point(this, x, y, zs, withCompression);
+        }
+
+        public override bool IsKoblitz
+        {
+            get { return true; }
+        }
+
+        /**
+         * Decompresses a compressed point P = (xp, yp) (X9.62 s 4.2.2).
+         * 
+         * @param yTilde
+         *            ~yp, an indication bit for the decompression of yp.
+         * @param X1
+         *            The field element xp.
+         * @return the decompressed point.
+         */
+        protected override ECPoint DecompressPoint(int yTilde, BigInteger X1)
+        {
+            ECFieldElement x = FromBigInteger(X1), y = null;
+            if (x.IsZero)
+            {
+                y = B.Sqrt();
+            }
+            else
+            {
+                ECFieldElement beta = x.Square().Invert().Multiply(B).Add(A).Add(x);
+                ECFieldElement z = SolveQuadraticEquation(beta);
+                if (z != null)
+                {
+                    if (z.TestBitZero() != (yTilde == 1))
+                    {
+                        z = z.AddOne();
+                    }
+
+                    switch (this.CoordinateSystem)
+                    {
+                    case COORD_LAMBDA_AFFINE:
+                    case COORD_LAMBDA_PROJECTIVE:
+                    {
+                        y = z.Add(x);
+                        break;
+                    }
+                    default:
+                    {
+                        y = z.Multiply(x);
+                        break;
+                    }
+                    }
+                }
+            }
+
+            if (y == null)
+                throw new ArgumentException("Invalid point compression");
+
+            return this.CreateRawPoint(x, y, true);
+        }
+
+        /**
+         * Solves a quadratic equation <code>z<sup>2</sup> + z = beta</code>(X9.62
+         * D.1.6) The other solution is <code>z + 1</code>.
+         * 
+         * @param beta
+         *            The value to solve the quadratic equation for.
+         * @return the solution for <code>z<sup>2</sup> + z = beta</code> or
+         *         <code>null</code> if no solution exists.
+         */
+        private ECFieldElement SolveQuadraticEquation(ECFieldElement beta)
+        {
+            if (beta.IsZero)
+                return beta;
+
+            ECFieldElement zeroElement = FromBigInteger(BigInteger.Zero);
+
+            ECFieldElement z = null;
+            ECFieldElement gamma = null;
+
+            Random rand = new Random();
+            do
+            {
+                ECFieldElement t = FromBigInteger(new BigInteger(239, rand));
+                z = zeroElement;
+                ECFieldElement w = beta;
+                for (int i = 1; i < 239; i++)
+                {
+                    ECFieldElement w2 = w.Square();
+                    z = z.Square().Add(w2.Multiply(t));
+                    w = w2.Add(beta);
+                }
+                if (!w.IsZero)
+                    return null;
+                gamma = z.Square().Add(z);
+            }
+            while (gamma.IsZero);
+
+            return z;
+        }
+
+        public virtual int M
+        {
+            get { return 239; }
+        }
+
+        public virtual bool IsTrinomial
+        {
+            get { return true; }
+        }
+
+        public virtual int K1
+        {
+            get { return 158; }
+        }
+
+        public virtual int K2
+        {
+            get { return 0; }
+        }
+
+        public virtual int K3
+        {
+            get { return 0; }
+        }
+    }
+}
diff --git a/crypto/src/math/ec/custom/sec/SecT239K1Point.cs b/crypto/src/math/ec/custom/sec/SecT239K1Point.cs
new file mode 100644
index 000000000..ac079ad1e
--- /dev/null
+++ b/crypto/src/math/ec/custom/sec/SecT239K1Point.cs
@@ -0,0 +1,297 @@
+using System;
+
+namespace Org.BouncyCastle.Math.EC.Custom.Sec
+{
+    internal class SecT239K1Point
+        : AbstractF2mPoint
+    {
+        /**
+         * @deprecated Use ECCurve.createPoint to construct points
+         */
+        public SecT239K1Point(ECCurve curve, ECFieldElement x, ECFieldElement y)
+            : this(curve, x, y, false)
+        {
+        }
+
+        /**
+         * @deprecated per-point compression property will be removed, refer {@link #getEncoded(bool)}
+         */
+        public SecT239K1Point(ECCurve curve, ECFieldElement x, ECFieldElement y, bool withCompression)
+            : base(curve, x, y, withCompression)
+        {
+            if ((x == null) != (y == null))
+                throw new ArgumentException("Exactly one of the field elements is null");
+        }
+
+        internal SecT239K1Point(ECCurve curve, ECFieldElement x, ECFieldElement y, ECFieldElement[] zs, bool withCompression)
+            : base(curve, x, y, zs, withCompression)
+        {
+        }
+
+        protected override ECPoint Detach()
+        {
+            return new SecT239K1Point(null, this.AffineXCoord, this.AffineYCoord); // earlier JDK
+        }
+
+        public override ECFieldElement YCoord
+        {
+            get
+            {
+                ECFieldElement X = RawXCoord, L = RawYCoord;
+
+                if (this.IsInfinity || X.IsZero)
+                    return L;
+
+                // Y is actually Lambda (X + Y/X) here; convert to affine value on the fly
+                ECFieldElement Y = L.Add(X).Multiply(X);
+
+                ECFieldElement Z = RawZCoords[0];
+                if (!Z.IsOne)
+                {
+                    Y = Y.Divide(Z);
+                }
+
+                return Y;
+            }
+        }
+
+        protected internal override bool CompressionYTilde
+        {
+            get
+            {
+                ECFieldElement X = this.RawXCoord;
+                if (X.IsZero)
+                    return false;
+
+                ECFieldElement Y = this.RawYCoord;
+
+                // Y is actually Lambda (X + Y/X) here
+                return Y.TestBitZero() != X.TestBitZero();
+            }
+        }
+
+        public override ECPoint Add(ECPoint b)
+        {
+            if (this.IsInfinity)
+                return b;
+            if (b.IsInfinity)
+                return this;
+
+            ECCurve curve = this.Curve;
+
+            ECFieldElement X1 = this.RawXCoord;
+            ECFieldElement X2 = b.RawXCoord;
+
+            if (X1.IsZero)
+            {
+                if (X2.IsZero)
+                    return curve.Infinity;
+
+                return b.Add(this);
+            }
+
+            ECFieldElement L1 = this.RawYCoord, Z1 = this.RawZCoords[0];
+            ECFieldElement L2 = b.RawYCoord, Z2 = b.RawZCoords[0];
+
+            bool Z1IsOne = Z1.IsOne;
+            ECFieldElement U2 = X2, S2 = L2;
+            if (!Z1IsOne)
+            {
+                U2 = U2.Multiply(Z1);
+                S2 = S2.Multiply(Z1);
+            }
+
+            bool Z2IsOne = Z2.IsOne;
+            ECFieldElement U1 = X1, S1 = L1;
+            if (!Z2IsOne)
+            {
+                U1 = U1.Multiply(Z2);
+                S1 = S1.Multiply(Z2);
+            }
+
+            ECFieldElement A = S1.Add(S2);
+            ECFieldElement B = U1.Add(U2);
+
+            if (B.IsZero)
+            {
+                if (A.IsZero)
+                    return Twice();
+
+                return curve.Infinity;
+            }
+
+            ECFieldElement X3, L3, Z3;
+            if (X2.IsZero)
+            {
+                // TODO This can probably be optimized quite a bit
+                ECPoint p = this.Normalize();
+                X1 = p.XCoord;
+                ECFieldElement Y1 = p.YCoord;
+
+                ECFieldElement Y2 = L2;
+                ECFieldElement L = Y1.Add(Y2).Divide(X1);
+
+                //            X3 = L.Square().Add(L).Add(X1).Add(curve.A);
+                X3 = L.Square().Add(L).Add(X1);
+                if (X3.IsZero)
+                {
+                    //return new SecT239K1Point(curve, X3, curve.B.sqrt(), IsCompressed);
+                    return new SecT239K1Point(curve, X3, curve.B, IsCompressed);
+                }
+
+                ECFieldElement Y3 = L.Multiply(X1.Add(X3)).Add(X3).Add(Y1);
+                L3 = Y3.Divide(X3).Add(X3);
+                Z3 = curve.FromBigInteger(BigInteger.One);
+            }
+            else
+            {
+                B = B.Square();
+
+                ECFieldElement AU1 = A.Multiply(U1);
+                ECFieldElement AU2 = A.Multiply(U2);
+
+                X3 = AU1.Multiply(AU2);
+                if (X3.IsZero)
+                {
+                    //return new SecT239K1Point(curve, X3, curve.B.sqrt(), IsCompressed);
+                    return new SecT239K1Point(curve, X3, curve.B, IsCompressed);
+                }
+
+                ECFieldElement ABZ2 = A.Multiply(B);
+                if (!Z2IsOne)
+                {
+                    ABZ2 = ABZ2.Multiply(Z2);
+                }
+
+                L3 = AU2.Add(B).SquarePlusProduct(ABZ2, L1.Add(Z1));
+
+                Z3 = ABZ2;
+                if (!Z1IsOne)
+                {
+                    Z3 = Z3.Multiply(Z1);
+                }
+            }
+
+            return new SecT239K1Point(curve, X3, L3, new ECFieldElement[] { Z3 }, IsCompressed);
+        }
+
+        public override ECPoint Twice()
+        {
+            if (this.IsInfinity)
+                return this;
+
+            ECCurve curve = this.Curve;
+
+            ECFieldElement X1 = this.RawXCoord;
+            if (X1.IsZero)
+            {
+                // A point with X == 0 is it's own Additive inverse
+                return curve.Infinity;
+            }
+
+
+            ECFieldElement L1 = this.RawYCoord, Z1 = this.RawZCoords[0];
+
+            bool Z1IsOne = Z1.IsOne;
+            ECFieldElement Z1Sq = Z1IsOne ? Z1 : Z1.Square();
+            ECFieldElement T;
+            if (Z1IsOne)
+            {
+                T = L1.Square().Add(L1);
+            }
+            else
+            {
+                T = L1.Add(Z1).Multiply(L1);
+            }
+
+            if (T.IsZero)
+            {
+                //return new SecT239K1Point(curve, T, curve.B.sqrt(), withCompression);
+                return new SecT239K1Point(curve, T, curve.B, IsCompressed);
+            }
+
+            ECFieldElement X3 = T.Square();
+            ECFieldElement Z3 = Z1IsOne ? T : T.Multiply(Z1Sq);
+
+            ECFieldElement t1 = L1.Add(X1).Square();
+            ECFieldElement t2 = Z1IsOne ? Z1 : Z1Sq.Square();
+            ECFieldElement L3 = t1.Add(T).Add(Z1Sq).Multiply(t1).Add(t2).Add(X3).Add(Z3);
+
+            return new SecT239K1Point(curve, X3, L3, new ECFieldElement[] { Z3 }, IsCompressed);
+        }
+
+        public override ECPoint TwicePlus(ECPoint b)
+        {
+            if (this.IsInfinity)
+                return b;
+            if (b.IsInfinity)
+                return Twice();
+
+            ECCurve curve = this.Curve;
+
+            ECFieldElement X1 = this.RawXCoord;
+            if (X1.IsZero)
+            {
+                // A point with X == 0 is it's own Additive inverse
+                return b;
+            }
+
+            // NOTE: TwicePlus() only optimized for lambda-affine argument
+            ECFieldElement X2 = b.RawXCoord, Z2 = b.RawZCoords[0];
+            if (X2.IsZero || !Z2.IsOne)
+            {
+                return Twice().Add(b);
+            }
+
+            ECFieldElement L1 = this.RawYCoord, Z1 = this.RawZCoords[0];
+            ECFieldElement L2 = b.RawYCoord;
+
+            ECFieldElement X1Sq = X1.Square();
+            ECFieldElement L1Sq = L1.Square();
+            ECFieldElement Z1Sq = Z1.Square();
+            ECFieldElement L1Z1 = L1.Multiply(Z1);
+
+            //ECFieldElement T = curve.A.Multiply(Z1Sq).Add(L1Sq).Add(L1Z1);
+            ECFieldElement T = L1Sq.Add(L1Z1);
+            ECFieldElement L2plus1 = L2.AddOne();
+            //ECFieldElement A = curve.A.Add(L2plus1).Multiply(Z1Sq).Add(L1Sq).MultiplyPlusProduct(T, X1Sq, Z1Sq);
+            ECFieldElement A = L2plus1.Multiply(Z1Sq).Add(L1Sq).MultiplyPlusProduct(T, X1Sq, Z1Sq);
+            ECFieldElement X2Z1Sq = X2.Multiply(Z1Sq);
+            ECFieldElement B = X2Z1Sq.Add(T).Square();
+
+            if (B.IsZero)
+            {
+                if (A.IsZero)
+                    return b.Twice();
+
+                return curve.Infinity;
+            }
+
+            if (A.IsZero)
+            {
+                //return new SecT239K1Point(curve, A, curve.B.sqrt(), withCompression);
+                return new SecT239K1Point(curve, A, curve.B, IsCompressed);
+            }
+
+            ECFieldElement X3 = A.Square().Multiply(X2Z1Sq);
+            ECFieldElement Z3 = A.Multiply(B).Multiply(Z1Sq);
+            ECFieldElement L3 = A.Add(B).Square().MultiplyPlusProduct(T, L2plus1, Z3);
+
+            return new SecT239K1Point(curve, X3, L3, new ECFieldElement[] { Z3 }, IsCompressed);
+        }
+
+        public override ECPoint Negate()
+        {
+            if (this.IsInfinity)
+                return this;
+
+            ECFieldElement X = this.RawXCoord;
+            if (X.IsZero)
+                return this;
+
+            // L is actually Lambda (X + Y/X) here
+            ECFieldElement L = this.RawYCoord, Z = this.RawZCoords[0];
+            return new SecT239K1Point(Curve, X, L.Add(Z), new ECFieldElement[] { Z }, IsCompressed);
+        }
+    }
+}
diff --git a/crypto/src/math/ec/custom/sec/SecT283Field.cs b/crypto/src/math/ec/custom/sec/SecT283Field.cs
new file mode 100644
index 000000000..9afb27461
--- /dev/null
+++ b/crypto/src/math/ec/custom/sec/SecT283Field.cs
@@ -0,0 +1,335 @@
+using System;
+using System.Diagnostics;
+
+using Org.BouncyCastle.Math.Raw;
+
+namespace Org.BouncyCastle.Math.EC.Custom.Sec
+{
+    internal class SecT283Field
+    {
+        private const ulong M27 = ulong.MaxValue >> 37;
+        private const ulong M57 = ulong.MaxValue >> 7;
+
+        public static void Add(ulong[] x, ulong[] y, ulong[] z)
+        {
+            z[0] = x[0] ^ y[0];
+            z[1] = x[1] ^ y[1];
+            z[2] = x[2] ^ y[2];
+            z[3] = x[3] ^ y[3];
+            z[4] = x[4] ^ y[4];
+        }
+
+        public static void AddExt(ulong[] xx, ulong[] yy, ulong[] zz)
+        {
+            zz[0] = xx[0] ^ yy[0];
+            zz[1] = xx[1] ^ yy[1];
+            zz[2] = xx[2] ^ yy[2];
+            zz[3] = xx[3] ^ yy[3];
+            zz[4] = xx[4] ^ yy[4];
+            zz[5] = xx[5] ^ yy[5];
+            zz[6] = xx[6] ^ yy[6];
+            zz[7] = xx[7] ^ yy[7];
+            zz[8] = xx[8] ^ yy[8];
+        }
+
+        public static void AddOne(ulong[] x, ulong[] z)
+        {
+            z[0] = x[0] ^ 1UL;
+            z[1] = x[1];
+            z[2] = x[2];
+            z[3] = x[3];
+            z[4] = x[4];
+        }
+
+        public static ulong[] FromBigInteger(BigInteger x)
+        {
+            ulong[] z = Nat320.FromBigInteger64(x);
+            Reduce37(z, 0);
+            return z;
+        }
+
+        public static void Multiply(ulong[] x, ulong[] y, ulong[] z)
+        {
+            ulong[] tt = Nat320.CreateExt64();
+            ImplMultiply(x, y, tt);
+            Reduce(tt, z);
+        }
+
+        public static void MultiplyAddToExt(ulong[] x, ulong[] y, ulong[] zz)
+        {
+            ulong[] tt = Nat320.CreateExt64();
+            ImplMultiply(x, y, tt);
+            AddExt(zz, tt, zz);
+        }
+
+        public static void Reduce(ulong[] xx, ulong[] z)
+        {
+            ulong x0 = xx[0], x1 = xx[1], x2 = xx[2], x3 = xx[3], x4 = xx[4];
+            ulong x5 = xx[5], x6 = xx[6], x7 = xx[7], x8 = xx[8];
+
+            x3 ^= (x8 << 37) ^ (x8 << 42) ^ (x8 << 44) ^ (x8 << 49);
+            x4 ^= (x8 >> 27) ^ (x8 >> 22) ^ (x8 >> 20) ^ (x8 >> 15);
+
+            x2 ^= (x7 << 37) ^ (x7 << 42) ^ (x7 << 44) ^ (x7 << 49);
+            x3 ^= (x7 >> 27) ^ (x7 >> 22) ^ (x7 >> 20) ^ (x7 >> 15);
+
+            x1 ^= (x6 << 37) ^ (x6 << 42) ^ (x6 << 44) ^ (x6 << 49);
+            x2 ^= (x6 >> 27) ^ (x6 >> 22) ^ (x6 >> 20) ^ (x6 >> 15);
+
+            x0 ^= (x5 << 37) ^ (x5 << 42) ^ (x5 << 44) ^ (x5 << 49);
+            x1 ^= (x5 >> 27) ^ (x5 >> 22) ^ (x5 >> 20) ^ (x5 >> 15);
+
+            ulong t = x4 >> 27;
+            z[0]    = x0 ^ t ^ (t << 5) ^ (t << 7) ^ (t << 12);
+            z[1]    = x1; 
+            z[2]    = x2; 
+            z[3]    = x3; 
+            z[4]    = x4 & M27; 
+        }
+
+        public static void Reduce37(ulong[] z, int zOff)
+        {
+            ulong z4     = z[zOff + 4], t = z4 >> 27;
+            z[zOff    ] ^= t ^ (t << 5) ^ (t << 7) ^ (t << 12);
+            z[zOff + 4]  = z4 & M27;
+        }
+
+        public static void Square(ulong[] x, ulong[] z)
+        {
+            ulong[] tt = Nat.Create64(9);
+            ImplSquare(x, tt);
+            Reduce(tt, z);
+        }
+
+        public static void SquareAddToExt(ulong[] x, ulong[] zz)
+        {
+            ulong[] tt = Nat.Create64(9);
+            ImplSquare(x, tt);
+            AddExt(zz, tt, zz);
+        }
+
+        public static void SquareN(ulong[] x, int n, ulong[] z)
+        {
+            Debug.Assert(n > 0);
+
+            ulong[] tt = Nat.Create64(9);
+            ImplSquare(x, tt);
+            Reduce(tt, z);
+
+            while (--n > 0)
+            {
+                ImplSquare(z, tt);
+                Reduce(tt, z);
+            }
+        }
+
+        protected static void ImplCompactExt(ulong[] zz)
+        {
+            ulong z0 = zz[0], z1 = zz[1], z2 = zz[2], z3 = zz[3], z4 = zz[4];
+            ulong z5 = zz[5], z6 = zz[6], z7 = zz[7], z8 = zz[8], z9 = zz[9];
+            zz[0] =  z0        ^ (z1 << 57);
+            zz[1] = (z1 >>  7) ^ (z2 << 50);
+            zz[2] = (z2 >> 14) ^ (z3 << 43);
+            zz[3] = (z3 >> 21) ^ (z4 << 36);
+            zz[4] = (z4 >> 28) ^ (z5 << 29);
+            zz[5] = (z5 >> 35) ^ (z6 << 22);
+            zz[6] = (z6 >> 42) ^ (z7 << 15);
+            zz[7] = (z7 >> 49) ^ (z8 <<  8);
+            zz[8] = (z8 >> 56) ^ (z9 <<  1);
+            zz[9] = (z9 >> 63); // Zero!
+        }
+
+        protected static void ImplExpand(ulong[] x, ulong[] z)
+        {
+            ulong x0 = x[0], x1 = x[1], x2 = x[2], x3 = x[3], x4 = x[4];
+            z[0] = x0 & M57;
+            z[1] = ((x0 >> 57) ^ (x1 <<  7)) & M57;
+            z[2] = ((x1 >> 50) ^ (x2 << 14)) & M57;
+            z[3] = ((x2 >> 43) ^ (x3 << 21)) & M57;
+            z[4] = ((x3 >> 36) ^ (x4 << 28));
+        }
+
+        //protected static void AddMs(ulong[] zz, int zOff, ulong[] p, params int[] ms)
+        //{
+        //    ulong t0 = 0, t1 = 0;
+        //    foreach (int m in ms)
+        //    {
+        //        int i = (m - 1) << 1;
+        //        t0 ^= p[i    ];
+        //        t1 ^= p[i + 1];
+        //    }
+        //    zz[zOff    ] ^= t0;
+        //    zz[zOff + 1] ^= t1;
+        //}
+
+        protected static void ImplMultiply(ulong[] x, ulong[] y, ulong[] zz)
+        {
+            /*
+             * Formula (17) from "Some New Results on Binary Polynomial Multiplication",
+             * Murat Cenk and M. Anwar Hasan.
+             * 
+             * The formula as given contained an error in the term t25, as noted below
+             */
+            ulong[] a = new ulong[5], b = new ulong[5];
+            ImplExpand(x, a);
+            ImplExpand(y, b);
+
+            ulong[] p = new ulong[26];
+
+            ImplMulw(a[0], b[0], p, 0);                                 // m1
+            ImplMulw(a[1], b[1], p, 2);                                 // m2
+            ImplMulw(a[2], b[2], p, 4);                                 // m3
+            ImplMulw(a[3], b[3], p, 6);                                 // m4
+            ImplMulw(a[4], b[4], p, 8);                                 // m5
+
+            ulong u0 = a[0] ^ a[1], v0 = b[0] ^ b[1];
+            ulong u1 = a[0] ^ a[2], v1 = b[0] ^ b[2];
+            ulong u2 = a[2] ^ a[4], v2 = b[2] ^ b[4];
+            ulong u3 = a[3] ^ a[4], v3 = b[3] ^ b[4];
+
+            ImplMulw(u1 ^ a[3], v1 ^ b[3], p, 18);                      // m10
+            ImplMulw(u2 ^ a[1], v2 ^ b[1], p, 20);                      // m11
+
+            ulong A4 = u0 ^ u3  , B4 = v0 ^ v3;
+            ulong A5 = A4 ^ a[2], B5 = B4 ^ b[2];
+
+            ImplMulw(A4, B4, p, 22);                                    // m12
+            ImplMulw(A5, B5, p, 24);                                    // m13
+
+            ImplMulw(u0, v0, p, 10);                                    // m6
+            ImplMulw(u1, v1, p, 12);                                    // m7
+            ImplMulw(u2, v2, p, 14);                                    // m8
+            ImplMulw(u3, v3, p, 16);                                    // m9
+
+
+            // Original method, corresponding to formula (16)
+            //AddMs(zz, 0, p, 1);
+            //AddMs(zz, 1, p, 1, 2, 6);
+            //AddMs(zz, 2, p, 1, 2, 3, 7);
+            //AddMs(zz, 3, p, 1, 3, 4, 5, 8, 10, 12, 13);
+            //AddMs(zz, 4, p, 1, 2, 4, 5, 6, 9, 10, 11, 13);
+            //AddMs(zz, 5, p, 1, 2, 3, 5, 7, 11, 12, 13);
+            //AddMs(zz, 6, p, 3, 4, 5, 8);
+            //AddMs(zz, 7, p, 4, 5, 9);
+            //AddMs(zz, 8, p, 5);
+
+            // Improved method factors out common single-word terms
+            // NOTE: p1,...,p26 in the paper maps to p[0],...,p[25] here
+
+            zz[0]     = p[ 0];
+            zz[9]     = p[ 9];
+
+            ulong t1  = p[ 0] ^ p[ 1];
+            ulong t2  = t1    ^ p[ 2];
+            ulong t3  = t2    ^ p[10];
+        
+            zz[1]     = t3;
+
+            ulong t4  = p[ 3] ^ p[ 4];
+            ulong t5  = p[11] ^ p[12];
+            ulong t6  = t4    ^ t5;
+            ulong t7  = t2    ^ t6;
+
+            zz[2]     = t7;
+
+            ulong t8  = t1    ^ t4;
+            ulong t9  = p[ 5] ^ p[ 6];
+            ulong t10 = t8    ^ t9;
+            ulong t11 = t10   ^ p[ 8];
+            ulong t12 = p[13] ^ p[14];
+            ulong t13 = t11   ^ t12;
+            ulong t14 = p[18] ^ p[22];
+            ulong t15 = t14   ^ p[24];
+            ulong t16 = t13   ^ t15;
+
+            zz[3]     = t16;
+
+            ulong t17 = p[ 7] ^ p[ 8];
+            ulong t18 = t17   ^ p[ 9];
+            ulong t19 = t18   ^ p[17];
+
+            zz[8]     = t19;
+
+            ulong t20 = t18   ^ t9;
+            ulong t21 = p[15] ^ p[16];
+            ulong t22 = t20   ^ t21;
+
+            zz[7]     = t22;
+
+            ulong t23 = t22   ^ t3;
+            ulong t24 = p[19] ^ p[20];
+    //      ulong t25 = p[23] ^ p[24];
+            ulong t25 = p[25] ^ p[24];       // Fixes an error in the paper: p[23] -> p{25]
+            ulong t26 = p[18] ^ p[23];
+            ulong t27 = t24   ^ t25;
+            ulong t28 = t27   ^ t26;
+            ulong t29 = t28   ^ t23;
+
+            zz[4]     = t29;
+        
+            ulong t30 = t7    ^ t19;
+            ulong t31 = t27   ^ t30;
+            ulong t32 = p[21] ^ p[22];
+            ulong t33 = t31   ^ t32;
+
+            zz[5]     = t33;
+
+            ulong t34 = t11   ^ p[0];
+            ulong t35 = t34   ^ p[9];
+            ulong t36 = t35   ^ t12;
+            ulong t37 = t36   ^ p[21];
+            ulong t38 = t37   ^ p[23];
+            ulong t39 = t38   ^ p[25];
+
+            zz[6]     = t39;
+
+            ImplCompactExt(zz);
+        }
+
+        protected static void ImplMulw(ulong x, ulong y, ulong[] z, int zOff)
+        {
+            Debug.Assert(x >> 57 == 0);
+            Debug.Assert(y >> 57 == 0);
+
+            ulong[] u = new ulong[8];
+    //      u[0] = 0;
+            u[1] = y;
+            u[2] = u[1] << 1;
+            u[3] = u[2] ^  y;
+            u[4] = u[2] << 1;
+            u[5] = u[4] ^  y;
+            u[6] = u[3] << 1;
+            u[7] = u[6] ^  y;
+
+            uint j = (uint)x;
+            ulong g, h = 0, l = u[j & 7];
+            int k = 48;
+            do
+            {
+                j = (uint)(x >> k);
+                g  = u[j & 7]
+                   ^ u[(j >> 3) & 7] << 3
+                   ^ u[(j >> 6) & 7] << 6;
+                l ^= (g <<  k);
+                h ^= (g >> -k);
+            }
+            while ((k -= 9) > 0);
+
+            h ^= ((x & 0x0100804020100800L) & (ulong)(((long)y << 7) >> 63)) >> 8;
+
+            Debug.Assert(h >> 49 == 0);
+
+            z[zOff    ] = l & M57;
+            z[zOff + 1] = (l >> 57) ^ (h << 7);
+        }
+
+        protected static void ImplSquare(ulong[] x, ulong[] zz)
+        {
+            for (int i = 0; i < 4; ++i)
+            {
+                Interleave.Expand64To128(x[i], zz, i << 1);
+            }
+            zz[8] = Interleave.Expand32to64((uint)x[4]);
+        }
+    }
+}
diff --git a/crypto/src/math/ec/custom/sec/SecT283FieldElement.cs b/crypto/src/math/ec/custom/sec/SecT283FieldElement.cs
new file mode 100644
index 000000000..09243e859
--- /dev/null
+++ b/crypto/src/math/ec/custom/sec/SecT283FieldElement.cs
@@ -0,0 +1,213 @@
+using System;
+
+using Org.BouncyCastle.Math.Raw;
+using Org.BouncyCastle.Utilities;
+
+namespace Org.BouncyCastle.Math.EC.Custom.Sec
+{
+    internal class SecT283FieldElement
+        : ECFieldElement
+    {
+        protected readonly ulong[] x;
+
+        public SecT283FieldElement(BigInteger x)
+        {
+            if (x == null || x.SignValue < 0)
+                throw new ArgumentException("value invalid for SecT283FieldElement", "x");
+
+            this.x = SecT283Field.FromBigInteger(x);
+        }
+
+        public SecT283FieldElement()
+        {
+            this.x = Nat320.Create64();
+        }
+
+        protected internal SecT283FieldElement(ulong[] x)
+        {
+            this.x = x;
+        }
+
+        public override bool IsOne
+        {
+            get { return Nat320.IsOne64(x); }
+        }
+
+        public override bool IsZero
+        {
+            get { return Nat320.IsZero64(x); }
+        }
+
+        public override bool TestBitZero()
+        {
+            return (x[0] & 1UL) != 0UL;
+        }
+
+        public override BigInteger ToBigInteger()
+        {
+            return Nat320.ToBigInteger64(x);
+        }
+
+        public override string FieldName
+        {
+            get { return "SecT283Field"; }
+        }
+
+        public override int FieldSize
+        {
+            get { return 283; }
+        }
+
+        public override ECFieldElement Add(ECFieldElement b)
+        {
+            ulong[] z = Nat320.Create64();
+            SecT283Field.Add(x, ((SecT283FieldElement)b).x, z);
+            return new SecT283FieldElement(z);
+        }
+
+        public override ECFieldElement AddOne()
+        {
+            ulong[] z = Nat320.Create64();
+            SecT283Field.AddOne(x, z);
+            return new SecT283FieldElement(z);
+        }
+
+        public override ECFieldElement Subtract(ECFieldElement b)
+        {
+            // Addition and subtraction are the same in F2m
+            return Add(b);
+        }
+
+        public override ECFieldElement Multiply(ECFieldElement b)
+        {
+            ulong[] z = Nat320.Create64();
+            SecT283Field.Multiply(x, ((SecT283FieldElement)b).x, z);
+            return new SecT283FieldElement(z);
+        }
+
+        public override ECFieldElement MultiplyMinusProduct(ECFieldElement b, ECFieldElement x, ECFieldElement y)
+        {
+            return MultiplyPlusProduct(b, x, y);
+        }
+
+        public override ECFieldElement MultiplyPlusProduct(ECFieldElement b, ECFieldElement x, ECFieldElement y)
+        {
+            ulong[] ax = this.x, bx = ((SecT283FieldElement)b).x;
+            ulong[] xx = ((SecT283FieldElement)x).x, yx = ((SecT283FieldElement)y).x;
+
+            ulong[] tt = Nat.Create64(9);
+            SecT283Field.MultiplyAddToExt(ax, bx, tt);
+            SecT283Field.MultiplyAddToExt(xx, yx, tt);
+
+            ulong[] z = Nat320.Create64();
+            SecT283Field.Reduce(tt, z);
+            return new SecT283FieldElement(z);
+        }
+
+        public override ECFieldElement Divide(ECFieldElement b)
+        {
+            return Multiply(b.Invert());
+        }
+
+        public override ECFieldElement Negate()
+        {
+            return this;
+        }
+
+        public override ECFieldElement Square()
+        {
+            ulong[] z = Nat320.Create64();
+            SecT283Field.Square(x, z);
+            return new SecT283FieldElement(z);
+        }
+
+        public override ECFieldElement SquareMinusProduct(ECFieldElement x, ECFieldElement y)
+        {
+            return SquarePlusProduct(x, y);
+        }
+
+        public override ECFieldElement SquarePlusProduct(ECFieldElement x, ECFieldElement y)
+        {
+            ulong[] ax = this.x;
+            ulong[] xx = ((SecT283FieldElement)x).x, yx = ((SecT283FieldElement)y).x;
+
+            ulong[] tt = Nat.Create64(9);
+            SecT283Field.SquareAddToExt(ax, tt);
+            SecT283Field.MultiplyAddToExt(xx, yx, tt);
+
+            ulong[] z = Nat320.Create64();
+            SecT283Field.Reduce(tt, z);
+            return new SecT283FieldElement(z);
+        }
+
+        public override ECFieldElement SquarePow(int pow)
+        {
+            if (pow < 1)
+                return this;
+
+            ulong[] z = Nat320.Create64();
+            SecT283Field.SquareN(x, pow, z);
+            return new SecT283FieldElement(z);
+        }
+
+        public override ECFieldElement Invert()
+        {
+            return new SecT283FieldElement(
+                AbstractF2mCurve.Inverse(283, new int[] { 5, 7, 12 }, ToBigInteger()));
+        }
+
+        public override ECFieldElement Sqrt()
+        {
+            return SquarePow(M - 1);
+        }
+
+        public virtual int Representation
+        {
+            get { return F2mFieldElement.Ppb; }
+        }
+
+        public virtual int M
+        {
+            get { return 283; }
+        }
+
+        public virtual int K1
+        {
+            get { return 5; }
+        }
+
+        public virtual int K2
+        {
+            get { return 7; }
+        }
+
+        public virtual int K3
+        {
+            get { return 12; }
+        }
+
+        public override bool Equals(object obj)
+        {
+            return Equals(obj as SecT283FieldElement);
+        }
+
+        public override bool Equals(ECFieldElement other)
+        {
+            return Equals(other as SecT283FieldElement);
+        }
+
+        public virtual bool Equals(SecT283FieldElement other)
+        {
+            if (this == other)
+                return true;
+            if (null == other)
+                return false;
+            return Nat320.Eq64(x, other.x);
+        }
+
+        public override int GetHashCode()
+        {
+            return 2831275 ^ Arrays.GetHashCode(x, 0, 5);
+        }
+    }
+}
diff --git a/crypto/src/math/ec/custom/sec/SecT283K1Curve.cs b/crypto/src/math/ec/custom/sec/SecT283K1Curve.cs
new file mode 100644
index 000000000..42414401f
--- /dev/null
+++ b/crypto/src/math/ec/custom/sec/SecT283K1Curve.cs
@@ -0,0 +1,194 @@
+using System;
+
+using Org.BouncyCastle.Math.EC.Multiplier;
+using Org.BouncyCastle.Utilities.Encoders;
+
+namespace Org.BouncyCastle.Math.EC.Custom.Sec
+{
+    internal class SecT283K1Curve
+        : AbstractF2mCurve
+    {
+        private const int SecT283K1_DEFAULT_COORDS = COORD_LAMBDA_PROJECTIVE;
+
+        protected readonly SecT283K1Point m_infinity;
+
+        public SecT283K1Curve()
+            : base(283, 5, 7, 12)
+        {
+            this.m_infinity = new SecT283K1Point(this, null, null);
+
+            this.m_a = FromBigInteger(BigInteger.Zero);
+            this.m_b = FromBigInteger(BigInteger.One);
+            this.m_order = new BigInteger(1, Hex.Decode("01FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE9AE2ED07577265DFF7F94451E061E163C61"));
+            this.m_cofactor = BigInteger.ValueOf(4);
+
+            this.m_coord = SecT283K1_DEFAULT_COORDS;
+        }
+
+        protected override ECCurve CloneCurve()
+        {
+            return new SecT283K1Curve();
+        }
+
+        public override bool SupportsCoordinateSystem(int coord)
+        {
+            switch (coord)
+            {
+            case COORD_LAMBDA_PROJECTIVE:
+                return true;
+            default:
+                return false;
+            }
+        }
+
+        protected override ECMultiplier CreateDefaultMultiplier()
+        {
+            return new WTauNafMultiplier();
+        }
+
+        public override ECPoint Infinity
+        {
+            get { return m_infinity; }
+        }
+
+        public override int FieldSize
+        {
+            get { return 283; }
+        }
+
+        public override ECFieldElement FromBigInteger(BigInteger x)
+        {
+            return new SecT283FieldElement(x);
+        }
+
+        protected internal override ECPoint CreateRawPoint(ECFieldElement x, ECFieldElement y, bool withCompression)
+        {
+            return new SecT283K1Point(this, x, y, withCompression);
+        }
+
+        protected internal override ECPoint CreateRawPoint(ECFieldElement x, ECFieldElement y, ECFieldElement[] zs, bool withCompression)
+        {
+            return new SecT283K1Point(this, x, y, zs, withCompression);
+        }
+
+        public override bool IsKoblitz
+        {
+            get { return true; }
+        }
+
+        /**
+         * Decompresses a compressed point P = (xp, yp) (X9.62 s 4.2.2).
+         * 
+         * @param yTilde
+         *            ~yp, an indication bit for the decompression of yp.
+         * @param X1
+         *            The field element xp.
+         * @return the decompressed point.
+         */
+        protected override ECPoint DecompressPoint(int yTilde, BigInteger X1)
+        {
+            ECFieldElement x = FromBigInteger(X1), y = null;
+            if (x.IsZero)
+            {
+                y = B.Sqrt();
+            }
+            else
+            {
+                ECFieldElement beta = x.Square().Invert().Multiply(B).Add(A).Add(x);
+                ECFieldElement z = SolveQuadraticEquation(beta);
+                if (z != null)
+                {
+                    if (z.TestBitZero() != (yTilde == 1))
+                    {
+                        z = z.AddOne();
+                    }
+
+                    switch (this.CoordinateSystem)
+                    {
+                    case COORD_LAMBDA_AFFINE:
+                    case COORD_LAMBDA_PROJECTIVE:
+                    {
+                        y = z.Add(x);
+                        break;
+                    }
+                    default:
+                    {
+                        y = z.Multiply(x);
+                        break;
+                    }
+                    }
+                }
+            }
+
+            if (y == null)
+                throw new ArgumentException("Invalid point compression");
+
+            return this.CreateRawPoint(x, y, true);
+        }
+
+        /**
+         * Solves a quadratic equation <code>z<sup>2</sup> + z = beta</code>(X9.62
+         * D.1.6) The other solution is <code>z + 1</code>.
+         * 
+         * @param beta
+         *            The value to solve the quadratic equation for.
+         * @return the solution for <code>z<sup>2</sup> + z = beta</code> or
+         *         <code>null</code> if no solution exists.
+         */
+        private ECFieldElement SolveQuadraticEquation(ECFieldElement beta)
+        {
+            if (beta.IsZero)
+                return beta;
+
+            ECFieldElement zeroElement = FromBigInteger(BigInteger.Zero);
+
+            ECFieldElement z = null;
+            ECFieldElement gamma = null;
+
+            Random rand = new Random();
+            do
+            {
+                ECFieldElement t = FromBigInteger(new BigInteger(283, rand));
+                z = zeroElement;
+                ECFieldElement w = beta;
+                for (int i = 1; i < 283; i++)
+                {
+                    ECFieldElement w2 = w.Square();
+                    z = z.Square().Add(w2.Multiply(t));
+                    w = w2.Add(beta);
+                }
+                if (!w.IsZero)
+                    return null;
+                gamma = z.Square().Add(z);
+            }
+            while (gamma.IsZero);
+
+            return z;
+        }
+
+        public virtual int M
+        {
+            get { return 283; }
+        }
+
+        public virtual bool IsTrinomial
+        {
+            get { return false; }
+        }
+
+        public virtual int K1
+        {
+            get { return 5; }
+        }
+
+        public virtual int K2
+        {
+            get { return 7; }
+        }
+
+        public virtual int K3
+        {
+            get { return 12; }
+        }
+    }
+}
diff --git a/crypto/src/math/ec/custom/sec/SecT283K1Point.cs b/crypto/src/math/ec/custom/sec/SecT283K1Point.cs
new file mode 100644
index 000000000..f85706c63
--- /dev/null
+++ b/crypto/src/math/ec/custom/sec/SecT283K1Point.cs
@@ -0,0 +1,296 @@
+using System;
+
+namespace Org.BouncyCastle.Math.EC.Custom.Sec
+{
+    internal class SecT283K1Point
+        : AbstractF2mPoint
+    {
+        /**
+         * @deprecated Use ECCurve.createPoint to construct points
+         */
+        public SecT283K1Point(ECCurve curve, ECFieldElement x, ECFieldElement y)
+            : this(curve, x, y, false)
+        {
+        }
+
+        /**
+         * @deprecated per-point compression property will be removed, refer {@link #getEncoded(bool)}
+         */
+        public SecT283K1Point(ECCurve curve, ECFieldElement x, ECFieldElement y, bool withCompression)
+            : base(curve, x, y, withCompression)
+        {
+            if ((x == null) != (y == null))
+                throw new ArgumentException("Exactly one of the field elements is null");
+        }
+
+        internal SecT283K1Point(ECCurve curve, ECFieldElement x, ECFieldElement y, ECFieldElement[] zs, bool withCompression)
+            : base(curve, x, y, zs, withCompression)
+        {
+        }
+
+        protected override ECPoint Detach()
+        {
+            return new SecT283K1Point(null, this.AffineXCoord, this.AffineYCoord); // earlier JDK
+        }
+
+        public override ECFieldElement YCoord
+        {
+            get
+            {
+                ECFieldElement X = RawXCoord, L = RawYCoord;
+
+                if (this.IsInfinity || X.IsZero)
+                    return L;
+
+                // Y is actually Lambda (X + Y/X) here; convert to affine value on the fly
+                ECFieldElement Y = L.Add(X).Multiply(X);
+
+                ECFieldElement Z = RawZCoords[0];
+                if (!Z.IsOne)
+                {
+                    Y = Y.Divide(Z);
+                }
+
+                return Y;
+            }
+        }
+
+        protected internal override bool CompressionYTilde
+        {
+            get
+            {
+                ECFieldElement X = this.RawXCoord;
+                if (X.IsZero)
+                    return false;
+
+                ECFieldElement Y = this.RawYCoord;
+
+                // Y is actually Lambda (X + Y/X) here
+                return Y.TestBitZero() != X.TestBitZero();
+            }
+        }
+
+        public override ECPoint Add(ECPoint b)
+        {
+            if (this.IsInfinity)
+                return b;
+            if (b.IsInfinity)
+                return this;
+
+            ECCurve curve = this.Curve;
+
+            ECFieldElement X1 = this.RawXCoord;
+            ECFieldElement X2 = b.RawXCoord;
+
+            if (X1.IsZero)
+            {
+                if (X2.IsZero)
+                    return curve.Infinity;
+
+                return b.Add(this);
+            }
+
+            ECFieldElement L1 = this.RawYCoord, Z1 = this.RawZCoords[0];
+            ECFieldElement L2 = b.RawYCoord, Z2 = b.RawZCoords[0];
+
+            bool Z1IsOne = Z1.IsOne;
+            ECFieldElement U2 = X2, S2 = L2;
+            if (!Z1IsOne)
+            {
+                U2 = U2.Multiply(Z1);
+                S2 = S2.Multiply(Z1);
+            }
+
+            bool Z2IsOne = Z2.IsOne;
+            ECFieldElement U1 = X1, S1 = L1;
+            if (!Z2IsOne)
+            {
+                U1 = U1.Multiply(Z2);
+                S1 = S1.Multiply(Z2);
+            }
+
+            ECFieldElement A = S1.Add(S2);
+            ECFieldElement B = U1.Add(U2);
+
+            if (B.IsZero)
+            {
+                if (A.IsZero)
+                    return Twice();
+
+                return curve.Infinity;
+            }
+
+            ECFieldElement X3, L3, Z3;
+            if (X2.IsZero)
+            {
+                // TODO This can probably be optimized quite a bit
+                ECPoint p = this.Normalize();
+                X1 = p.XCoord;
+                ECFieldElement Y1 = p.YCoord;
+
+                ECFieldElement Y2 = L2;
+                ECFieldElement L = Y1.Add(Y2).Divide(X1);
+
+                //X3 = L.Square().Add(L).Add(X1).Add(curve.A);
+                X3 = L.Square().Add(L).Add(X1);
+                if (X3.IsZero)
+                {
+                    //return new SecT283K1Point(curve, X3, curve.B.sqrt(), IsCompressed);
+                    return new SecT283K1Point(curve, X3, curve.B, IsCompressed);
+                }
+
+                ECFieldElement Y3 = L.Multiply(X1.Add(X3)).Add(X3).Add(Y1);
+                L3 = Y3.Divide(X3).Add(X3);
+                Z3 = curve.FromBigInteger(BigInteger.One);
+            }
+            else
+            {
+                B = B.Square();
+
+                ECFieldElement AU1 = A.Multiply(U1);
+                ECFieldElement AU2 = A.Multiply(U2);
+
+                X3 = AU1.Multiply(AU2);
+                if (X3.IsZero)
+                {
+                    //return new SecT283K1Point(curve, X3, curve.B.sqrt(), IsCompressed);
+                    return new SecT283K1Point(curve, X3, curve.B, IsCompressed);
+                }
+
+                ECFieldElement ABZ2 = A.Multiply(B);
+                if (!Z2IsOne)
+                {
+                    ABZ2 = ABZ2.Multiply(Z2);
+                }
+
+                L3 = AU2.Add(B).SquarePlusProduct(ABZ2, L1.Add(Z1));
+
+                Z3 = ABZ2;
+                if (!Z1IsOne)
+                {
+                    Z3 = Z3.Multiply(Z1);
+                }
+            }
+
+            return new SecT283K1Point(curve, X3, L3, new ECFieldElement[] { Z3 }, IsCompressed);
+        }
+
+        public override ECPoint Twice()
+        {
+            if (this.IsInfinity)
+                return this;
+
+            ECCurve curve = this.Curve;
+
+            ECFieldElement X1 = this.RawXCoord;
+            if (X1.IsZero)
+            {
+                // A point with X == 0 is it's own Additive inverse
+                return curve.Infinity;
+            }
+
+            ECFieldElement L1 = this.RawYCoord, Z1 = this.RawZCoords[0];
+
+            bool Z1IsOne = Z1.IsOne;
+            ECFieldElement Z1Sq = Z1IsOne ? Z1 : Z1.Square();
+            ECFieldElement T;
+            if (Z1IsOne)
+            {
+                T = L1.Square().Add(L1);
+            }
+            else
+            {
+                T = L1.Add(Z1).Multiply(L1);
+            }
+
+            if (T.IsZero)
+            {
+                //return new SecT283K1Point(curve, T, curve.B.sqrt(), withCompression);
+                return new SecT283K1Point(curve, T, curve.B, IsCompressed);
+            }
+
+            ECFieldElement X3 = T.Square();
+            ECFieldElement Z3 = Z1IsOne ? T : T.Multiply(Z1Sq);
+
+            ECFieldElement t1 = L1.Add(X1).Square();
+            ECFieldElement t2 = Z1IsOne ? Z1 : Z1Sq.Square();
+            ECFieldElement L3 = t1.Add(T).Add(Z1Sq).Multiply(t1).Add(t2).Add(X3).Add(Z3);
+
+            return new SecT283K1Point(curve, X3, L3, new ECFieldElement[] { Z3 }, IsCompressed);
+        }
+
+        public override ECPoint TwicePlus(ECPoint b)
+        {
+            if (this.IsInfinity)
+                return b;
+            if (b.IsInfinity)
+                return Twice();
+
+            ECCurve curve = this.Curve;
+
+            ECFieldElement X1 = this.RawXCoord;
+            if (X1.IsZero)
+            {
+                // A point with X == 0 is it's own Additive inverse
+                return b;
+            }
+
+            // NOTE: TwicePlus() only optimized for lambda-affine argument
+            ECFieldElement X2 = b.RawXCoord, Z2 = b.RawZCoords[0];
+            if (X2.IsZero || !Z2.IsOne)
+            {
+                return Twice().Add(b);
+            }
+
+            ECFieldElement L1 = this.RawYCoord, Z1 = this.RawZCoords[0];
+            ECFieldElement L2 = b.RawYCoord;
+
+            ECFieldElement X1Sq = X1.Square();
+            ECFieldElement L1Sq = L1.Square();
+            ECFieldElement Z1Sq = Z1.Square();
+            ECFieldElement L1Z1 = L1.Multiply(Z1);
+
+            //ECFieldElement T = curve.A.Multiply(Z1Sq).Add(L1Sq).Add(L1Z1);
+            ECFieldElement T = L1Sq.Add(L1Z1);
+            ECFieldElement L2plus1 = L2.AddOne();
+            //ECFieldElement A = curve.A.Add(L2plus1).Multiply(Z1Sq).Add(L1Sq).MultiplyPlusProduct(T, X1Sq, Z1Sq);
+            ECFieldElement A = L2plus1.Multiply(Z1Sq).Add(L1Sq).MultiplyPlusProduct(T, X1Sq, Z1Sq);
+            ECFieldElement X2Z1Sq = X2.Multiply(Z1Sq);
+            ECFieldElement B = X2Z1Sq.Add(T).Square();
+
+            if (B.IsZero)
+            {
+                if (A.IsZero)
+                    return b.Twice();
+
+                return curve.Infinity;
+            }
+
+            if (A.IsZero)
+            {
+                //return new SecT283K1Point(curve, A, curve.B.sqrt(), withCompression);
+                return new SecT283K1Point(curve, A, curve.B, IsCompressed);
+            }
+
+            ECFieldElement X3 = A.Square().Multiply(X2Z1Sq);
+            ECFieldElement Z3 = A.Multiply(B).Multiply(Z1Sq);
+            ECFieldElement L3 = A.Add(B).Square().MultiplyPlusProduct(T, L2plus1, Z3);
+
+            return new SecT283K1Point(curve, X3, L3, new ECFieldElement[] { Z3 }, IsCompressed);
+        }
+
+        public override ECPoint Negate()
+        {
+            if (this.IsInfinity)
+                return this;
+
+            ECFieldElement X = this.RawXCoord;
+            if (X.IsZero)
+                return this;
+
+            // L is actually Lambda (X + Y/X) here
+            ECFieldElement L = this.RawYCoord, Z = this.RawZCoords[0];
+            return new SecT283K1Point(Curve, X, L.Add(Z), new ECFieldElement[] { Z }, IsCompressed);
+        }
+    }
+}
diff --git a/crypto/src/math/ec/custom/sec/SecT283R1Curve.cs b/crypto/src/math/ec/custom/sec/SecT283R1Curve.cs
new file mode 100644
index 000000000..d8c462eeb
--- /dev/null
+++ b/crypto/src/math/ec/custom/sec/SecT283R1Curve.cs
@@ -0,0 +1,188 @@
+using System;
+
+using Org.BouncyCastle.Utilities.Encoders;
+
+namespace Org.BouncyCastle.Math.EC.Custom.Sec
+{
+    internal class SecT283R1Curve
+        : AbstractF2mCurve
+    {
+        private const int SecT283R1_DEFAULT_COORDS = COORD_LAMBDA_PROJECTIVE;
+
+        protected readonly SecT283R1Point m_infinity;
+
+        public SecT283R1Curve()
+            : base(283, 5, 7, 12)
+        {
+            this.m_infinity = new SecT283R1Point(this, null, null);
+
+            this.m_a = FromBigInteger(BigInteger.One);
+            this.m_b = FromBigInteger(new BigInteger(1, Hex.Decode("027B680AC8B8596DA5A4AF8A19A0303FCA97FD7645309FA2A581485AF6263E313B79A2F5")));
+            this.m_order = new BigInteger(1, Hex.Decode("03FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEF90399660FC938A90165B042A7CEFADB307"));
+            this.m_cofactor = BigInteger.Two;
+
+            this.m_coord = SecT283R1_DEFAULT_COORDS;
+        }
+
+        protected override ECCurve CloneCurve()
+        {
+            return new SecT283R1Curve();
+        }
+
+        public override bool SupportsCoordinateSystem(int coord)
+        {
+            switch (coord)
+            {
+            case COORD_LAMBDA_PROJECTIVE:
+                return true;
+            default:
+                return false;
+            }
+        }
+
+        public override ECPoint Infinity
+        {
+            get { return m_infinity; }
+        }
+
+        public override int FieldSize
+        {
+            get { return 283; }
+        }
+
+        public override ECFieldElement FromBigInteger(BigInteger x)
+        {
+            return new SecT283FieldElement(x);
+        }
+
+        protected internal override ECPoint CreateRawPoint(ECFieldElement x, ECFieldElement y, bool withCompression)
+        {
+            return new SecT283R1Point(this, x, y, withCompression);
+        }
+
+        protected internal override ECPoint CreateRawPoint(ECFieldElement x, ECFieldElement y, ECFieldElement[] zs, bool withCompression)
+        {
+            return new SecT283R1Point(this, x, y, zs, withCompression);
+        }
+
+        public override bool IsKoblitz
+        {
+            get { return false; }
+        }
+
+        /**
+         * Decompresses a compressed point P = (xp, yp) (X9.62 s 4.2.2).
+         * 
+         * @param yTilde
+         *            ~yp, an indication bit for the decompression of yp.
+         * @param X1
+         *            The field element xp.
+         * @return the decompressed point.
+         */
+        protected override ECPoint DecompressPoint(int yTilde, BigInteger X1)
+        {
+            ECFieldElement x = FromBigInteger(X1), y = null;
+            if (x.IsZero)
+            {
+                y = B.Sqrt();
+            }
+            else
+            {
+                ECFieldElement beta = x.Square().Invert().Multiply(B).Add(A).Add(x);
+                ECFieldElement z = SolveQuadraticEquation(beta);
+                if (z != null)
+                {
+                    if (z.TestBitZero() != (yTilde == 1))
+                    {
+                        z = z.AddOne();
+                    }
+
+                    switch (this.CoordinateSystem)
+                    {
+                    case COORD_LAMBDA_AFFINE:
+                    case COORD_LAMBDA_PROJECTIVE:
+                    {
+                        y = z.Add(x);
+                        break;
+                    }
+                    default:
+                    {
+                        y = z.Multiply(x);
+                        break;
+                    }
+                    }
+                }
+            }
+
+            if (y == null)
+                throw new ArgumentException("Invalid point compression");
+
+            return this.CreateRawPoint(x, y, true);
+        }
+
+        /**
+         * Solves a quadratic equation <code>z<sup>2</sup> + z = beta</code>(X9.62
+         * D.1.6) The other solution is <code>z + 1</code>.
+         * 
+         * @param beta
+         *            The value to solve the quadratic equation for.
+         * @return the solution for <code>z<sup>2</sup> + z = beta</code> or
+         *         <code>null</code> if no solution exists.
+         */
+        private ECFieldElement SolveQuadraticEquation(ECFieldElement beta)
+        {
+            if (beta.IsZero)
+                return beta;
+
+            ECFieldElement zeroElement = FromBigInteger(BigInteger.Zero);
+
+            ECFieldElement z = null;
+            ECFieldElement gamma = null;
+
+            Random rand = new Random();
+            do
+            {
+                ECFieldElement t = FromBigInteger(new BigInteger(283, rand));
+                z = zeroElement;
+                ECFieldElement w = beta;
+                for (int i = 1; i < 283; i++)
+                {
+                    ECFieldElement w2 = w.Square();
+                    z = z.Square().Add(w2.Multiply(t));
+                    w = w2.Add(beta);
+                }
+                if (!w.IsZero)
+                    return null;
+                gamma = z.Square().Add(z);
+            }
+            while (gamma.IsZero);
+
+            return z;
+        }
+
+        public virtual int M
+        {
+            get { return 283; }
+        }
+
+        public virtual bool IsTrinomial
+        {
+            get { return false; }
+        }
+
+        public virtual int K1
+        {
+            get { return 5; }
+        }
+
+        public virtual int K2
+        {
+            get { return 7; }
+        }
+
+        public virtual int K3
+        {
+            get { return 12; }
+        }
+    }
+}
diff --git a/crypto/src/math/ec/custom/sec/SecT283R1Point.cs b/crypto/src/math/ec/custom/sec/SecT283R1Point.cs
new file mode 100644
index 000000000..340bbdae6
--- /dev/null
+++ b/crypto/src/math/ec/custom/sec/SecT283R1Point.cs
@@ -0,0 +1,282 @@
+using System;
+
+namespace Org.BouncyCastle.Math.EC.Custom.Sec
+{
+    internal class SecT283R1Point
+        : AbstractF2mPoint
+    {
+        /**
+         * @deprecated Use ECCurve.createPoint to construct points
+         */
+        public SecT283R1Point(ECCurve curve, ECFieldElement x, ECFieldElement y)
+            : this(curve, x, y, false)
+        {
+        }
+
+        /**
+         * @deprecated per-point compression property will be removed, refer {@link #getEncoded(bool)}
+         */
+        public SecT283R1Point(ECCurve curve, ECFieldElement x, ECFieldElement y, bool withCompression)
+            : base(curve, x, y, withCompression)
+        {
+            if ((x == null) != (y == null))
+                throw new ArgumentException("Exactly one of the field elements is null");
+        }
+
+        internal SecT283R1Point(ECCurve curve, ECFieldElement x, ECFieldElement y, ECFieldElement[] zs, bool withCompression)
+            : base(curve, x, y, zs, withCompression)
+        {
+        }
+
+        protected override ECPoint Detach()
+        {
+            return new SecT283R1Point(null, AffineXCoord, AffineYCoord);
+        }
+
+        public override ECFieldElement YCoord
+        {
+            get
+            {
+                ECFieldElement X = RawXCoord, L = RawYCoord;
+
+                if (this.IsInfinity || X.IsZero)
+                    return L;
+
+                // Y is actually Lambda (X + Y/X) here; convert to affine value on the fly
+                ECFieldElement Y = L.Add(X).Multiply(X);
+
+                ECFieldElement Z = RawZCoords[0];
+                if (!Z.IsOne)
+                {
+                    Y = Y.Divide(Z);
+                }
+
+                return Y;
+            }
+        }
+
+        protected internal override bool CompressionYTilde
+        {
+            get
+            {
+                ECFieldElement X = this.RawXCoord;
+                if (X.IsZero)
+                    return false;
+
+                ECFieldElement Y = this.RawYCoord;
+
+                // Y is actually Lambda (X + Y/X) here
+                return Y.TestBitZero() != X.TestBitZero();
+            }
+        }
+
+        public override ECPoint Add(ECPoint b)
+        {
+            if (this.IsInfinity)
+                return b;
+            if (b.IsInfinity)
+                return this;
+
+            ECCurve curve = this.Curve;
+
+            ECFieldElement X1 = this.RawXCoord;
+            ECFieldElement X2 = b.RawXCoord;
+
+            if (X1.IsZero)
+            {
+                if (X2.IsZero)
+                    return curve.Infinity;
+
+                return b.Add(this);
+            }
+
+            ECFieldElement L1 = this.RawYCoord, Z1 = this.RawZCoords[0];
+            ECFieldElement L2 = b.RawYCoord, Z2 = b.RawZCoords[0];
+
+            bool Z1IsOne = Z1.IsOne;
+            ECFieldElement U2 = X2, S2 = L2;
+            if (!Z1IsOne)
+            {
+                U2 = U2.Multiply(Z1);
+                S2 = S2.Multiply(Z1);
+            }
+
+            bool Z2IsOne = Z2.IsOne;
+            ECFieldElement U1 = X1, S1 = L1;
+            if (!Z2IsOne)
+            {
+                U1 = U1.Multiply(Z2);
+                S1 = S1.Multiply(Z2);
+            }
+
+            ECFieldElement A = S1.Add(S2);
+            ECFieldElement B = U1.Add(U2);
+
+            if (B.IsZero)
+            {
+                if (A.IsZero)
+                    return Twice();
+
+                return curve.Infinity;
+            }
+
+            ECFieldElement X3, L3, Z3;
+            if (X2.IsZero)
+            {
+                // TODO This can probably be optimized quite a bit
+                ECPoint p = this.Normalize();
+                X1 = p.XCoord;
+                ECFieldElement Y1 = p.YCoord;
+
+                ECFieldElement Y2 = L2;
+                ECFieldElement L = Y1.Add(Y2).Divide(X1);
+
+                //X3 = L.Square().Add(L).Add(X1).Add(curve.A);
+                X3 = L.Square().Add(L).Add(X1).AddOne();
+                if (X3.IsZero)
+                {
+                    return new SecT283R1Point(curve, X3, curve.B.Sqrt(), IsCompressed);
+                }
+
+                ECFieldElement Y3 = L.Multiply(X1.Add(X3)).Add(X3).Add(Y1);
+                L3 = Y3.Divide(X3).Add(X3);
+                Z3 = curve.FromBigInteger(BigInteger.One);
+            }
+            else
+            {
+                B = B.Square();
+
+                ECFieldElement AU1 = A.Multiply(U1);
+                ECFieldElement AU2 = A.Multiply(U2);
+
+                X3 = AU1.Multiply(AU2);
+                if (X3.IsZero)
+                {
+                    return new SecT283R1Point(curve, X3, curve.B.Sqrt(), IsCompressed);
+                }
+
+                ECFieldElement ABZ2 = A.Multiply(B);
+                if (!Z2IsOne)
+                {
+                    ABZ2 = ABZ2.Multiply(Z2);
+                }
+
+                L3 = AU2.Add(B).SquarePlusProduct(ABZ2, L1.Add(Z1));
+
+                Z3 = ABZ2;
+                if (!Z1IsOne)
+                {
+                    Z3 = Z3.Multiply(Z1);
+                }
+            }
+
+            return new SecT283R1Point(curve, X3, L3, new ECFieldElement[] { Z3 }, IsCompressed);
+        }
+
+        public override ECPoint Twice()
+        {
+            if (this.IsInfinity)
+                return this;
+
+            ECCurve curve = this.Curve;
+
+            ECFieldElement X1 = this.RawXCoord;
+            if (X1.IsZero)
+            {
+                // A point with X == 0 is it's own Additive inverse
+                return curve.Infinity;
+            }
+
+            ECFieldElement L1 = this.RawYCoord, Z1 = this.RawZCoords[0];
+
+            bool Z1IsOne = Z1.IsOne;
+            ECFieldElement L1Z1 = Z1IsOne ? L1 : L1.Multiply(Z1);
+            ECFieldElement Z1Sq = Z1IsOne ? Z1 : Z1.Square();
+            ECFieldElement T = L1.Square().Add(L1Z1).Add(Z1Sq);
+            if (T.IsZero)
+            {
+                return new SecT283R1Point(curve, T, curve.B.Sqrt(), IsCompressed);
+            }
+
+            ECFieldElement X3 = T.Square();
+            ECFieldElement Z3 = Z1IsOne ? T : T.Multiply(Z1Sq);
+
+            ECFieldElement X1Z1 = Z1IsOne ? X1 : X1.Multiply(Z1);
+            ECFieldElement L3 = X1Z1.SquarePlusProduct(T, L1Z1).Add(X3).Add(Z3);
+
+            return new SecT283R1Point(curve, X3, L3, new ECFieldElement[] { Z3 }, IsCompressed);
+        }
+
+        public override ECPoint TwicePlus(ECPoint b)
+        {
+            if (this.IsInfinity)
+                return b;
+            if (b.IsInfinity)
+                return Twice();
+
+            ECCurve curve = this.Curve;
+
+            ECFieldElement X1 = this.RawXCoord;
+            if (X1.IsZero)
+            {
+                // A point with X == 0 is it's own Additive inverse
+                return b;
+            }
+
+            ECFieldElement X2 = b.RawXCoord, Z2 = b.RawZCoords[0];
+            if (X2.IsZero || !Z2.IsOne)
+            {
+                return Twice().Add(b);
+            }
+
+            ECFieldElement L1 = this.RawYCoord, Z1 = this.RawZCoords[0];
+            ECFieldElement L2 = b.RawYCoord;
+
+            ECFieldElement X1Sq = X1.Square();
+            ECFieldElement L1Sq = L1.Square();
+            ECFieldElement Z1Sq = Z1.Square();
+            ECFieldElement L1Z1 = L1.Multiply(Z1);
+
+            //ECFieldElement T = curve.A.Multiply(Z1Sq).Add(L1Sq).Add(L1Z1);
+            ECFieldElement T = Z1Sq.Add(L1Sq).Add(L1Z1);
+            ECFieldElement L2plus1 = L2.AddOne();
+            //ECFieldElement A = curve.A.Add(L2plus1).Multiply(Z1Sq).Add(L1Sq).MultiplyPlusProduct(T, X1Sq, Z1Sq);
+            ECFieldElement A = L2.Multiply(Z1Sq).Add(L1Sq).MultiplyPlusProduct(T, X1Sq, Z1Sq);
+            ECFieldElement X2Z1Sq = X2.Multiply(Z1Sq);
+            ECFieldElement B = X2Z1Sq.Add(T).Square();
+
+            if (B.IsZero)
+            {
+                if (A.IsZero)
+                    return b.Twice();
+
+                return curve.Infinity;
+            }
+
+            if (A.IsZero)
+            {
+                return new SecT283R1Point(curve, A, curve.B.Sqrt(), IsCompressed);
+            }
+
+            ECFieldElement X3 = A.Square().Multiply(X2Z1Sq);
+            ECFieldElement Z3 = A.Multiply(B).Multiply(Z1Sq);
+            ECFieldElement L3 = A.Add(B).Square().MultiplyPlusProduct(T, L2plus1, Z3);
+
+            return new SecT283R1Point(curve, X3, L3, new ECFieldElement[] { Z3 }, IsCompressed);
+        }
+
+        public override ECPoint Negate()
+        {
+            if (this.IsInfinity)
+                return this;
+
+            ECFieldElement X = this.RawXCoord;
+            if (X.IsZero)
+                return this;
+
+            // L is actually Lambda (X + Y/X) here
+            ECFieldElement L = this.RawYCoord, Z = this.RawZCoords[0];
+            return new SecT283R1Point(Curve, X, L.Add(Z), new ECFieldElement[] { Z }, IsCompressed);
+        }
+    }
+}
diff --git a/crypto/src/math/ec/custom/sec/SecT409Field.cs b/crypto/src/math/ec/custom/sec/SecT409Field.cs
new file mode 100644
index 000000000..d71f5b5f9
--- /dev/null
+++ b/crypto/src/math/ec/custom/sec/SecT409Field.cs
@@ -0,0 +1,244 @@
+using System;
+using System.Diagnostics;
+
+using Org.BouncyCastle.Math.Raw;
+
+namespace Org.BouncyCastle.Math.EC.Custom.Sec
+{
+    internal class SecT409Field
+    {
+        private const ulong M25 = ulong.MaxValue >> 39;
+        private const ulong M59 = ulong.MaxValue >> 5;
+
+        public static void Add(ulong[] x, ulong[] y, ulong[] z)
+        {
+            z[0] = x[0] ^ y[0];
+            z[1] = x[1] ^ y[1];
+            z[2] = x[2] ^ y[2];
+            z[3] = x[3] ^ y[3];
+            z[4] = x[4] ^ y[4];
+            z[5] = x[5] ^ y[5];
+            z[6] = x[6] ^ y[6];
+        }
+
+        public static void AddExt(ulong[] xx, ulong[] yy, ulong[] zz)
+        {
+            for (int i = 0; i < 13; ++i)
+            {
+                zz[i] = xx[i] ^ yy[i]; 
+            }
+        }
+
+        public static void AddOne(ulong[] x, ulong[] z)
+        {
+            z[0] = x[0] ^ 1UL;
+            z[1] = x[1];
+            z[2] = x[2];
+            z[3] = x[3];
+            z[4] = x[4];
+            z[5] = x[5];
+            z[6] = x[6];
+        }
+
+        public static ulong[] FromBigInteger(BigInteger x)
+        {
+            ulong[] z = Nat448.FromBigInteger64(x);
+            Reduce39(z, 0);
+            return z;
+        }
+
+        public static void Multiply(ulong[] x, ulong[] y, ulong[] z)
+        {
+            ulong[] tt = Nat448.CreateExt64();
+            ImplMultiply(x, y, tt);
+            Reduce(tt, z);
+        }
+
+        public static void MultiplyAddToExt(ulong[] x, ulong[] y, ulong[] zz)
+        {
+            ulong[] tt = Nat448.CreateExt64();
+            ImplMultiply(x, y, tt);
+            AddExt(zz, tt, zz);
+        }
+
+        public static void Reduce(ulong[] xx, ulong[] z)
+        {
+            ulong x00 = xx[0], x01 = xx[1], x02 = xx[2], x03 = xx[3];
+            ulong x04 = xx[4], x05 = xx[5], x06 = xx[6], x07 = xx[7];
+
+            ulong u = xx[12];
+            x05 ^= (u << 39);
+            x06 ^= (u >> 25) ^ (u << 62);
+            x07 ^= (u >>  2);
+
+            u = xx[11];
+            x04 ^= (u << 39);
+            x05 ^= (u >> 25) ^ (u << 62);
+            x06 ^= (u >>  2);
+
+            u = xx[10];
+            x03 ^= (u << 39);
+            x04 ^= (u >> 25) ^ (u << 62);
+            x05 ^= (u >>  2);
+
+            u = xx[9];
+            x02 ^= (u << 39);
+            x03 ^= (u >> 25) ^ (u << 62);
+            x04 ^= (u >>  2);
+
+            u = xx[8];
+            x01 ^= (u << 39);
+            x02 ^= (u >> 25) ^ (u << 62);
+            x03 ^= (u >>  2);
+
+            u = x07;
+            x00 ^= (u << 39);
+            x01 ^= (u >> 25) ^ (u << 62);
+            x02 ^= (u >>  2);
+
+            ulong t = x06 >> 25;
+            z[0]    = x00 ^ t;
+            z[1]    = x01 ^ (t << 23);
+            z[2]    = x02;
+            z[3]    = x03;
+            z[4]    = x04;
+            z[5]    = x05;
+            z[6]    = x06 & M25;
+        }
+
+        public static void Reduce39(ulong[] z, int zOff)
+        {
+            ulong z6 = z[zOff + 6], t = z6 >> 25;
+            z[zOff    ] ^= t; 
+            z[zOff + 1] ^= (t << 23);
+            z[zOff + 6]  = z6 & M25;
+        }
+
+        public static void Square(ulong[] x, ulong[] z)
+        {
+            ulong[] tt = Nat.Create64(13);
+            ImplSquare(x, tt);
+            Reduce(tt, z);
+        }
+
+        public static void SquareAddToExt(ulong[] x, ulong[] zz)
+        {
+            ulong[] tt = Nat.Create64(13);
+            ImplSquare(x, tt);
+            AddExt(zz, tt, zz);
+        }
+
+        public static void SquareN(ulong[] x, int n, ulong[] z)
+        {
+            Debug.Assert(n > 0);
+
+            ulong[] tt = Nat.Create64(13);
+            ImplSquare(x, tt);
+            Reduce(tt, z);
+
+            while (--n > 0)
+            {
+                ImplSquare(z, tt);
+                Reduce(tt, z);
+            }
+        }
+
+        protected static void ImplCompactExt(ulong[] zz)
+        {
+            ulong z00 = zz[ 0], z01 = zz[ 1], z02 = zz[ 2], z03 = zz[ 3], z04 = zz[ 4], z05 = zz[ 5], z06 = zz[ 6];
+            ulong z07 = zz[ 7], z08 = zz[ 8], z09 = zz[ 9], z10 = zz[10], z11 = zz[11], z12 = zz[12], z13 = zz[13];
+            zz[ 0] =  z00        ^ (z01 << 59);
+            zz[ 1] = (z01 >>  5) ^ (z02 << 54);
+            zz[ 2] = (z02 >> 10) ^ (z03 << 49);
+            zz[ 3] = (z03 >> 15) ^ (z04 << 44);
+            zz[ 4] = (z04 >> 20) ^ (z05 << 39);
+            zz[ 5] = (z05 >> 25) ^ (z06 << 34);
+            zz[ 6] = (z06 >> 30) ^ (z07 << 29);
+            zz[ 7] = (z07 >> 35) ^ (z08 << 24);
+            zz[ 8] = (z08 >> 40) ^ (z09 << 19);
+            zz[ 9] = (z09 >> 45) ^ (z10 << 14);
+            zz[10] = (z10 >> 50) ^ (z11 <<  9);
+            zz[11] = (z11 >> 55) ^ (z12 <<  4)
+                                 ^ (z13 << 63);
+            zz[12] = (z12 >> 60)
+                   ^ (z13 >> 1);
+            zz[13] = 0;
+        }
+
+        protected static void ImplExpand(ulong[] x, ulong[] z)
+        {
+            ulong x0 = x[0], x1 = x[1], x2 = x[2], x3 = x[3], x4 = x[4], x5 = x[5], x6 = x[6];
+            z[0] = x0 & M59;
+            z[1] = ((x0 >> 59) ^ (x1 <<  5)) & M59;
+            z[2] = ((x1 >> 54) ^ (x2 << 10)) & M59;
+            z[3] = ((x2 >> 49) ^ (x3 << 15)) & M59;
+            z[4] = ((x3 >> 44) ^ (x4 << 20)) & M59;
+            z[5] = ((x4 >> 39) ^ (x5 << 25)) & M59;
+            z[6] = ((x5 >> 34) ^ (x6 << 30));
+        }
+
+        protected static void ImplMultiply(ulong[] x, ulong[] y, ulong[] zz)
+        {
+            ulong[] a = new ulong[7], b = new ulong[7];
+            ImplExpand(x, a);
+            ImplExpand(y, b);
+
+            for (int i = 0; i < 7; ++i)
+            {
+                ImplMulwAcc(a, b[i], zz, i);
+            }
+
+            ImplCompactExt(zz);
+        }
+
+        protected static void ImplMulwAcc(ulong[] xs, ulong y, ulong[] z, int zOff)
+        {
+            Debug.Assert(y >> 59 == 0);
+
+            ulong[] u = new ulong[8];
+    //      u[0] = 0;
+            u[1] = y;
+            u[2] = u[1] << 1;
+            u[3] = u[2] ^  y;
+            u[4] = u[2] << 1;
+            u[5] = u[4] ^  y;
+            u[6] = u[3] << 1;
+            u[7] = u[6] ^  y;
+
+            for (int i = 0; i < 7; ++i)
+            {
+                ulong x = xs[i];
+
+                Debug.Assert(x >> 59 == 0);
+
+                uint j = (uint)x;
+                ulong g, h = 0, l = u[j & 7]
+                                  ^ (u[(j >> 3) & 7] << 3);
+                int k = 54;
+                do
+                {
+                    j  = (uint)(x >> k);
+                    g  = u[j & 7]
+                       ^ u[(j >> 3) & 7] << 3;
+                    l ^= (g <<  k);
+                    h ^= (g >> -k);
+                }
+                while ((k -= 6) > 0);
+
+                Debug.Assert(h >> 53 == 0);
+
+                z[zOff + i    ] ^= l & M59;
+                z[zOff + i + 1] ^= (l >> 59) ^ (h << 5);
+            }
+        }
+
+        protected static void ImplSquare(ulong[] x, ulong[] zz)
+        {
+            for (int i = 0; i < 6; ++i)
+            {
+                Interleave.Expand64To128(x[i], zz, i << 1);
+            }
+            zz[12] = Interleave.Expand32to64((uint)x[6]);
+        }
+    }
+}
diff --git a/crypto/src/math/ec/custom/sec/SecT409FieldElement.cs b/crypto/src/math/ec/custom/sec/SecT409FieldElement.cs
new file mode 100644
index 000000000..6dabf6a7a
--- /dev/null
+++ b/crypto/src/math/ec/custom/sec/SecT409FieldElement.cs
@@ -0,0 +1,213 @@
+using System;
+
+using Org.BouncyCastle.Math.Raw;
+using Org.BouncyCastle.Utilities;
+
+namespace Org.BouncyCastle.Math.EC.Custom.Sec
+{
+    internal class SecT409FieldElement
+        : ECFieldElement
+    {
+        protected ulong[] x;
+
+        public SecT409FieldElement(BigInteger x)
+        {
+            if (x == null || x.SignValue < 0)
+                throw new ArgumentException("value invalid for SecT409FieldElement", "x");
+
+            this.x = SecT409Field.FromBigInteger(x);
+        }
+
+        public SecT409FieldElement()
+        {
+            this.x = Nat448.Create64();
+        }
+
+        protected internal SecT409FieldElement(ulong[] x)
+        {
+            this.x = x;
+        }
+
+        public override bool IsOne
+        {
+            get { return Nat448.IsOne64(x); }
+        }
+
+        public override bool IsZero
+        {
+            get { return Nat448.IsZero64(x); }
+        }
+
+        public override bool TestBitZero()
+        {
+            return (x[0] & 1UL) != 0UL;
+        }
+
+        public override BigInteger ToBigInteger()
+        {
+            return Nat448.ToBigInteger64(x);
+        }
+
+        public override string FieldName
+        {
+            get { return "SecT409Field"; }
+        }
+
+        public override int FieldSize
+        {
+            get { return 409; }
+        }
+
+        public override ECFieldElement Add(ECFieldElement b)
+        {
+            ulong[] z = Nat448.Create64();
+            SecT409Field.Add(x, ((SecT409FieldElement)b).x, z);
+            return new SecT409FieldElement(z);
+        }
+
+        public override ECFieldElement AddOne()
+        {
+            ulong[] z = Nat448.Create64();
+            SecT409Field.AddOne(x, z);
+            return new SecT409FieldElement(z);
+        }
+
+        public override ECFieldElement Subtract(ECFieldElement b)
+        {
+            // Addition and subtraction are the same in F2m
+            return Add(b);
+        }
+
+        public override ECFieldElement Multiply(ECFieldElement b)
+        {
+            ulong[] z = Nat448.Create64();
+            SecT409Field.Multiply(x, ((SecT409FieldElement)b).x, z);
+            return new SecT409FieldElement(z);
+        }
+
+        public override ECFieldElement MultiplyMinusProduct(ECFieldElement b, ECFieldElement x, ECFieldElement y)
+        {
+            return MultiplyPlusProduct(b, x, y);
+        }
+
+        public override ECFieldElement MultiplyPlusProduct(ECFieldElement b, ECFieldElement x, ECFieldElement y)
+        {
+            ulong[] ax = this.x, bx = ((SecT409FieldElement)b).x;
+            ulong[] xx = ((SecT409FieldElement)x).x, yx = ((SecT409FieldElement)y).x;
+
+            ulong[] tt = Nat.Create64(13);
+            SecT409Field.MultiplyAddToExt(ax, bx, tt);
+            SecT409Field.MultiplyAddToExt(xx, yx, tt);
+
+            ulong[] z = Nat448.Create64();
+            SecT409Field.Reduce(tt, z);
+            return new SecT409FieldElement(z);
+        }
+
+        public override ECFieldElement Divide(ECFieldElement b)
+        {
+            return Multiply(b.Invert());
+        }
+
+        public override ECFieldElement Negate()
+        {
+            return this;
+        }
+
+        public override ECFieldElement Square()
+        {
+            ulong[] z = Nat448.Create64();
+            SecT409Field.Square(x, z);
+            return new SecT409FieldElement(z);
+        }
+
+        public override ECFieldElement SquareMinusProduct(ECFieldElement x, ECFieldElement y)
+        {
+            return SquarePlusProduct(x, y);
+        }
+
+        public override ECFieldElement SquarePlusProduct(ECFieldElement x, ECFieldElement y)
+        {
+            ulong[] ax = this.x;
+            ulong[] xx = ((SecT409FieldElement)x).x, yx = ((SecT409FieldElement)y).x;
+
+            ulong[] tt = Nat.Create64(13);
+            SecT409Field.SquareAddToExt(ax, tt);
+            SecT409Field.MultiplyAddToExt(xx, yx, tt);
+
+            ulong[] z = Nat448.Create64();
+            SecT409Field.Reduce(tt, z);
+            return new SecT409FieldElement(z);
+        }
+
+        public override ECFieldElement SquarePow(int pow)
+        {
+            if (pow < 1)
+                return this;
+
+            ulong[] z = Nat448.Create64();
+            SecT409Field.SquareN(x, pow, z);
+            return new SecT409FieldElement(z);
+        }
+
+        public override ECFieldElement Invert()
+        {
+            return new SecT409FieldElement(
+                AbstractF2mCurve.Inverse(409, new int[] { 87 }, ToBigInteger()));
+        }
+
+        public override ECFieldElement Sqrt()
+        {
+            return SquarePow(M - 1);
+        }
+
+        public virtual int Representation
+        {
+            get { return F2mFieldElement.Tpb; }
+        }
+
+        public virtual int M
+        {
+            get { return 409; }
+        }
+
+        public virtual int K1
+        {
+            get { return 87; }
+        }
+
+        public virtual int K2
+        {
+            get { return 0; }
+        }
+
+        public virtual int K3
+        {
+            get { return 0; }
+        }
+
+        public override bool Equals(object obj)
+        {
+            return Equals(obj as SecT409FieldElement);
+        }
+
+        public override bool Equals(ECFieldElement other)
+        {
+            return Equals(other as SecT409FieldElement);
+        }
+
+        public virtual bool Equals(SecT409FieldElement other)
+        {
+            if (this == other)
+                return true;
+            if (null == other)
+                return false;
+            return Nat448.Eq64(x, other.x);
+        }
+
+        public override int GetHashCode()
+        {
+            return 4090087 ^ Arrays.GetHashCode(x, 0, 7);
+        }
+    }
+}
diff --git a/crypto/src/math/ec/custom/sec/SecT409K1Curve.cs b/crypto/src/math/ec/custom/sec/SecT409K1Curve.cs
new file mode 100644
index 000000000..edfe1a293
--- /dev/null
+++ b/crypto/src/math/ec/custom/sec/SecT409K1Curve.cs
@@ -0,0 +1,194 @@
+using System;
+
+using Org.BouncyCastle.Math.EC.Multiplier;
+using Org.BouncyCastle.Utilities.Encoders;
+
+namespace Org.BouncyCastle.Math.EC.Custom.Sec
+{
+    internal class SecT409K1Curve
+        : AbstractF2mCurve
+    {
+        private const int SecT409K1_DEFAULT_COORDS = COORD_LAMBDA_PROJECTIVE;
+
+        protected readonly SecT409K1Point m_infinity;
+
+        public SecT409K1Curve()
+            : base(409, 87, 0, 0)
+        {
+            this.m_infinity = new SecT409K1Point(this, null, null);
+
+            this.m_a = FromBigInteger(BigInteger.Zero);
+            this.m_b = FromBigInteger(BigInteger.One);
+            this.m_order = new BigInteger(1, Hex.Decode("7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE5F83B2D4EA20400EC4557D5ED3E3E7CA5B4B5C83B8E01E5FCF"));
+            this.m_cofactor = BigInteger.ValueOf(4);
+
+            this.m_coord = SecT409K1_DEFAULT_COORDS;
+        }
+
+        protected override ECCurve CloneCurve()
+        {
+            return new SecT409K1Curve();
+        }
+
+        public override bool SupportsCoordinateSystem(int coord)
+        {
+            switch (coord)
+            {
+            case COORD_LAMBDA_PROJECTIVE:
+                return true;
+            default:
+                return false;
+            }
+        }
+
+        protected override ECMultiplier CreateDefaultMultiplier()
+        {
+            return new WTauNafMultiplier();
+        }
+
+        public override ECPoint Infinity
+        {
+            get { return m_infinity; }
+        }
+
+        public override int FieldSize
+        {
+            get { return 409; }
+        }
+
+        public override ECFieldElement FromBigInteger(BigInteger x)
+        {
+            return new SecT409FieldElement(x);
+        }
+
+        protected internal override ECPoint CreateRawPoint(ECFieldElement x, ECFieldElement y, bool withCompression)
+        {
+            return new SecT409K1Point(this, x, y, withCompression);
+        }
+
+        protected internal override ECPoint CreateRawPoint(ECFieldElement x, ECFieldElement y, ECFieldElement[] zs, bool withCompression)
+        {
+            return new SecT409K1Point(this, x, y, zs, withCompression);
+        }
+
+        public override bool IsKoblitz
+        {
+            get { return true; }
+        }
+
+        /**
+         * Decompresses a compressed point P = (xp, yp) (X9.62 s 4.2.2).
+         * 
+         * @param yTilde
+         *            ~yp, an indication bit for the decompression of yp.
+         * @param X1
+         *            The field element xp.
+         * @return the decompressed point.
+         */
+        protected override ECPoint DecompressPoint(int yTilde, BigInteger X1)
+        {
+            ECFieldElement x = FromBigInteger(X1), y = null;
+            if (x.IsZero)
+            {
+                y = B.Sqrt();
+            }
+            else
+            {
+                ECFieldElement beta = x.Square().Invert().Multiply(B).Add(A).Add(x);
+                ECFieldElement z = SolveQuadraticEquation(beta);
+                if (z != null)
+                {
+                    if (z.TestBitZero() != (yTilde == 1))
+                    {
+                        z = z.AddOne();
+                    }
+
+                    switch (this.CoordinateSystem)
+                    {
+                    case COORD_LAMBDA_AFFINE:
+                    case COORD_LAMBDA_PROJECTIVE:
+                    {
+                        y = z.Add(x);
+                        break;
+                    }
+                    default:
+                    {
+                        y = z.Multiply(x);
+                        break;
+                    }
+                    }
+                }
+            }
+
+            if (y == null)
+                throw new ArgumentException("Invalid point compression");
+
+            return this.CreateRawPoint(x, y, true);
+        }
+
+        /**
+         * Solves a quadratic equation <code>z<sup>2</sup> + z = beta</code>(X9.62
+         * D.1.6) The other solution is <code>z + 1</code>.
+         * 
+         * @param beta
+         *            The value to solve the quadratic equation for.
+         * @return the solution for <code>z<sup>2</sup> + z = beta</code> or
+         *         <code>null</code> if no solution exists.
+         */
+        private ECFieldElement SolveQuadraticEquation(ECFieldElement beta)
+        {
+            if (beta.IsZero)
+                return beta;
+
+            ECFieldElement zeroElement = FromBigInteger(BigInteger.Zero);
+
+            ECFieldElement z = null;
+            ECFieldElement gamma = null;
+
+            Random rand = new Random();
+            do
+            {
+                ECFieldElement t = FromBigInteger(new BigInteger(409, rand));
+                z = zeroElement;
+                ECFieldElement w = beta;
+                for (int i = 1; i < 409; i++)
+                {
+                    ECFieldElement w2 = w.Square();
+                    z = z.Square().Add(w2.Multiply(t));
+                    w = w2.Add(beta);
+                }
+                if (!w.IsZero)
+                    return null;
+                gamma = z.Square().Add(z);
+            }
+            while (gamma.IsZero);
+
+            return z;
+        }
+
+        public virtual int M
+        {
+            get { return 409; }
+        }
+
+        public virtual bool IsTrinomial
+        {
+            get { return true; }
+        }
+
+        public virtual int K1
+        {
+            get { return 87; }
+        }
+
+        public virtual int K2
+        {
+            get { return 0; }
+        }
+
+        public virtual int K3
+        {
+            get { return 0; }
+        }
+    }
+}
diff --git a/crypto/src/math/ec/custom/sec/SecT409K1Point.cs b/crypto/src/math/ec/custom/sec/SecT409K1Point.cs
new file mode 100644
index 000000000..71adc7af2
--- /dev/null
+++ b/crypto/src/math/ec/custom/sec/SecT409K1Point.cs
@@ -0,0 +1,296 @@
+using System;
+
+namespace Org.BouncyCastle.Math.EC.Custom.Sec
+{
+    internal class SecT409K1Point
+        : AbstractF2mPoint
+    {
+        /**
+         * @deprecated Use ECCurve.createPoint to construct points
+         */
+        public SecT409K1Point(ECCurve curve, ECFieldElement x, ECFieldElement y)
+            : this(curve, x, y, false)
+        {
+        }
+
+        /**
+         * @deprecated per-point compression property will be removed, refer {@link #getEncoded(bool)}
+         */
+        public SecT409K1Point(ECCurve curve, ECFieldElement x, ECFieldElement y, bool withCompression)
+            : base(curve, x, y, withCompression)
+        {
+            if ((x == null) != (y == null))
+                throw new ArgumentException("Exactly one of the field elements is null");
+        }
+
+        internal SecT409K1Point(ECCurve curve, ECFieldElement x, ECFieldElement y, ECFieldElement[] zs, bool withCompression)
+            : base(curve, x, y, zs, withCompression)
+        {
+        }
+
+        protected override ECPoint Detach()
+        {
+            return new SecT409K1Point(null, this.AffineXCoord, this.AffineYCoord); // earlier JDK
+        }
+
+        public override ECFieldElement YCoord
+        {
+            get
+            {
+                ECFieldElement X = RawXCoord, L = RawYCoord;
+
+                if (this.IsInfinity || X.IsZero)
+                    return L;
+
+                // Y is actually Lambda (X + Y/X) here; convert to affine value on the fly
+                ECFieldElement Y = L.Add(X).Multiply(X);
+
+                ECFieldElement Z = RawZCoords[0];
+                if (!Z.IsOne)
+                {
+                    Y = Y.Divide(Z);
+                }
+
+                return Y;
+            }
+        }
+
+        protected internal override bool CompressionYTilde
+        {
+            get
+            {
+                ECFieldElement X = this.RawXCoord;
+                if (X.IsZero)
+                    return false;
+
+                ECFieldElement Y = this.RawYCoord;
+
+                // Y is actually Lambda (X + Y/X) here
+                return Y.TestBitZero() != X.TestBitZero();
+            }
+        }
+
+        public override ECPoint Add(ECPoint b)
+        {
+            if (this.IsInfinity)
+                return b;
+            if (b.IsInfinity)
+                return this;
+
+            ECCurve curve = this.Curve;
+
+            ECFieldElement X1 = this.RawXCoord;
+            ECFieldElement X2 = b.RawXCoord;
+
+            if (X1.IsZero)
+            {
+                if (X2.IsZero)
+                    return curve.Infinity;
+
+                return b.Add(this);
+            }
+
+            ECFieldElement L1 = this.RawYCoord, Z1 = this.RawZCoords[0];
+            ECFieldElement L2 = b.RawYCoord, Z2 = b.RawZCoords[0];
+
+            bool Z1IsOne = Z1.IsOne;
+            ECFieldElement U2 = X2, S2 = L2;
+            if (!Z1IsOne)
+            {
+                U2 = U2.Multiply(Z1);
+                S2 = S2.Multiply(Z1);
+            }
+
+            bool Z2IsOne = Z2.IsOne;
+            ECFieldElement U1 = X1, S1 = L1;
+            if (!Z2IsOne)
+            {
+                U1 = U1.Multiply(Z2);
+                S1 = S1.Multiply(Z2);
+            }
+
+            ECFieldElement A = S1.Add(S2);
+            ECFieldElement B = U1.Add(U2);
+
+            if (B.IsZero)
+            {
+                if (A.IsZero)
+                    return Twice();
+
+                return curve.Infinity;
+            }
+
+            ECFieldElement X3, L3, Z3;
+            if (X2.IsZero)
+            {
+                // TODO This can probably be optimized quite a bit
+                ECPoint p = this.Normalize();
+                X1 = p.XCoord;
+                ECFieldElement Y1 = p.YCoord;
+
+                ECFieldElement Y2 = L2;
+                ECFieldElement L = Y1.Add(Y2).Divide(X1);
+
+                //X3 = L.Square().Add(L).Add(X1).Add(curve.A);
+                X3 = L.Square().Add(L).Add(X1);
+                if (X3.IsZero)
+                {
+                    //return new SecT409K1Point(curve, X3, curve.B.sqrt(), IsCompressed);
+                    return new SecT409K1Point(curve, X3, curve.B, IsCompressed);
+                }
+
+                ECFieldElement Y3 = L.Multiply(X1.Add(X3)).Add(X3).Add(Y1);
+                L3 = Y3.Divide(X3).Add(X3);
+                Z3 = curve.FromBigInteger(BigInteger.One);
+            }
+            else
+            {
+                B = B.Square();
+
+                ECFieldElement AU1 = A.Multiply(U1);
+                ECFieldElement AU2 = A.Multiply(U2);
+
+                X3 = AU1.Multiply(AU2);
+                if (X3.IsZero)
+                {
+                    //return new SecT409K1Point(curve, X3, curve.B.sqrt(), IsCompressed);
+                    return new SecT409K1Point(curve, X3, curve.B, IsCompressed);
+                }
+
+                ECFieldElement ABZ2 = A.Multiply(B);
+                if (!Z2IsOne)
+                {
+                    ABZ2 = ABZ2.Multiply(Z2);
+                }
+
+                L3 = AU2.Add(B).SquarePlusProduct(ABZ2, L1.Add(Z1));
+
+                Z3 = ABZ2;
+                if (!Z1IsOne)
+                {
+                    Z3 = Z3.Multiply(Z1);
+                }
+            }
+
+            return new SecT409K1Point(curve, X3, L3, new ECFieldElement[] { Z3 }, IsCompressed);
+        }
+
+        public override ECPoint Twice()
+        {
+            if (this.IsInfinity)
+                return this;
+
+            ECCurve curve = this.Curve;
+
+            ECFieldElement X1 = this.RawXCoord;
+            if (X1.IsZero)
+            {
+                // A point with X == 0 is it's own Additive inverse
+                return curve.Infinity;
+            }
+
+            ECFieldElement L1 = this.RawYCoord, Z1 = this.RawZCoords[0];
+
+            bool Z1IsOne = Z1.IsOne;
+            ECFieldElement Z1Sq = Z1IsOne ? Z1 : Z1.Square();
+            ECFieldElement T;
+            if (Z1IsOne)
+            {
+                T = L1.Square().Add(L1);
+            }
+            else
+            {
+                T = L1.Add(Z1).Multiply(L1);
+            }
+
+            if (T.IsZero)
+            {
+                //return new SecT409K1Point(curve, T, curve.B.sqrt(), withCompression);
+                return new SecT409K1Point(curve, T, curve.B, IsCompressed);
+            }
+
+            ECFieldElement X3 = T.Square();
+            ECFieldElement Z3 = Z1IsOne ? T : T.Multiply(Z1Sq);
+
+            ECFieldElement t1 = L1.Add(X1).Square();
+            ECFieldElement t2 = Z1IsOne ? Z1 : Z1Sq.Square();
+            ECFieldElement L3 = t1.Add(T).Add(Z1Sq).Multiply(t1).Add(t2).Add(X3).Add(Z3);
+
+            return new SecT409K1Point(curve, X3, L3, new ECFieldElement[] { Z3 }, IsCompressed);
+        }
+
+        public override ECPoint TwicePlus(ECPoint b)
+        {
+            if (this.IsInfinity)
+                return b;
+            if (b.IsInfinity)
+                return Twice();
+
+            ECCurve curve = this.Curve;
+
+            ECFieldElement X1 = this.RawXCoord;
+            if (X1.IsZero)
+            {
+                // A point with X == 0 is it's own Additive inverse
+                return b;
+            }
+
+            // NOTE: TwicePlus() only optimized for lambda-affine argument
+            ECFieldElement X2 = b.RawXCoord, Z2 = b.RawZCoords[0];
+            if (X2.IsZero || !Z2.IsOne)
+            {
+                return Twice().Add(b);
+            }
+
+            ECFieldElement L1 = this.RawYCoord, Z1 = this.RawZCoords[0];
+            ECFieldElement L2 = b.RawYCoord;
+
+            ECFieldElement X1Sq = X1.Square();
+            ECFieldElement L1Sq = L1.Square();
+            ECFieldElement Z1Sq = Z1.Square();
+            ECFieldElement L1Z1 = L1.Multiply(Z1);
+
+            //ECFieldElement T = curve.A.Multiply(Z1Sq).Add(L1Sq).Add(L1Z1);
+            ECFieldElement T = L1Sq.Add(L1Z1);
+            ECFieldElement L2plus1 = L2.AddOne();
+            //ECFieldElement A = curve.A.Add(L2plus1).Multiply(Z1Sq).Add(L1Sq).MultiplyPlusProduct(T, X1Sq, Z1Sq);
+            ECFieldElement A = L2plus1.Multiply(Z1Sq).Add(L1Sq).MultiplyPlusProduct(T, X1Sq, Z1Sq);
+            ECFieldElement X2Z1Sq = X2.Multiply(Z1Sq);
+            ECFieldElement B = X2Z1Sq.Add(T).Square();
+
+            if (B.IsZero)
+            {
+                if (A.IsZero)
+                    return b.Twice();
+
+                return curve.Infinity;
+            }
+
+            if (A.IsZero)
+            {
+                //return new SecT409K1Point(curve, A, curve.B.sqrt(), withCompression);
+                return new SecT409K1Point(curve, A, curve.B, IsCompressed);
+            }
+
+            ECFieldElement X3 = A.Square().Multiply(X2Z1Sq);
+            ECFieldElement Z3 = A.Multiply(B).Multiply(Z1Sq);
+            ECFieldElement L3 = A.Add(B).Square().MultiplyPlusProduct(T, L2plus1, Z3);
+
+            return new SecT409K1Point(curve, X3, L3, new ECFieldElement[] { Z3 }, IsCompressed);
+        }
+
+        public override ECPoint Negate()
+        {
+            if (this.IsInfinity)
+                return this;
+
+            ECFieldElement X = this.RawXCoord;
+            if (X.IsZero)
+                return this;
+
+            // L is actually Lambda (X + Y/X) here
+            ECFieldElement L = this.RawYCoord, Z = this.RawZCoords[0];
+            return new SecT409K1Point(Curve, X, L.Add(Z), new ECFieldElement[] { Z }, IsCompressed);
+        }
+    }
+}
diff --git a/crypto/src/math/ec/custom/sec/SecT409R1Curve.cs b/crypto/src/math/ec/custom/sec/SecT409R1Curve.cs
new file mode 100644
index 000000000..e679094ad
--- /dev/null
+++ b/crypto/src/math/ec/custom/sec/SecT409R1Curve.cs
@@ -0,0 +1,188 @@
+using System;
+
+using Org.BouncyCastle.Utilities.Encoders;
+
+namespace Org.BouncyCastle.Math.EC.Custom.Sec
+{
+    internal class SecT409R1Curve
+        : AbstractF2mCurve
+    {
+        private const int SecT409R1_DEFAULT_COORDS = COORD_LAMBDA_PROJECTIVE;
+
+        protected readonly SecT409R1Point m_infinity;
+
+        public SecT409R1Curve()
+            : base(409, 87, 0, 0)
+        {
+            this.m_infinity = new SecT409R1Point(this, null, null);
+
+            this.m_a = FromBigInteger(BigInteger.One);
+            this.m_b = FromBigInteger(new BigInteger(1, Hex.Decode("0021A5C2C8EE9FEB5C4B9A753B7B476B7FD6422EF1F3DD674761FA99D6AC27C8A9A197B272822F6CD57A55AA4F50AE317B13545F")));
+            this.m_order = new BigInteger(1, Hex.Decode("010000000000000000000000000000000000000000000000000001E2AAD6A612F33307BE5FA47C3C9E052F838164CD37D9A21173"));
+            this.m_cofactor = BigInteger.Two;
+
+            this.m_coord = SecT409R1_DEFAULT_COORDS;
+        }
+
+        protected override ECCurve CloneCurve()
+        {
+            return new SecT409R1Curve();
+        }
+
+        public override bool SupportsCoordinateSystem(int coord)
+        {
+            switch (coord)
+            {
+            case COORD_LAMBDA_PROJECTIVE:
+                return true;
+            default:
+                return false;
+            }
+        }
+
+        public override ECPoint Infinity
+        {
+            get { return m_infinity; }
+        }
+
+        public override int FieldSize
+        {
+            get { return 409; }
+        }
+
+        public override ECFieldElement FromBigInteger(BigInteger x)
+        {
+            return new SecT409FieldElement(x);
+        }
+
+        protected internal override ECPoint CreateRawPoint(ECFieldElement x, ECFieldElement y, bool withCompression)
+        {
+            return new SecT409R1Point(this, x, y, withCompression);
+        }
+
+        protected internal override ECPoint CreateRawPoint(ECFieldElement x, ECFieldElement y, ECFieldElement[] zs, bool withCompression)
+        {
+            return new SecT409R1Point(this, x, y, zs, withCompression);
+        }
+
+        public override bool IsKoblitz
+        {
+            get { return false; }
+        }
+
+        /**
+         * Decompresses a compressed point P = (xp, yp) (X9.62 s 4.2.2).
+         * 
+         * @param yTilde
+         *            ~yp, an indication bit for the decompression of yp.
+         * @param X1
+         *            The field element xp.
+         * @return the decompressed point.
+         */
+        protected override ECPoint DecompressPoint(int yTilde, BigInteger X1)
+        {
+            ECFieldElement x = FromBigInteger(X1), y = null;
+            if (x.IsZero)
+            {
+                y = B.Sqrt();
+            }
+            else
+            {
+                ECFieldElement beta = x.Square().Invert().Multiply(B).Add(A).Add(x);
+                ECFieldElement z = SolveQuadraticEquation(beta);
+                if (z != null)
+                {
+                    if (z.TestBitZero() != (yTilde == 1))
+                    {
+                        z = z.AddOne();
+                    }
+
+                    switch (this.CoordinateSystem)
+                    {
+                    case COORD_LAMBDA_AFFINE:
+                    case COORD_LAMBDA_PROJECTIVE:
+                    {
+                        y = z.Add(x);
+                        break;
+                    }
+                    default:
+                    {
+                        y = z.Multiply(x);
+                        break;
+                    }
+                    }
+                }
+            }
+
+            if (y == null)
+                throw new ArgumentException("Invalid point compression");
+
+            return this.CreateRawPoint(x, y, true);
+        }
+
+        /**
+         * Solves a quadratic equation <code>z<sup>2</sup> + z = beta</code>(X9.62
+         * D.1.6) The other solution is <code>z + 1</code>.
+         * 
+         * @param beta
+         *            The value to solve the quadratic equation for.
+         * @return the solution for <code>z<sup>2</sup> + z = beta</code> or
+         *         <code>null</code> if no solution exists.
+         */
+        private ECFieldElement SolveQuadraticEquation(ECFieldElement beta)
+        {
+            if (beta.IsZero)
+                return beta;
+
+            ECFieldElement zeroElement = FromBigInteger(BigInteger.Zero);
+
+            ECFieldElement z = null;
+            ECFieldElement gamma = null;
+
+            Random rand = new Random();
+            do
+            {
+                ECFieldElement t = FromBigInteger(new BigInteger(409, rand));
+                z = zeroElement;
+                ECFieldElement w = beta;
+                for (int i = 1; i < 409; i++)
+                {
+                    ECFieldElement w2 = w.Square();
+                    z = z.Square().Add(w2.Multiply(t));
+                    w = w2.Add(beta);
+                }
+                if (!w.IsZero)
+                    return null;
+                gamma = z.Square().Add(z);
+            }
+            while (gamma.IsZero);
+
+            return z;
+        }
+
+        public virtual int M
+        {
+            get { return 409; }
+        }
+
+        public virtual bool IsTrinomial
+        {
+            get { return true; }
+        }
+
+        public virtual int K1
+        {
+            get { return 87; }
+        }
+
+        public virtual int K2
+        {
+            get { return 0; }
+        }
+
+        public virtual int K3
+        {
+            get { return 0; }
+        }
+    }
+}
diff --git a/crypto/src/math/ec/custom/sec/SecT409R1Point.cs b/crypto/src/math/ec/custom/sec/SecT409R1Point.cs
new file mode 100644
index 000000000..af69fe656
--- /dev/null
+++ b/crypto/src/math/ec/custom/sec/SecT409R1Point.cs
@@ -0,0 +1,282 @@
+using System;
+
+namespace Org.BouncyCastle.Math.EC.Custom.Sec
+{
+    internal class SecT409R1Point
+        : AbstractF2mPoint
+    {
+        /**
+         * @deprecated Use ECCurve.createPoint to construct points
+         */
+        public SecT409R1Point(ECCurve curve, ECFieldElement x, ECFieldElement y)
+            : this(curve, x, y, false)
+        {
+        }
+
+        /**
+         * @deprecated per-point compression property will be removed, refer {@link #getEncoded(bool)}
+         */
+        public SecT409R1Point(ECCurve curve, ECFieldElement x, ECFieldElement y, bool withCompression)
+            : base(curve, x, y, withCompression)
+        {
+            if ((x == null) != (y == null))
+                throw new ArgumentException("Exactly one of the field elements is null");
+        }
+
+        internal SecT409R1Point(ECCurve curve, ECFieldElement x, ECFieldElement y, ECFieldElement[] zs, bool withCompression)
+            : base(curve, x, y, zs, withCompression)
+        {
+        }
+
+        protected override ECPoint Detach()
+        {
+            return new SecT409R1Point(null, AffineXCoord, AffineYCoord);
+        }
+
+        public override ECFieldElement YCoord
+        {
+            get
+            {
+                ECFieldElement X = RawXCoord, L = RawYCoord;
+
+                if (this.IsInfinity || X.IsZero)
+                    return L;
+
+                // Y is actually Lambda (X + Y/X) here; convert to affine value on the fly
+                ECFieldElement Y = L.Add(X).Multiply(X);
+
+                ECFieldElement Z = RawZCoords[0];
+                if (!Z.IsOne)
+                {
+                    Y = Y.Divide(Z);
+                }
+
+                return Y;
+            }
+        }
+
+        protected internal override bool CompressionYTilde
+        {
+            get
+            {
+                ECFieldElement X = this.RawXCoord;
+                if (X.IsZero)
+                    return false;
+
+                ECFieldElement Y = this.RawYCoord;
+
+                // Y is actually Lambda (X + Y/X) here
+                return Y.TestBitZero() != X.TestBitZero();
+            }
+        }
+
+        public override ECPoint Add(ECPoint b)
+        {
+            if (this.IsInfinity)
+                return b;
+            if (b.IsInfinity)
+                return this;
+
+            ECCurve curve = this.Curve;
+
+            ECFieldElement X1 = this.RawXCoord;
+            ECFieldElement X2 = b.RawXCoord;
+
+            if (X1.IsZero)
+            {
+                if (X2.IsZero)
+                    return curve.Infinity;
+
+                return b.Add(this);
+            }
+
+            ECFieldElement L1 = this.RawYCoord, Z1 = this.RawZCoords[0];
+            ECFieldElement L2 = b.RawYCoord, Z2 = b.RawZCoords[0];
+
+            bool Z1IsOne = Z1.IsOne;
+            ECFieldElement U2 = X2, S2 = L2;
+            if (!Z1IsOne)
+            {
+                U2 = U2.Multiply(Z1);
+                S2 = S2.Multiply(Z1);
+            }
+
+            bool Z2IsOne = Z2.IsOne;
+            ECFieldElement U1 = X1, S1 = L1;
+            if (!Z2IsOne)
+            {
+                U1 = U1.Multiply(Z2);
+                S1 = S1.Multiply(Z2);
+            }
+
+            ECFieldElement A = S1.Add(S2);
+            ECFieldElement B = U1.Add(U2);
+
+            if (B.IsZero)
+            {
+                if (A.IsZero)
+                    return Twice();
+
+                return curve.Infinity;
+            }
+
+            ECFieldElement X3, L3, Z3;
+            if (X2.IsZero)
+            {
+                // TODO This can probably be optimized quite a bit
+                ECPoint p = this.Normalize();
+                X1 = p.XCoord;
+                ECFieldElement Y1 = p.YCoord;
+
+                ECFieldElement Y2 = L2;
+                ECFieldElement L = Y1.Add(Y2).Divide(X1);
+
+                //X3 = L.Square().Add(L).Add(X1).Add(curve.A);
+                X3 = L.Square().Add(L).Add(X1).AddOne();
+                if (X3.IsZero)
+                {
+                    return new SecT409R1Point(curve, X3, curve.B.Sqrt(), IsCompressed);
+                }
+
+                ECFieldElement Y3 = L.Multiply(X1.Add(X3)).Add(X3).Add(Y1);
+                L3 = Y3.Divide(X3).Add(X3);
+                Z3 = curve.FromBigInteger(BigInteger.One);
+            }
+            else
+            {
+                B = B.Square();
+
+                ECFieldElement AU1 = A.Multiply(U1);
+                ECFieldElement AU2 = A.Multiply(U2);
+
+                X3 = AU1.Multiply(AU2);
+                if (X3.IsZero)
+                {
+                    return new SecT409R1Point(curve, X3, curve.B.Sqrt(), IsCompressed);
+                }
+
+                ECFieldElement ABZ2 = A.Multiply(B);
+                if (!Z2IsOne)
+                {
+                    ABZ2 = ABZ2.Multiply(Z2);
+                }
+
+                L3 = AU2.Add(B).SquarePlusProduct(ABZ2, L1.Add(Z1));
+
+                Z3 = ABZ2;
+                if (!Z1IsOne)
+                {
+                    Z3 = Z3.Multiply(Z1);
+                }
+            }
+
+            return new SecT409R1Point(curve, X3, L3, new ECFieldElement[] { Z3 }, IsCompressed);
+        }
+
+        public override ECPoint Twice()
+        {
+            if (this.IsInfinity)
+                return this;
+
+            ECCurve curve = this.Curve;
+
+            ECFieldElement X1 = this.RawXCoord;
+            if (X1.IsZero)
+            {
+                // A point with X == 0 is it's own Additive inverse
+                return curve.Infinity;
+            }
+
+            ECFieldElement L1 = this.RawYCoord, Z1 = this.RawZCoords[0];
+
+            bool Z1IsOne = Z1.IsOne;
+            ECFieldElement L1Z1 = Z1IsOne ? L1 : L1.Multiply(Z1);
+            ECFieldElement Z1Sq = Z1IsOne ? Z1 : Z1.Square();
+            ECFieldElement T = L1.Square().Add(L1Z1).Add(Z1Sq);
+            if (T.IsZero)
+            {
+                return new SecT409R1Point(curve, T, curve.B.Sqrt(), IsCompressed);
+            }
+
+            ECFieldElement X3 = T.Square();
+            ECFieldElement Z3 = Z1IsOne ? T : T.Multiply(Z1Sq);
+
+            ECFieldElement X1Z1 = Z1IsOne ? X1 : X1.Multiply(Z1);
+            ECFieldElement L3 = X1Z1.SquarePlusProduct(T, L1Z1).Add(X3).Add(Z3);
+
+            return new SecT409R1Point(curve, X3, L3, new ECFieldElement[] { Z3 }, IsCompressed);
+        }
+
+        public override ECPoint TwicePlus(ECPoint b)
+        {
+            if (this.IsInfinity)
+                return b;
+            if (b.IsInfinity)
+                return Twice();
+
+            ECCurve curve = this.Curve;
+
+            ECFieldElement X1 = this.RawXCoord;
+            if (X1.IsZero)
+            {
+                // A point with X == 0 is it's own Additive inverse
+                return b;
+            }
+
+            ECFieldElement X2 = b.RawXCoord, Z2 = b.RawZCoords[0];
+            if (X2.IsZero || !Z2.IsOne)
+            {
+                return Twice().Add(b);
+            }
+
+            ECFieldElement L1 = this.RawYCoord, Z1 = this.RawZCoords[0];
+            ECFieldElement L2 = b.RawYCoord;
+
+            ECFieldElement X1Sq = X1.Square();
+            ECFieldElement L1Sq = L1.Square();
+            ECFieldElement Z1Sq = Z1.Square();
+            ECFieldElement L1Z1 = L1.Multiply(Z1);
+
+            //ECFieldElement T = curve.A.Multiply(Z1Sq).Add(L1Sq).Add(L1Z1);
+            ECFieldElement T = Z1Sq.Add(L1Sq).Add(L1Z1);
+            ECFieldElement L2plus1 = L2.AddOne();
+            //ECFieldElement A = curve.A.Add(L2plus1).Multiply(Z1Sq).Add(L1Sq).MultiplyPlusProduct(T, X1Sq, Z1Sq);
+            ECFieldElement A = L2.Multiply(Z1Sq).Add(L1Sq).MultiplyPlusProduct(T, X1Sq, Z1Sq);
+            ECFieldElement X2Z1Sq = X2.Multiply(Z1Sq);
+            ECFieldElement B = X2Z1Sq.Add(T).Square();
+
+            if (B.IsZero)
+            {
+                if (A.IsZero)
+                    return b.Twice();
+
+                return curve.Infinity;
+            }
+
+            if (A.IsZero)
+            {
+                return new SecT409R1Point(curve, A, curve.B.Sqrt(), IsCompressed);
+            }
+
+            ECFieldElement X3 = A.Square().Multiply(X2Z1Sq);
+            ECFieldElement Z3 = A.Multiply(B).Multiply(Z1Sq);
+            ECFieldElement L3 = A.Add(B).Square().MultiplyPlusProduct(T, L2plus1, Z3);
+
+            return new SecT409R1Point(curve, X3, L3, new ECFieldElement[] { Z3 }, IsCompressed);
+        }
+
+        public override ECPoint Negate()
+        {
+            if (this.IsInfinity)
+                return this;
+
+            ECFieldElement X = this.RawXCoord;
+            if (X.IsZero)
+                return this;
+
+            // L is actually Lambda (X + Y/X) here
+            ECFieldElement L = this.RawYCoord, Z = this.RawZCoords[0];
+            return new SecT409R1Point(Curve, X, L.Add(Z), new ECFieldElement[] { Z }, IsCompressed);
+        }
+    }
+}
diff --git a/crypto/src/math/ec/custom/sec/SecT571Field.cs b/crypto/src/math/ec/custom/sec/SecT571Field.cs
new file mode 100644
index 000000000..0711ee4aa
--- /dev/null
+++ b/crypto/src/math/ec/custom/sec/SecT571Field.cs
@@ -0,0 +1,251 @@
+using System;
+using System.Diagnostics;
+
+using Org.BouncyCastle.Math.Raw;
+
+namespace Org.BouncyCastle.Math.EC.Custom.Sec
+{
+    internal class SecT571Field
+    {
+        private const ulong M59 = ulong.MaxValue >> 5;
+
+        private const ulong RM = 0xEF7BDEF7BDEF7BDEUL;
+
+        public static void Add(ulong[] x, ulong[] y, ulong[] z)
+        {
+            for (int i = 0; i < 9; ++i)
+            {
+                z[i] = x[i] ^ y[i]; 
+            }
+        }
+
+        private static void Add(ulong[] x, int xOff, ulong[] y, int yOff, ulong[] z, int zOff)
+        {
+            for (int i = 0; i < 9; ++i)
+            {
+                z[zOff + i] = x[xOff + i] ^ y[yOff + i];
+            }
+        }
+
+        private static void AddBothTo(ulong[] x, int xOff, ulong[] y, int yOff, ulong[] z, int zOff)
+        {
+            for (int i = 0; i < 9; ++i)
+            {
+                z[zOff + i] ^= x[xOff + i] ^ y[yOff + i];
+            }
+        }
+
+        public static void AddExt(ulong[] xx, ulong[] yy, ulong[] zz)
+        {
+            for (int i = 0; i < 18; ++i)
+            {
+                zz[i] = xx[i] ^ yy[i]; 
+            }
+        }
+
+        public static void AddOne(ulong[] x, ulong[] z)
+        {
+            z[0] = x[0] ^ 1UL;
+            for (int i = 1; i < 9; ++i)
+            {
+                z[i] = x[i];
+            }
+        }
+
+        public static ulong[] FromBigInteger(BigInteger x)
+        {
+            ulong[] z = Nat576.FromBigInteger64(x);
+            Reduce5(z, 0);
+            return z;
+        }
+
+        public static void Multiply(ulong[] x, ulong[] y, ulong[] z)
+        {
+            ulong[] tt = Nat576.CreateExt64();
+            ImplMultiply(x, y, tt);
+            Reduce(tt, z);
+        }
+
+        public static void MultiplyAddToExt(ulong[] x, ulong[] y, ulong[] zz)
+        {
+            ulong[] tt = Nat576.CreateExt64();
+            ImplMultiply(x, y, tt);
+            AddExt(zz, tt, zz);
+        }
+
+        public static void Reduce(ulong[] xx, ulong[] z)
+        {
+            ulong xx09 = xx[9];
+            ulong u = xx[17], v = xx09;
+
+            xx09  = v ^ (u >> 59) ^ (u >> 57) ^ (u >> 54) ^ (u >> 49);
+            v = xx[8] ^ (u <<  5) ^ (u <<  7) ^ (u << 10) ^ (u << 15);
+
+            for (int i = 16; i >= 10; --i)
+            {
+                u = xx[i];
+                z[i - 8]  = v ^ (u >> 59) ^ (u >> 57) ^ (u >> 54) ^ (u >> 49);
+                v = xx[i - 9] ^ (u <<  5) ^ (u <<  7) ^ (u << 10) ^ (u << 15);
+            }
+
+            u = xx09;
+            z[1]  = v ^ (u >> 59) ^ (u >> 57) ^ (u >> 54) ^ (u >> 49);
+            v = xx[0] ^ (u <<  5) ^ (u <<  7) ^ (u << 10) ^ (u << 15);
+
+            ulong x08 = z[8];
+            ulong t   = x08 >> 59;
+            z[0]      = v ^ t ^ (t << 2) ^ (t << 5) ^ (t << 10);
+            z[8]      = x08 & M59;
+        }
+
+        public static void Reduce5(ulong[] z, int zOff)
+        {
+            ulong z8     = z[zOff + 8], t = z8 >> 59;
+            z[zOff    ] ^= t ^ (t << 2) ^ (t << 5) ^ (t << 10);
+            z[zOff + 8]  = z8 & M59;
+        }
+
+        public static void Square(ulong[] x, ulong[] z)
+        {
+            ulong[] tt = Nat576.CreateExt64();
+            ImplSquare(x, tt);
+            Reduce(tt, z);
+        }
+
+        public static void SquareAddToExt(ulong[] x, ulong[] zz)
+        {
+            ulong[] tt = Nat576.CreateExt64();
+            ImplSquare(x, tt);
+            AddExt(zz, tt, zz);
+        }
+
+        public static void SquareN(ulong[] x, int n, ulong[] z)
+        {
+            Debug.Assert(n > 0);
+
+            ulong[] tt = Nat576.CreateExt64();
+            ImplSquare(x, tt);
+            Reduce(tt, z);
+
+            while (--n > 0)
+            {
+                ImplSquare(z, tt);
+                Reduce(tt, z);
+            }
+        }
+
+        protected static void ImplMultiply(ulong[] x, ulong[] y, ulong[] zz)
+        {
+            //for (int i = 0; i < 9; ++i)
+            //{
+            //    ImplMulwAcc(x, y[i], zz, i);
+            //}
+
+            /*
+             * Precompute table of all 4-bit products of y
+             */
+            ulong[] T0 = new ulong[9 << 4];
+            Array.Copy(y, 0, T0, 9, 9);
+    //        Reduce5(T0, 9);
+            int tOff = 0;
+            for (int i = 7; i > 0; --i)
+            {
+                tOff += 18;
+                Nat.ShiftUpBit64(9, T0, tOff >> 1, 0UL, T0, tOff);
+                Reduce5(T0, tOff);
+                Add(T0, 9, T0, tOff, T0, tOff + 9);
+            }
+
+            /*
+             * Second table with all 4-bit products of B shifted 4 bits
+             */
+            ulong[] T1 = new ulong[T0.Length];
+            Nat.ShiftUpBits64(T0.Length, T0, 0, 4, 0L, T1, 0);
+
+            uint MASK = 0xF;
+
+            /*
+             * Lopez-Dahab algorithm
+             */
+
+            for (int k = 56; k >= 0; k -= 8)
+            {
+                for (int j = 1; j < 9; j += 2)
+                {
+                    uint aVal = (uint)(x[j] >> k);
+                    uint u = aVal & MASK;
+                    uint v = (aVal >> 4) & MASK;
+                    AddBothTo(T0, (int)(9 * u), T1, (int)(9 * v), zz, j - 1);
+                }
+                Nat.ShiftUpBits64(16, zz, 0, 8, 0L);
+            }
+
+            for (int k = 56; k >= 0; k -= 8)
+            {
+                for (int j = 0; j < 9; j += 2)
+                {
+                    uint aVal = (uint)(x[j] >> k);
+                    uint u = aVal & MASK;
+                    uint v = (aVal >> 4) & MASK;
+                    AddBothTo(T0, (int)(9 * u), T1, (int)(9 * v), zz, j);
+                }
+                if (k > 0)
+                {
+                    Nat.ShiftUpBits64(18, zz, 0, 8, 0L);
+                }
+            }
+        }
+
+        protected static void ImplMulwAcc(ulong[] xs, ulong y, ulong[] z, int zOff)
+        {
+            ulong[] u = new ulong[32];
+    //      u[0] = 0;
+            u[1] = y;
+            for (int i = 2; i < 32; i += 2)
+            {
+                u[i    ] = u[i >> 1] << 1;
+                u[i + 1] = u[i     ] ^  y;
+            }
+
+            ulong l = 0;
+            for (int i = 0; i < 9; ++i)
+            {
+                ulong x = xs[i];
+
+                uint j = (uint)x;
+
+                l ^= u[j & 31];
+
+                ulong g, h = 0;
+                int k = 60;
+                do
+                {
+                    j  = (uint)(x >> k);
+                    g  = u[j & 31];
+                    l ^= (g <<  k);
+                    h ^= (g >> -k);
+                }
+                while ((k -= 5) > 0);
+
+                for (int p = 0; p < 4; ++p)
+                {
+                    x = (x & RM) >> 1;
+                    h ^= x & (ulong)(((long)y << p) >> 63);
+                }
+
+                z[zOff + i] ^= l;
+
+                l = h;
+            }
+            z[zOff + 9] ^= l;
+        }
+
+        protected static void ImplSquare(ulong[] x, ulong[] zz)
+        {
+            for (int i = 0; i < 9; ++i)
+            {
+                Interleave.Expand64To128(x[i], zz, i << 1);
+            }
+        }
+    }
+}
diff --git a/crypto/src/math/ec/custom/sec/SecT571FieldElement.cs b/crypto/src/math/ec/custom/sec/SecT571FieldElement.cs
new file mode 100644
index 000000000..8474c912e
--- /dev/null
+++ b/crypto/src/math/ec/custom/sec/SecT571FieldElement.cs
@@ -0,0 +1,213 @@
+using System;
+
+using Org.BouncyCastle.Math.Raw;
+using Org.BouncyCastle.Utilities;
+
+namespace Org.BouncyCastle.Math.EC.Custom.Sec
+{
+    internal class SecT571FieldElement
+        : ECFieldElement
+    {
+        protected readonly ulong[] x;
+
+        public SecT571FieldElement(BigInteger x)
+        {
+            if (x == null || x.SignValue < 0)
+                throw new ArgumentException("value invalid for SecT571FieldElement", "x");
+
+            this.x = SecT571Field.FromBigInteger(x);
+        }
+
+        public SecT571FieldElement()
+        {
+            this.x = Nat576.Create64();
+        }
+
+        protected internal SecT571FieldElement(ulong[] x)
+        {
+            this.x = x;
+        }
+
+        public override bool IsOne
+        {
+            get { return Nat576.IsOne64(x); }
+        }
+
+        public override bool IsZero
+        {
+            get { return Nat576.IsZero64(x); }
+        }
+
+        public override bool TestBitZero()
+        {
+            return (x[0] & 1UL) != 0UL;
+        }
+
+        public override BigInteger ToBigInteger()
+        {
+            return Nat576.ToBigInteger64(x);
+        }
+
+        public override String FieldName
+        {
+            get { return "SecT571Field"; }
+        }
+
+        public override int FieldSize
+        {
+            get { return 571; }
+        }
+
+        public override ECFieldElement Add(ECFieldElement b)
+        {
+            ulong[] z = Nat576.Create64();
+            SecT571Field.Add(x, ((SecT571FieldElement)b).x, z);
+            return new SecT571FieldElement(z);
+        }
+
+        public override ECFieldElement AddOne()
+        {
+            ulong[] z = Nat576.Create64();
+            SecT571Field.AddOne(x, z);
+            return new SecT571FieldElement(z);
+        }
+
+        public override ECFieldElement Subtract(ECFieldElement b)
+        {
+            // Addition and subtraction are the same in F2m
+            return Add(b);
+        }
+
+        public override ECFieldElement Multiply(ECFieldElement b)
+        {
+            ulong[] z = Nat576.Create64();
+            SecT571Field.Multiply(x, ((SecT571FieldElement)b).x, z);
+            return new SecT571FieldElement(z);
+        }
+
+        public override ECFieldElement MultiplyMinusProduct(ECFieldElement b, ECFieldElement x, ECFieldElement y)
+        {
+            return MultiplyPlusProduct(b, x, y);
+        }
+
+        public override ECFieldElement MultiplyPlusProduct(ECFieldElement b, ECFieldElement x, ECFieldElement y)
+        {
+            ulong[] ax = this.x, bx = ((SecT571FieldElement)b).x;
+            ulong[] xx = ((SecT571FieldElement)x).x, yx = ((SecT571FieldElement)y).x;
+
+            ulong[] tt = Nat576.CreateExt64();
+            SecT571Field.MultiplyAddToExt(ax, bx, tt);
+            SecT571Field.MultiplyAddToExt(xx, yx, tt);
+
+            ulong[] z = Nat576.Create64();
+            SecT571Field.Reduce(tt, z);
+            return new SecT571FieldElement(z);
+        }
+
+        public override ECFieldElement Divide(ECFieldElement b)
+        {
+            return Multiply(b.Invert());
+        }
+
+        public override ECFieldElement Negate()
+        {
+            return this;
+        }
+
+        public override ECFieldElement Square()
+        {
+            ulong[] z = Nat576.Create64();
+            SecT571Field.Square(x, z);
+            return new SecT571FieldElement(z);
+        }
+
+        public override ECFieldElement SquareMinusProduct(ECFieldElement x, ECFieldElement y)
+        {
+            return SquarePlusProduct(x, y);
+        }
+
+        public override ECFieldElement SquarePlusProduct(ECFieldElement x, ECFieldElement y)
+        {
+            ulong[] ax = this.x;
+            ulong[] xx = ((SecT571FieldElement)x).x, yx = ((SecT571FieldElement)y).x;
+
+            ulong[] tt = Nat576.CreateExt64();
+            SecT571Field.SquareAddToExt(ax, tt);
+            SecT571Field.MultiplyAddToExt(xx, yx, tt);
+
+            ulong[] z = Nat576.Create64();
+            SecT571Field.Reduce(tt, z);
+            return new SecT571FieldElement(z);
+        }
+
+        public override ECFieldElement SquarePow(int pow)
+        {
+            if (pow < 1)
+                return this;
+
+            ulong[] z = Nat576.Create64();
+            SecT571Field.SquareN(x, pow, z);
+            return new SecT571FieldElement(z);
+        }
+
+        public override ECFieldElement Invert()
+        {
+            return new SecT571FieldElement(
+                AbstractF2mCurve.Inverse(571, new int[] { 2, 5, 10 }, ToBigInteger()));
+        }
+
+        public override ECFieldElement Sqrt()
+        {
+            return SquarePow(M - 1);
+        }
+
+        public virtual int Representation
+        {
+            get { return F2mFieldElement.Ppb; }
+        }
+
+        public virtual int M
+        {
+            get { return 571; }
+        }
+
+        public virtual int K1
+        {
+            get { return 2; }
+        }
+
+        public virtual int K2
+        {
+            get { return 5; }
+        }
+
+        public virtual int K3
+        {
+            get { return 10; }
+        }
+
+        public override bool Equals(object obj)
+        {
+            return Equals(obj as SecT571FieldElement);
+        }
+
+        public override bool Equals(ECFieldElement other)
+        {
+            return Equals(other as SecT571FieldElement);
+        }
+
+        public virtual bool Equals(SecT571FieldElement other)
+        {
+            if (this == other)
+                return true;
+            if (null == other)
+                return false;
+            return Nat576.Eq64(x, other.x);
+        }
+
+        public override int GetHashCode()
+        {
+            return 5711052 ^ Arrays.GetHashCode(x, 0, 9);
+        }
+    }
+}
diff --git a/crypto/src/math/ec/custom/sec/SecT571K1Curve.cs b/crypto/src/math/ec/custom/sec/SecT571K1Curve.cs
new file mode 100644
index 000000000..fb136c967
--- /dev/null
+++ b/crypto/src/math/ec/custom/sec/SecT571K1Curve.cs
@@ -0,0 +1,196 @@
+using System;
+
+using Org.BouncyCastle.Math.EC.Multiplier;
+using Org.BouncyCastle.Utilities.Encoders;
+
+namespace Org.BouncyCastle.Math.EC.Custom.Sec
+{
+    internal class SecT571K1Curve
+        : AbstractF2mCurve
+    {
+        private const int SecT571K1_DEFAULT_COORDS = COORD_LAMBDA_PROJECTIVE;
+
+        protected readonly SecT571K1Point m_infinity;
+
+        public SecT571K1Curve()
+            : base(571, 2, 5, 10)
+        {
+            this.m_infinity = new SecT571K1Point(this, null, null);
+
+            this.m_a = FromBigInteger(BigInteger.Zero);
+            this.m_b = FromBigInteger(BigInteger.One);
+            this.m_order = new BigInteger(1, Hex.Decode("020000000000000000000000000000000000000000000000000000000000000000000000131850E1F19A63E4B391A8DB917F4138B630D84BE5D639381E91DEB45CFE778F637C1001"));
+            this.m_cofactor = BigInteger.ValueOf(4);
+
+            this.m_coord = SecT571K1_DEFAULT_COORDS;
+        }
+
+        protected override ECCurve CloneCurve()
+        {
+            return new SecT571K1Curve();
+        }
+
+        public override bool SupportsCoordinateSystem(int coord)
+        {
+            switch (coord)
+            {
+            case COORD_LAMBDA_PROJECTIVE:
+                return true;
+            default:
+                return false;
+            }
+        }
+
+        protected override ECMultiplier CreateDefaultMultiplier()
+        {
+            return new WTauNafMultiplier();
+        }
+
+        public override ECPoint Infinity
+        {
+            get { return m_infinity; }
+        }
+
+        public override int FieldSize
+        {
+            get { return 571; }
+        }
+
+        public override ECFieldElement FromBigInteger(BigInteger x)
+        {
+            return new SecT571FieldElement(x);
+        }
+
+        protected internal override ECPoint CreateRawPoint(ECFieldElement x, ECFieldElement y, bool withCompression)
+        {
+            return new SecT571K1Point(this, x, y, withCompression);
+        }
+
+        protected internal override ECPoint CreateRawPoint(ECFieldElement x, ECFieldElement y, ECFieldElement[] zs, bool withCompression)
+        {
+            return new SecT571K1Point(this, x, y, zs, withCompression);
+        }
+
+        public override bool IsKoblitz
+        {
+            get { return true; }
+        }
+
+        /**
+         * Decompresses a compressed point P = (xp, yp) (X9.62 s 4.2.2).
+         * 
+         * @param yTilde
+         *            ~yp, an indication bit for the decompression of yp.
+         * @param X1
+         *            The field element xp.
+         * @return the decompressed point.
+         */
+        protected override ECPoint DecompressPoint(int yTilde, BigInteger X1)
+        {
+            ECFieldElement x = FromBigInteger(X1), y = null;
+            if (x.IsZero)
+            {
+                y = B.Sqrt();
+            }
+            else
+            {
+                ECFieldElement beta = x.Square().Invert().Multiply(B).Add(A).Add(x);
+                ECFieldElement z = SolveQuadraticEquation(beta);
+                if (z != null)
+                {
+                    if (z.TestBitZero() != (yTilde == 1))
+                    {
+                        z = z.AddOne();
+                    }
+
+                    switch (this.CoordinateSystem)
+                    {
+                    case COORD_LAMBDA_AFFINE:
+                    case COORD_LAMBDA_PROJECTIVE:
+                    {
+                        y = z.Add(x);
+                        break;
+                    }
+                    default:
+                    {
+                        y = z.Multiply(x);
+                        break;
+                    }
+                    }
+                }
+            }
+
+            if (y == null)
+                throw new ArgumentException("Invalid point compression");
+
+            return this.CreateRawPoint(x, y, true);
+        }
+
+        /**
+         * Solves a quadratic equation <code>z<sup>2</sup> + z = beta</code>(X9.62
+         * D.1.6) The other solution is <code>z + 1</code>.
+         * 
+         * @param beta
+         *            The value to solve the quadratic equation for.
+         * @return the solution for <code>z<sup>2</sup> + z = beta</code> or
+         *         <code>null</code> if no solution exists.
+         */
+        private ECFieldElement SolveQuadraticEquation(ECFieldElement beta)
+        {
+            if (beta.IsZero)
+            {
+                return beta;
+            }
+
+            ECFieldElement zeroElement = FromBigInteger(BigInteger.Zero);
+
+            ECFieldElement z = null;
+            ECFieldElement gamma = null;
+
+            Random rand = new Random();
+            do
+            {
+                ECFieldElement t = FromBigInteger(new BigInteger(571, rand));
+                z = zeroElement;
+                ECFieldElement w = beta;
+                for (int i = 1; i < 571; i++)
+                {
+                    ECFieldElement w2 = w.Square();
+                    z = z.Square().Add(w2.Multiply(t));
+                    w = w2.Add(beta);
+                }
+                if (!w.IsZero)
+                    return null;
+                gamma = z.Square().Add(z);
+            }
+            while (gamma.IsZero);
+
+            return z;
+        }
+
+        public virtual int M
+        {
+            get { return 571; }
+        }
+
+        public virtual bool IsTrinomial
+        {
+            get { return false; }
+        }
+
+        public virtual int K1
+        {
+            get { return 2; }
+        }
+
+        public virtual int K2
+        {
+            get { return 5; }
+        }
+
+        public virtual int K3
+        {
+            get { return 10; }
+        }
+    }
+}
diff --git a/crypto/src/math/ec/custom/sec/SecT571K1Point.cs b/crypto/src/math/ec/custom/sec/SecT571K1Point.cs
new file mode 100644
index 000000000..62ed7bda0
--- /dev/null
+++ b/crypto/src/math/ec/custom/sec/SecT571K1Point.cs
@@ -0,0 +1,296 @@
+using System;
+
+namespace Org.BouncyCastle.Math.EC.Custom.Sec
+{
+    internal class SecT571K1Point
+        : AbstractF2mPoint
+    {
+        /**
+         * @deprecated Use ECCurve.createPoint to construct points
+         */
+        public SecT571K1Point(ECCurve curve, ECFieldElement x, ECFieldElement y)
+            : this(curve, x, y, false)
+        {
+        }
+
+        /**
+         * @deprecated per-point compression property will be removed, refer {@link #getEncoded(bool)}
+         */
+        public SecT571K1Point(ECCurve curve, ECFieldElement x, ECFieldElement y, bool withCompression)
+            : base(curve, x, y, withCompression)
+        {
+            if ((x == null) != (y == null))
+                throw new ArgumentException("Exactly one of the field elements is null");
+        }
+
+        internal SecT571K1Point(ECCurve curve, ECFieldElement x, ECFieldElement y, ECFieldElement[] zs, bool withCompression)
+            : base(curve, x, y, zs, withCompression)
+        {
+        }
+
+        protected override ECPoint Detach()
+        {
+            return new SecT571K1Point(null, this.AffineXCoord, this.AffineYCoord); // earlier JDK
+        }
+
+        public override ECFieldElement YCoord
+        {
+            get
+            {
+                ECFieldElement X = RawXCoord, L = RawYCoord;
+
+                if (this.IsInfinity || X.IsZero)
+                    return L;
+
+                // Y is actually Lambda (X + Y/X) here; convert to affine value on the fly
+                ECFieldElement Y = L.Add(X).Multiply(X);
+
+                ECFieldElement Z = RawZCoords[0];
+                if (!Z.IsOne)
+                {
+                    Y = Y.Divide(Z);
+                }
+
+                return Y;
+            }
+        }
+
+        protected internal override bool CompressionYTilde
+        {
+            get
+            {
+                ECFieldElement X = this.RawXCoord;
+                if (X.IsZero)
+                    return false;
+
+                ECFieldElement Y = this.RawYCoord;
+
+                // Y is actually Lambda (X + Y/X) here
+                return Y.TestBitZero() != X.TestBitZero();
+            }
+        }
+
+        public override ECPoint Add(ECPoint b)
+        {
+            if (this.IsInfinity)
+                return b;
+            if (b.IsInfinity)
+                return this;
+
+            ECCurve curve = this.Curve;
+
+            ECFieldElement X1 = this.RawXCoord;
+            ECFieldElement X2 = b.RawXCoord;
+
+            if (X1.IsZero)
+            {
+                if (X2.IsZero)
+                    return curve.Infinity;
+
+                return b.Add(this);
+            }
+
+            ECFieldElement L1 = this.RawYCoord, Z1 = this.RawZCoords[0];
+            ECFieldElement L2 = b.RawYCoord, Z2 = b.RawZCoords[0];
+
+            bool Z1IsOne = Z1.IsOne;
+            ECFieldElement U2 = X2, S2 = L2;
+            if (!Z1IsOne)
+            {
+                U2 = U2.Multiply(Z1);
+                S2 = S2.Multiply(Z1);
+            }
+
+            bool Z2IsOne = Z2.IsOne;
+            ECFieldElement U1 = X1, S1 = L1;
+            if (!Z2IsOne)
+            {
+                U1 = U1.Multiply(Z2);
+                S1 = S1.Multiply(Z2);
+            }
+
+            ECFieldElement A = S1.Add(S2);
+            ECFieldElement B = U1.Add(U2);
+
+            if (B.IsZero)
+            {
+                if (A.IsZero)
+                    return Twice();
+
+                return curve.Infinity;
+            }
+
+            ECFieldElement X3, L3, Z3;
+            if (X2.IsZero)
+            {
+                // TODO This can probably be optimized quite a bit
+                ECPoint p = this.Normalize();
+                X1 = p.XCoord;
+                ECFieldElement Y1 = p.YCoord;
+
+                ECFieldElement Y2 = L2;
+                ECFieldElement L = Y1.Add(Y2).Divide(X1);
+
+                //X3 = L.Square().Add(L).Add(X1).Add(curve.A);
+                X3 = L.Square().Add(L).Add(X1).AddOne();
+                if (X3.IsZero)
+                {
+                    //return new SecT571K1Point(curve, X3, curve.B.sqrt(), IsCompressed);
+                    return new SecT571K1Point(curve, X3, curve.B, IsCompressed);
+                }
+
+                ECFieldElement Y3 = L.Multiply(X1.Add(X3)).Add(X3).Add(Y1);
+                L3 = Y3.Divide(X3).Add(X3);
+                Z3 = curve.FromBigInteger(BigInteger.One);
+            }
+            else
+            {
+                B = B.Square();
+
+                ECFieldElement AU1 = A.Multiply(U1);
+                ECFieldElement AU2 = A.Multiply(U2);
+
+                X3 = AU1.Multiply(AU2);
+                if (X3.IsZero)
+                {
+                    //return new SecT571K1Point(curve, X3, curve.B.sqrt(), IsCompressed);
+                    return new SecT571K1Point(curve, X3, curve.B, IsCompressed);
+                }
+
+                ECFieldElement ABZ2 = A.Multiply(B);
+                if (!Z2IsOne)
+                {
+                    ABZ2 = ABZ2.Multiply(Z2);
+                }
+
+                L3 = AU2.Add(B).SquarePlusProduct(ABZ2, L1.Add(Z1));
+
+                Z3 = ABZ2;
+                if (!Z1IsOne)
+                {
+                    Z3 = Z3.Multiply(Z1);
+                }
+            }
+
+            return new SecT571K1Point(curve, X3, L3, new ECFieldElement[] { Z3 }, IsCompressed);
+        }
+
+        public override ECPoint Twice()
+        {
+            if (this.IsInfinity)
+                return this;
+
+            ECCurve curve = this.Curve;
+
+            ECFieldElement X1 = this.RawXCoord;
+            if (X1.IsZero)
+            {
+                // A point with X == 0 is it's own Additive inverse
+                return curve.Infinity;
+            }
+
+            ECFieldElement L1 = this.RawYCoord, Z1 = this.RawZCoords[0];
+
+            bool Z1IsOne = Z1.IsOne;
+            ECFieldElement Z1Sq = Z1IsOne ? Z1 : Z1.Square();
+            ECFieldElement T;
+            if (Z1IsOne)
+            {
+                T = L1.Square().Add(L1);
+            }
+            else
+            {
+                T = L1.Add(Z1).Multiply(L1);
+            }
+
+            if (T.IsZero)
+            {
+                //return new SecT571K1Point(curve, T, curve.B.sqrt(), withCompression);
+                return new SecT571K1Point(curve, T, curve.B, IsCompressed);
+            }
+
+            ECFieldElement X3 = T.Square();
+            ECFieldElement Z3 = Z1IsOne ? T : T.Multiply(Z1Sq);
+
+            ECFieldElement t1 = L1.Add(X1).Square();
+            ECFieldElement t2 = Z1IsOne ? Z1 : Z1Sq.Square();
+            ECFieldElement L3 = t1.Add(T).Add(Z1Sq).Multiply(t1).Add(t2).Add(X3).Add(Z3);
+
+            return new SecT571K1Point(curve, X3, L3, new ECFieldElement[] { Z3 }, IsCompressed);
+        }
+
+        public override ECPoint TwicePlus(ECPoint b)
+        {
+            if (this.IsInfinity)
+                return b;
+            if (b.IsInfinity)
+                return Twice();
+
+            ECCurve curve = this.Curve;
+
+            ECFieldElement X1 = this.RawXCoord;
+            if (X1.IsZero)
+            {
+                // A point with X == 0 is it's own Additive inverse
+                return b;
+            }
+
+            // NOTE: TwicePlus() only optimized for lambda-affine argument
+            ECFieldElement X2 = b.RawXCoord, Z2 = b.RawZCoords[0];
+            if (X2.IsZero || !Z2.IsOne)
+            {
+                return Twice().Add(b);
+            }
+
+            ECFieldElement L1 = this.RawYCoord, Z1 = this.RawZCoords[0];
+            ECFieldElement L2 = b.RawYCoord;
+
+            ECFieldElement X1Sq = X1.Square();
+            ECFieldElement L1Sq = L1.Square();
+            ECFieldElement Z1Sq = Z1.Square();
+            ECFieldElement L1Z1 = L1.Multiply(Z1);
+
+            //ECFieldElement T = curve.A.Multiply(Z1Sq).Add(L1Sq).Add(L1Z1);
+            ECFieldElement T = L1Sq.Add(L1Z1);
+            ECFieldElement L2plus1 = L2.AddOne();
+            //ECFieldElement A = curve.A.Add(L2plus1).Multiply(Z1Sq).Add(L1Sq).MultiplyPlusProduct(T, X1Sq, Z1Sq);
+            ECFieldElement A = L2plus1.Multiply(Z1Sq).Add(L1Sq).MultiplyPlusProduct(T, X1Sq, Z1Sq);
+            ECFieldElement X2Z1Sq = X2.Multiply(Z1Sq);
+            ECFieldElement B = X2Z1Sq.Add(T).Square();
+
+            if (B.IsZero)
+            {
+                if (A.IsZero)
+                    return b.Twice();
+
+                return curve.Infinity;
+            }
+
+            if (A.IsZero)
+            {
+                //return new SecT571K1Point(curve, A, curve.B.sqrt(), withCompression);
+                return new SecT571K1Point(curve, A, curve.B, IsCompressed);
+            }
+
+            ECFieldElement X3 = A.Square().Multiply(X2Z1Sq);
+            ECFieldElement Z3 = A.Multiply(B).Multiply(Z1Sq);
+            ECFieldElement L3 = A.Add(B).Square().MultiplyPlusProduct(T, L2plus1, Z3);
+
+            return new SecT571K1Point(curve, X3, L3, new ECFieldElement[] { Z3 }, IsCompressed);
+        }
+
+        public override ECPoint Negate()
+        {
+            if (this.IsInfinity)
+                return this;
+
+            ECFieldElement X = this.RawXCoord;
+            if (X.IsZero)
+                return this;
+
+            // L is actually Lambda (X + Y/X) here
+            ECFieldElement L = this.RawYCoord, Z = this.RawZCoords[0];
+            return new SecT571K1Point(Curve, X, L.Add(Z), new ECFieldElement[] { Z }, IsCompressed);
+        }
+    }
+}
diff --git a/crypto/src/math/ec/custom/sec/SecT571R1Curve.cs b/crypto/src/math/ec/custom/sec/SecT571R1Curve.cs
new file mode 100644
index 000000000..05d58863e
--- /dev/null
+++ b/crypto/src/math/ec/custom/sec/SecT571R1Curve.cs
@@ -0,0 +1,193 @@
+using System;
+
+using Org.BouncyCastle.Utilities.Encoders;
+
+namespace Org.BouncyCastle.Math.EC.Custom.Sec
+{
+    internal class SecT571R1Curve
+        : AbstractF2mCurve
+    {
+        private const int SecT571R1_DEFAULT_COORDS = COORD_LAMBDA_PROJECTIVE;
+
+        protected readonly SecT571R1Point m_infinity;
+
+        internal static readonly SecT571FieldElement SecT571R1_B = new SecT571FieldElement(
+            new BigInteger(1, Hex.Decode("02F40E7E2221F295DE297117B7F3D62F5C6A97FFCB8CEFF1CD6BA8CE4A9A18AD84FFABBD8EFA59332BE7AD6756A66E294AFD185A78FF12AA520E4DE739BACA0C7FFEFF7F2955727A")));
+        internal static readonly SecT571FieldElement SecT571R1_B_SQRT = (SecT571FieldElement)SecT571R1_B.Sqrt();
+
+        public SecT571R1Curve()
+            : base(571, 2, 5, 10)
+        {
+            this.m_infinity = new SecT571R1Point(this, null, null);
+
+            this.m_a = FromBigInteger(BigInteger.One);
+            this.m_b = SecT571R1_B;
+            this.m_order = new BigInteger(1, Hex.Decode("03FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE661CE18FF55987308059B186823851EC7DD9CA1161DE93D5174D66E8382E9BB2FE84E47"));
+            this.m_cofactor = BigInteger.Two;
+
+            this.m_coord = SecT571R1_DEFAULT_COORDS;
+        }
+
+        protected override ECCurve CloneCurve()
+        {
+            return new SecT571R1Curve();
+        }
+
+        public override bool SupportsCoordinateSystem(int coord)
+        {
+            switch (coord)
+            {
+            case COORD_LAMBDA_PROJECTIVE:
+                return true;
+            default:
+                return false;
+            }
+        }
+
+        public override ECPoint Infinity
+        {
+            get { return m_infinity; }
+        }
+
+        public override int FieldSize
+        {
+            get { return 571; }
+        }
+
+        public override ECFieldElement FromBigInteger(BigInteger x)
+        {
+            return new SecT571FieldElement(x);
+        }
+
+        protected internal override ECPoint CreateRawPoint(ECFieldElement x, ECFieldElement y, bool withCompression)
+        {
+            return new SecT571R1Point(this, x, y, withCompression);
+        }
+
+        protected internal override ECPoint CreateRawPoint(ECFieldElement x, ECFieldElement y, ECFieldElement[] zs, bool withCompression)
+        {
+            return new SecT571R1Point(this, x, y, zs, withCompression);
+        }
+
+        public override bool IsKoblitz
+        {
+            get { return false; }
+        }
+
+        /**
+         * Decompresses a compressed point P = (xp, yp) (X9.62 s 4.2.2).
+         * 
+         * @param yTilde
+         *            ~yp, an indication bit for the decompression of yp.
+         * @param X1
+         *            The field element xp.
+         * @return the decompressed point.
+         */
+        protected override ECPoint DecompressPoint(int yTilde, BigInteger X1)
+        {
+            ECFieldElement x = FromBigInteger(X1), y = null;
+            if (x.IsZero)
+            {
+    //            y = B.Sqrt();
+                y = SecT571R1_B_SQRT;
+            }
+            else
+            {
+                ECFieldElement beta = x.Square().Invert().Multiply(B).Add(A).Add(x);
+                ECFieldElement z = SolveQuadraticEquation(beta);
+                if (z != null)
+                {
+                    if (z.TestBitZero() != (yTilde == 1))
+                    {
+                        z = z.AddOne();
+                    }
+
+                    switch (this.CoordinateSystem)
+                    {
+                    case COORD_LAMBDA_AFFINE:
+                    case COORD_LAMBDA_PROJECTIVE:
+                    {
+                        y = z.Add(x);
+                        break;
+                    }
+                    default:
+                    {
+                        y = z.Multiply(x);
+                        break;
+                    }
+                    }
+                }
+            }
+
+            if (y == null)
+                throw new ArgumentException("Invalid point compression");
+
+            return this.CreateRawPoint(x, y, true);
+        }
+
+        /**
+         * Solves a quadratic equation <code>z<sup>2</sup> + z = beta</code>(X9.62
+         * D.1.6) The other solution is <code>z + 1</code>.
+         * 
+         * @param beta
+         *            The value to solve the quadratic equation for.
+         * @return the solution for <code>z<sup>2</sup> + z = beta</code> or
+         *         <code>null</code> if no solution exists.
+         */
+        private ECFieldElement SolveQuadraticEquation(ECFieldElement beta)
+        {
+            if (beta.IsZero)
+                return beta;
+
+            ECFieldElement zeroElement = FromBigInteger(BigInteger.Zero);
+
+            ECFieldElement z = null;
+            ECFieldElement gamma = null;
+
+            Random rand = new Random();
+            do
+            {
+                ECFieldElement t = FromBigInteger(new BigInteger(571, rand));
+                z = zeroElement;
+                ECFieldElement w = beta;
+                for (int i = 1; i < 571; i++)
+                {
+                    ECFieldElement w2 = w.Square();
+                    z = z.Square().Add(w2.Multiply(t));
+                    w = w2.Add(beta);
+                }
+                if (!w.IsZero)
+                    return null;
+                gamma = z.Square().Add(z);
+            }
+            while (gamma.IsZero);
+
+            return z;
+        }
+
+        public virtual int M
+        {
+            get { return 571; }
+        }
+
+        public virtual bool IsTrinomial
+        {
+            get { return false; }
+        }
+
+        public virtual int K1
+        {
+            get { return 2; }
+        }
+
+        public virtual int K2
+        {
+            get { return 5; }
+        }
+
+        public virtual int K3
+        {
+            get { return 10; }
+        }
+    }
+}
diff --git a/crypto/src/math/ec/custom/sec/SecT571R1Point.cs b/crypto/src/math/ec/custom/sec/SecT571R1Point.cs
new file mode 100644
index 000000000..0cbc98cf3
--- /dev/null
+++ b/crypto/src/math/ec/custom/sec/SecT571R1Point.cs
@@ -0,0 +1,286 @@
+using System;
+
+namespace Org.BouncyCastle.Math.EC.Custom.Sec
+{
+    internal class SecT571R1Point
+        : AbstractF2mPoint
+    {
+        /**
+         * @deprecated Use ECCurve.createPoint to construct points
+         */
+        public SecT571R1Point(ECCurve curve, ECFieldElement x, ECFieldElement y)
+            : this(curve, x, y, false)
+        {
+        }
+
+        /**
+         * @deprecated per-point compression property will be removed, refer {@link #getEncoded(bool)}
+         */
+        public SecT571R1Point(ECCurve curve, ECFieldElement x, ECFieldElement y, bool withCompression)
+            : base(curve, x, y, withCompression)
+        {
+            if ((x == null) != (y == null))
+                throw new ArgumentException("Exactly one of the field elements is null");
+        }
+
+        internal SecT571R1Point(ECCurve curve, ECFieldElement x, ECFieldElement y, ECFieldElement[] zs, bool withCompression)
+            : base(curve, x, y, zs, withCompression)
+        {
+        }
+
+        protected override ECPoint Detach()
+        {
+            return new SecT571R1Point(null, AffineXCoord, AffineYCoord);
+        }
+
+        public override ECFieldElement YCoord
+        {
+            get
+            {
+                ECFieldElement X = RawXCoord, L = RawYCoord;
+
+                if (this.IsInfinity || X.IsZero)
+                    return L;
+
+                // Y is actually Lambda (X + Y/X) here; convert to affine value on the fly
+                ECFieldElement Y = L.Add(X).Multiply(X);
+
+                ECFieldElement Z = RawZCoords[0];
+                if (!Z.IsOne)
+                {
+                    Y = Y.Divide(Z);
+                }
+
+                return Y;
+            }
+        }
+
+        protected internal override bool CompressionYTilde
+        {
+            get
+            {
+                ECFieldElement X = this.RawXCoord;
+                if (X.IsZero)
+                    return false;
+
+                ECFieldElement Y = this.RawYCoord;
+
+                // Y is actually Lambda (X + Y/X) here
+                return Y.TestBitZero() != X.TestBitZero();
+            }
+        }
+
+        public override ECPoint Add(ECPoint b)
+        {
+            if (this.IsInfinity)
+                return b;
+            if (b.IsInfinity)
+                return this;
+
+            ECCurve curve = this.Curve;
+
+            ECFieldElement X1 = this.RawXCoord;
+            ECFieldElement X2 = b.RawXCoord;
+
+            if (X1.IsZero)
+            {
+                if (X2.IsZero)
+                    return curve.Infinity;
+
+                return b.Add(this);
+            }
+
+            ECFieldElement L1 = this.RawYCoord, Z1 = this.RawZCoords[0];
+            ECFieldElement L2 = b.RawYCoord, Z2 = b.RawZCoords[0];
+
+            bool Z1IsOne = Z1.IsOne;
+            ECFieldElement U2 = X2, S2 = L2;
+            if (!Z1IsOne)
+            {
+                U2 = U2.Multiply(Z1);
+                S2 = S2.Multiply(Z1);
+            }
+
+            bool Z2IsOne = Z2.IsOne;
+            ECFieldElement U1 = X1, S1 = L1;
+            if (!Z2IsOne)
+            {
+                U1 = U1.Multiply(Z2);
+                S1 = S1.Multiply(Z2);
+            }
+
+            ECFieldElement A = S1.Add(S2);
+            ECFieldElement B = U1.Add(U2);
+
+            if (B.IsZero)
+            {
+                if (A.IsZero)
+                    return Twice();
+
+                return curve.Infinity;
+            }
+
+            ECFieldElement X3, L3, Z3;
+            if (X2.IsZero)
+            {
+                // TODO This can probably be optimized quite a bit
+                ECPoint p = this.Normalize();
+                X1 = p.XCoord;
+                ECFieldElement Y1 = p.YCoord;
+
+                ECFieldElement Y2 = L2;
+                ECFieldElement L = Y1.Add(Y2).Divide(X1);
+
+                //X3 = L.Square().Add(L).Add(X1).Add(curve.A);
+                X3 = L.Square().Add(L).Add(X1).AddOne();
+                if (X3.IsZero)
+                {
+                    //return new SecT571R1Point(curve, X3, curve.B.sqrt(), IsCompressed);
+                    return new SecT571R1Point(curve, X3, SecT571R1Curve.SecT571R1_B_SQRT, IsCompressed);
+                }
+
+                ECFieldElement Y3 = L.Multiply(X1.Add(X3)).Add(X3).Add(Y1);
+                L3 = Y3.Divide(X3).Add(X3);
+                Z3 = curve.FromBigInteger(BigInteger.One);
+            }
+            else
+            {
+                B = B.Square();
+
+                ECFieldElement AU1 = A.Multiply(U1);
+                ECFieldElement AU2 = A.Multiply(U2);
+
+                X3 = AU1.Multiply(AU2);
+                if (X3.IsZero)
+                {
+                    //return new SecT571R1Point(curve, X3, curve.B.sqrt(), IsCompressed);
+                    return new SecT571R1Point(curve, X3, SecT571R1Curve.SecT571R1_B_SQRT, IsCompressed);
+                }
+
+                ECFieldElement ABZ2 = A.Multiply(B);
+                if (!Z2IsOne)
+                {
+                    ABZ2 = ABZ2.Multiply(Z2);
+                }
+
+                L3 = AU2.Add(B).SquarePlusProduct(ABZ2, L1.Add(Z1));
+
+                Z3 = ABZ2;
+                if (!Z1IsOne)
+                {
+                    Z3 = Z3.Multiply(Z1);
+                }
+            }
+
+            return new SecT571R1Point(curve, X3, L3, new ECFieldElement[] { Z3 }, IsCompressed);
+        }
+
+        public override ECPoint Twice()
+        {
+            if (this.IsInfinity)
+                return this;
+
+            ECCurve curve = this.Curve;
+
+            ECFieldElement X1 = this.RawXCoord;
+            if (X1.IsZero)
+            {
+                // A point with X == 0 is it's own Additive inverse
+                return curve.Infinity;
+            }
+
+            ECFieldElement L1 = this.RawYCoord, Z1 = this.RawZCoords[0];
+
+            bool Z1IsOne = Z1.IsOne;
+            ECFieldElement L1Z1 = Z1IsOne ? L1 : L1.Multiply(Z1);
+            ECFieldElement Z1Sq = Z1IsOne ? Z1 : Z1.Square();
+            ECFieldElement T = L1.Square().Add(L1Z1).Add(Z1Sq);
+            if (T.IsZero)
+            {
+                //return new SecT571R1Point(curve, T, curve.B.sqrt(), withCompression);
+                return new SecT571R1Point(curve, T, SecT571R1Curve.SecT571R1_B_SQRT, IsCompressed);
+            }
+
+            ECFieldElement X3 = T.Square();
+            ECFieldElement Z3 = Z1IsOne ? T : T.Multiply(Z1Sq);
+
+            ECFieldElement X1Z1 = Z1IsOne ? X1 : X1.Multiply(Z1);
+            ECFieldElement L3 = X1Z1.SquarePlusProduct(T, L1Z1).Add(X3).Add(Z3);
+
+            return new SecT571R1Point(curve, X3, L3, new ECFieldElement[] { Z3 }, IsCompressed);
+        }
+
+        public override ECPoint TwicePlus(ECPoint b)
+        {
+            if (this.IsInfinity)
+                return b;
+            if (b.IsInfinity)
+                return Twice();
+
+            ECCurve curve = this.Curve;
+
+            ECFieldElement X1 = this.RawXCoord;
+            if (X1.IsZero)
+            {
+                // A point with X == 0 is it's own Additive inverse
+                return b;
+            }
+
+            ECFieldElement X2 = b.RawXCoord, Z2 = b.RawZCoords[0];
+            if (X2.IsZero || !Z2.IsOne)
+            {
+                return Twice().Add(b);
+            }
+
+            ECFieldElement L1 = this.RawYCoord, Z1 = this.RawZCoords[0];
+            ECFieldElement L2 = b.RawYCoord;
+
+            ECFieldElement X1Sq = X1.Square();
+            ECFieldElement L1Sq = L1.Square();
+            ECFieldElement Z1Sq = Z1.Square();
+            ECFieldElement L1Z1 = L1.Multiply(Z1);
+
+            //ECFieldElement T = curve.A.Multiply(Z1Sq).Add(L1Sq).Add(L1Z1);
+            ECFieldElement T = Z1Sq.Add(L1Sq).Add(L1Z1);
+            ECFieldElement L2plus1 = L2.AddOne();
+            //ECFieldElement A = curve.A.Add(L2plus1).Multiply(Z1Sq).Add(L1Sq).MultiplyPlusProduct(T, X1Sq, Z1Sq);
+            ECFieldElement A = L2.Multiply(Z1Sq).Add(L1Sq).MultiplyPlusProduct(T, X1Sq, Z1Sq);
+            ECFieldElement X2Z1Sq = X2.Multiply(Z1Sq);
+            ECFieldElement B = X2Z1Sq.Add(T).Square();
+
+            if (B.IsZero)
+            {
+                if (A.IsZero)
+                    return b.Twice();
+
+                return curve.Infinity;
+            }
+
+            if (A.IsZero)
+            {
+                //return new SecT571R1Point(curve, A, curve.B.sqrt(), withCompression);
+                return new SecT571R1Point(curve, A, SecT571R1Curve.SecT571R1_B_SQRT, IsCompressed);
+            }
+
+            ECFieldElement X3 = A.Square().Multiply(X2Z1Sq);
+            ECFieldElement Z3 = A.Multiply(B).Multiply(Z1Sq);
+            ECFieldElement L3 = A.Add(B).Square().MultiplyPlusProduct(T, L2plus1, Z3);
+
+            return new SecT571R1Point(curve, X3, L3, new ECFieldElement[] { Z3 }, IsCompressed);
+        }
+
+        public override ECPoint Negate()
+        {
+            if (this.IsInfinity)
+                return this;
+
+            ECFieldElement X = this.RawXCoord;
+            if (X.IsZero)
+                return this;
+
+            // L is actually Lambda (X + Y/X) here
+            ECFieldElement L = this.RawYCoord, Z = this.RawZCoords[0];
+            return new SecT571R1Point(Curve, X, L.Add(Z), new ECFieldElement[] { Z }, IsCompressed);
+        }
+    }
+}