diff options
Diffstat (limited to 'crypto/src/math/ec/ECFieldElement.cs')
-rw-r--r-- | crypto/src/math/ec/ECFieldElement.cs | 1253 |
1 files changed, 1253 insertions, 0 deletions
diff --git a/crypto/src/math/ec/ECFieldElement.cs b/crypto/src/math/ec/ECFieldElement.cs new file mode 100644 index 000000000..5235c6c0e --- /dev/null +++ b/crypto/src/math/ec/ECFieldElement.cs @@ -0,0 +1,1253 @@ +using System; +using System.Diagnostics; + +using Org.BouncyCastle.Utilities; + +namespace Org.BouncyCastle.Math.EC +{ + public abstract class ECFieldElement + { + public abstract BigInteger ToBigInteger(); + public abstract string FieldName { get; } + public abstract int FieldSize { get; } + public abstract ECFieldElement Add(ECFieldElement b); + public abstract ECFieldElement Subtract(ECFieldElement b); + public abstract ECFieldElement Multiply(ECFieldElement b); + public abstract ECFieldElement Divide(ECFieldElement b); + public abstract ECFieldElement Negate(); + public abstract ECFieldElement Square(); + public abstract ECFieldElement Invert(); + public abstract ECFieldElement Sqrt(); + + public override bool Equals( + object obj) + { + if (obj == this) + return true; + + ECFieldElement other = obj as ECFieldElement; + + if (other == null) + return false; + + return Equals(other); + } + + protected bool Equals( + ECFieldElement other) + { + return ToBigInteger().Equals(other.ToBigInteger()); + } + + public override int GetHashCode() + { + return ToBigInteger().GetHashCode(); + } + + public override string ToString() + { + return this.ToBigInteger().ToString(2); + } + } + + public class FpFieldElement + : ECFieldElement + { + private readonly BigInteger q, x; + + public FpFieldElement( + BigInteger q, + BigInteger x) + { + if (x.CompareTo(q) >= 0) + throw new ArgumentException("x value too large in field element"); + + this.q = q; + this.x = x; + } + + public override BigInteger ToBigInteger() + { + return x; + } + + /** + * return the field name for this field. + * + * @return the string "Fp". + */ + public override string FieldName + { + get { return "Fp"; } + } + + public override int FieldSize + { + get { return q.BitLength; } + } + + public BigInteger Q + { + get { return q; } + } + + public override ECFieldElement Add( + ECFieldElement b) + { + return new FpFieldElement(q, x.Add(b.ToBigInteger()).Mod(q)); + } + + public override ECFieldElement Subtract( + ECFieldElement b) + { + return new FpFieldElement(q, x.Subtract(b.ToBigInteger()).Mod(q)); + } + + public override ECFieldElement Multiply( + ECFieldElement b) + { + return new FpFieldElement(q, x.Multiply(b.ToBigInteger()).Mod(q)); + } + + public override ECFieldElement Divide( + ECFieldElement b) + { + return new FpFieldElement(q, x.Multiply(b.ToBigInteger().ModInverse(q)).Mod(q)); + } + + public override ECFieldElement Negate() + { + return new FpFieldElement(q, x.Negate().Mod(q)); + } + + public override ECFieldElement Square() + { + return new FpFieldElement(q, x.Multiply(x).Mod(q)); + } + + public override ECFieldElement Invert() + { + return new FpFieldElement(q, x.ModInverse(q)); + } + + // D.1.4 91 + /** + * return a sqrt root - the routine verifies that the calculation + * returns the right value - if none exists it returns null. + */ + public override ECFieldElement Sqrt() + { + if (!q.TestBit(0)) + throw Platform.CreateNotImplementedException("even value of q"); + + // p mod 4 == 3 + if (q.TestBit(1)) + { + // TODO Can this be optimised (inline the Square?) + // z = g^(u+1) + p, p = 4u + 3 + ECFieldElement z = new FpFieldElement(q, x.ModPow(q.ShiftRight(2).Add(BigInteger.One), q)); + + return this.Equals(z.Square()) ? z : null; + } + + // p mod 4 == 1 + BigInteger qMinusOne = q.Subtract(BigInteger.One); + + BigInteger legendreExponent = qMinusOne.ShiftRight(1); + if (!(x.ModPow(legendreExponent, q).Equals(BigInteger.One))) + return null; + + BigInteger u = qMinusOne.ShiftRight(2); + BigInteger k = u.ShiftLeft(1).Add(BigInteger.One); + + BigInteger Q = this.x; + BigInteger fourQ = Q.ShiftLeft(2).Mod(q); + + BigInteger U, V; + do + { + Random rand = new Random(); + BigInteger P; + do + { + P = new BigInteger(q.BitLength, rand); + } + while (P.CompareTo(q) >= 0 + || !(P.Multiply(P).Subtract(fourQ).ModPow(legendreExponent, q).Equals(qMinusOne))); + + BigInteger[] result = fastLucasSequence(q, P, Q, k); + U = result[0]; + V = result[1]; + + if (V.Multiply(V).Mod(q).Equals(fourQ)) + { + // Integer division by 2, mod q + if (V.TestBit(0)) + { + V = V.Add(q); + } + + V = V.ShiftRight(1); + + Debug.Assert(V.Multiply(V).Mod(q).Equals(x)); + + return new FpFieldElement(q, V); + } + } + while (U.Equals(BigInteger.One) || U.Equals(qMinusOne)); + + return null; + + +// BigInteger qMinusOne = q.Subtract(BigInteger.One); +// +// BigInteger legendreExponent = qMinusOne.ShiftRight(1); +// if (!(x.ModPow(legendreExponent, q).Equals(BigInteger.One))) +// return null; +// +// Random rand = new Random(); +// BigInteger fourX = x.ShiftLeft(2); +// +// BigInteger r; +// do +// { +// r = new BigInteger(q.BitLength, rand); +// } +// while (r.CompareTo(q) >= 0 +// || !(r.Multiply(r).Subtract(fourX).ModPow(legendreExponent, q).Equals(qMinusOne))); +// +// BigInteger n1 = qMinusOne.ShiftRight(2); +// BigInteger n2 = n1.Add(BigInteger.One); +// +// BigInteger wOne = WOne(r, x, q); +// BigInteger wSum = W(n1, wOne, q).Add(W(n2, wOne, q)).Mod(q); +// BigInteger twoR = r.ShiftLeft(1); +// +// BigInteger root = twoR.ModPow(q.Subtract(BigInteger.Two), q) +// .Multiply(x).Mod(q) +// .Multiply(wSum).Mod(q); +// +// return new FpFieldElement(q, root); + } + +// private static BigInteger W(BigInteger n, BigInteger wOne, BigInteger p) +// { +// if (n.Equals(BigInteger.One)) +// return wOne; +// +// bool isEven = !n.TestBit(0); +// n = n.ShiftRight(1); +// if (isEven) +// { +// BigInteger w = W(n, wOne, p); +// return w.Multiply(w).Subtract(BigInteger.Two).Mod(p); +// } +// BigInteger w1 = W(n.Add(BigInteger.One), wOne, p); +// BigInteger w2 = W(n, wOne, p); +// return w1.Multiply(w2).Subtract(wOne).Mod(p); +// } +// +// private BigInteger WOne(BigInteger r, BigInteger x, BigInteger p) +// { +// return r.Multiply(r).Multiply(x.ModPow(q.Subtract(BigInteger.Two), q)).Subtract(BigInteger.Two).Mod(p); +// } + + private static BigInteger[] fastLucasSequence( + BigInteger p, + BigInteger P, + BigInteger Q, + BigInteger k) + { + // TODO Research and apply "common-multiplicand multiplication here" + + int n = k.BitLength; + int s = k.GetLowestSetBit(); + + Debug.Assert(k.TestBit(s)); + + BigInteger Uh = BigInteger.One; + BigInteger Vl = BigInteger.Two; + BigInteger Vh = P; + BigInteger Ql = BigInteger.One; + BigInteger Qh = BigInteger.One; + + for (int j = n - 1; j >= s + 1; --j) + { + Ql = Ql.Multiply(Qh).Mod(p); + + if (k.TestBit(j)) + { + Qh = Ql.Multiply(Q).Mod(p); + Uh = Uh.Multiply(Vh).Mod(p); + Vl = Vh.Multiply(Vl).Subtract(P.Multiply(Ql)).Mod(p); + Vh = Vh.Multiply(Vh).Subtract(Qh.ShiftLeft(1)).Mod(p); + } + else + { + Qh = Ql; + Uh = Uh.Multiply(Vl).Subtract(Ql).Mod(p); + Vh = Vh.Multiply(Vl).Subtract(P.Multiply(Ql)).Mod(p); + Vl = Vl.Multiply(Vl).Subtract(Ql.ShiftLeft(1)).Mod(p); + } + } + + Ql = Ql.Multiply(Qh).Mod(p); + Qh = Ql.Multiply(Q).Mod(p); + Uh = Uh.Multiply(Vl).Subtract(Ql).Mod(p); + Vl = Vh.Multiply(Vl).Subtract(P.Multiply(Ql)).Mod(p); + Ql = Ql.Multiply(Qh).Mod(p); + + for (int j = 1; j <= s; ++j) + { + Uh = Uh.Multiply(Vl).Mod(p); + Vl = Vl.Multiply(Vl).Subtract(Ql.ShiftLeft(1)).Mod(p); + Ql = Ql.Multiply(Ql).Mod(p); + } + + return new BigInteger[]{ Uh, Vl }; + } + +// private static BigInteger[] verifyLucasSequence( +// BigInteger p, +// BigInteger P, +// BigInteger Q, +// BigInteger k) +// { +// BigInteger[] actual = fastLucasSequence(p, P, Q, k); +// BigInteger[] plus1 = fastLucasSequence(p, P, Q, k.Add(BigInteger.One)); +// BigInteger[] plus2 = fastLucasSequence(p, P, Q, k.Add(BigInteger.Two)); +// +// BigInteger[] check = stepLucasSequence(p, P, Q, actual, plus1); +// +// Debug.Assert(check[0].Equals(plus2[0])); +// Debug.Assert(check[1].Equals(plus2[1])); +// +// return actual; +// } +// +// private static BigInteger[] stepLucasSequence( +// BigInteger p, +// BigInteger P, +// BigInteger Q, +// BigInteger[] backTwo, +// BigInteger[] backOne) +// { +// return new BigInteger[] +// { +// P.Multiply(backOne[0]).Subtract(Q.Multiply(backTwo[0])).Mod(p), +// P.Multiply(backOne[1]).Subtract(Q.Multiply(backTwo[1])).Mod(p) +// }; +// } + + public override bool Equals( + object obj) + { + if (obj == this) + return true; + + FpFieldElement other = obj as FpFieldElement; + + if (other == null) + return false; + + return Equals(other); + } + + protected bool Equals( + FpFieldElement other) + { + return q.Equals(other.q) && base.Equals(other); + } + + public override int GetHashCode() + { + return q.GetHashCode() ^ base.GetHashCode(); + } + } + +// /** +// * Class representing the Elements of the finite field +// * <code>F<sub>2<sup>m</sup></sub></code> in polynomial basis (PB) +// * representation. Both trinomial (Tpb) and pentanomial (Ppb) polynomial +// * basis representations are supported. Gaussian normal basis (GNB) +// * representation is not supported. +// */ +// public class F2mFieldElement +// : ECFieldElement +// { +// /** +// * Indicates gaussian normal basis representation (GNB). Number chosen +// * according to X9.62. GNB is not implemented at present. +// */ +// public const int Gnb = 1; +// +// /** +// * Indicates trinomial basis representation (Tpb). Number chosen +// * according to X9.62. +// */ +// public const int Tpb = 2; +// +// /** +// * Indicates pentanomial basis representation (Ppb). Number chosen +// * according to X9.62. +// */ +// public const int Ppb = 3; +// +// /** +// * Tpb or Ppb. +// */ +// private int representation; +// +// /** +// * The exponent <code>m</code> of <code>F<sub>2<sup>m</sup></sub></code>. +// */ +// private int m; +// +// /** +// * Tpb: The integer <code>k</code> where <code>x<sup>m</sup> + +// * x<sup>k</sup> + 1</code> represents the reduction polynomial +// * <code>f(z)</code>.<br/> +// * Ppb: The integer <code>k1</code> where <code>x<sup>m</sup> + +// * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code> +// * represents the reduction polynomial <code>f(z)</code>.<br/> +// */ +// private int k1; +// +// /** +// * Tpb: Always set to <code>0</code><br/> +// * Ppb: The integer <code>k2</code> where <code>x<sup>m</sup> + +// * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code> +// * represents the reduction polynomial <code>f(z)</code>.<br/> +// */ +// private int k2; +// +// /** +// * Tpb: Always set to <code>0</code><br/> +// * Ppb: The integer <code>k3</code> where <code>x<sup>m</sup> + +// * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code> +// * represents the reduction polynomial <code>f(z)</code>.<br/> +// */ +// private int k3; +// +// /** +// * Constructor for Ppb. +// * @param m The exponent <code>m</code> of +// * <code>F<sub>2<sup>m</sup></sub></code>. +// * @param k1 The integer <code>k1</code> where <code>x<sup>m</sup> + +// * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code> +// * represents the reduction polynomial <code>f(z)</code>. +// * @param k2 The integer <code>k2</code> where <code>x<sup>m</sup> + +// * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code> +// * represents the reduction polynomial <code>f(z)</code>. +// * @param k3 The integer <code>k3</code> where <code>x<sup>m</sup> + +// * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code> +// * represents the reduction polynomial <code>f(z)</code>. +// * @param x The BigInteger representing the value of the field element. +// */ +// public F2mFieldElement( +// int m, +// int k1, +// int k2, +// int k3, +// BigInteger x) +// : base(x) +// { +// if ((k2 == 0) && (k3 == 0)) +// { +// this.representation = Tpb; +// } +// else +// { +// if (k2 >= k3) +// throw new ArgumentException("k2 must be smaller than k3"); +// if (k2 <= 0) +// throw new ArgumentException("k2 must be larger than 0"); +// +// this.representation = Ppb; +// } +// +// if (x.SignValue < 0) +// throw new ArgumentException("x value cannot be negative"); +// +// this.m = m; +// this.k1 = k1; +// this.k2 = k2; +// this.k3 = k3; +// } +// +// /** +// * Constructor for Tpb. +// * @param m The exponent <code>m</code> of +// * <code>F<sub>2<sup>m</sup></sub></code>. +// * @param k The integer <code>k</code> where <code>x<sup>m</sup> + +// * x<sup>k</sup> + 1</code> represents the reduction +// * polynomial <code>f(z)</code>. +// * @param x The BigInteger representing the value of the field element. +// */ +// public F2mFieldElement( +// int m, +// int k, +// BigInteger x) +// : this(m, k, 0, 0, x) +// { +// // Set k1 to k, and set k2 and k3 to 0 +// } +// +// public override string FieldName +// { +// get { return "F2m"; } +// } +// +// /** +// * Checks, if the ECFieldElements <code>a</code> and <code>b</code> +// * are elements of the same field <code>F<sub>2<sup>m</sup></sub></code> +// * (having the same representation). +// * @param a field element. +// * @param b field element to be compared. +// * @throws ArgumentException if <code>a</code> and <code>b</code> +// * are not elements of the same field +// * <code>F<sub>2<sup>m</sup></sub></code> (having the same +// * representation). +// */ +// public static void CheckFieldElements( +// ECFieldElement a, +// ECFieldElement b) +// { +// if (!(a is F2mFieldElement) || !(b is F2mFieldElement)) +// { +// throw new ArgumentException("Field elements are not " +// + "both instances of F2mFieldElement"); +// } +// +// if ((a.x.SignValue < 0) || (b.x.SignValue < 0)) +// { +// throw new ArgumentException( +// "x value may not be negative"); +// } +// +// F2mFieldElement aF2m = (F2mFieldElement)a; +// F2mFieldElement bF2m = (F2mFieldElement)b; +// +// if ((aF2m.m != bF2m.m) || (aF2m.k1 != bF2m.k1) +// || (aF2m.k2 != bF2m.k2) || (aF2m.k3 != bF2m.k3)) +// { +// throw new ArgumentException("Field elements are not " +// + "elements of the same field F2m"); +// } +// +// if (aF2m.representation != bF2m.representation) +// { +// // Should never occur +// throw new ArgumentException( +// "One of the field " +// + "elements are not elements has incorrect representation"); +// } +// } +// +// /** +// * Computes <code>z * a(z) mod f(z)</code>, where <code>f(z)</code> is +// * the reduction polynomial of <code>this</code>. +// * @param a The polynomial <code>a(z)</code> to be multiplied by +// * <code>z mod f(z)</code>. +// * @return <code>z * a(z) mod f(z)</code> +// */ +// private BigInteger multZModF( +// BigInteger a) +// { +// // Left-shift of a(z) +// BigInteger az = a.ShiftLeft(1); +// if (az.TestBit(this.m)) +// { +// // If the coefficient of z^m in a(z) Equals 1, reduction +// // modulo f(z) is performed: Add f(z) to to a(z): +// // Step 1: Unset mth coeffient of a(z) +// az = az.ClearBit(this.m); +// +// // Step 2: Add r(z) to a(z), where r(z) is defined as +// // f(z) = z^m + r(z), and k1, k2, k3 are the positions of +// // the non-zero coefficients in r(z) +// az = az.FlipBit(0); +// az = az.FlipBit(this.k1); +// if (this.representation == Ppb) +// { +// az = az.FlipBit(this.k2); +// az = az.FlipBit(this.k3); +// } +// } +// return az; +// } +// +// public override ECFieldElement Add( +// ECFieldElement b) +// { +// // No check performed here for performance reasons. Instead the +// // elements involved are checked in ECPoint.F2m +// // checkFieldElements(this, b); +// if (b.x.SignValue == 0) +// return this; +// +// return new F2mFieldElement(this.m, this.k1, this.k2, this.k3, this.x.Xor(b.x)); +// } +// +// public override ECFieldElement Subtract( +// ECFieldElement b) +// { +// // Addition and subtraction are the same in F2m +// return Add(b); +// } +// +// public override ECFieldElement Multiply( +// ECFieldElement b) +// { +// // Left-to-right shift-and-add field multiplication in F2m +// // Input: Binary polynomials a(z) and b(z) of degree at most m-1 +// // Output: c(z) = a(z) * b(z) mod f(z) +// +// // No check performed here for performance reasons. Instead the +// // elements involved are checked in ECPoint.F2m +// // checkFieldElements(this, b); +// BigInteger az = this.x; +// BigInteger bz = b.x; +// BigInteger cz; +// +// // Compute c(z) = a(z) * b(z) mod f(z) +// if (az.TestBit(0)) +// { +// cz = bz; +// } +// else +// { +// cz = BigInteger.Zero; +// } +// +// for (int i = 1; i < this.m; i++) +// { +// // b(z) := z * b(z) mod f(z) +// bz = multZModF(bz); +// +// if (az.TestBit(i)) +// { +// // If the coefficient of x^i in a(z) Equals 1, b(z) is added +// // to c(z) +// cz = cz.Xor(bz); +// } +// } +// return new F2mFieldElement(m, this.k1, this.k2, this.k3, cz); +// } +// +// +// public override ECFieldElement Divide( +// ECFieldElement b) +// { +// // There may be more efficient implementations +// ECFieldElement bInv = b.Invert(); +// return Multiply(bInv); +// } +// +// public override ECFieldElement Negate() +// { +// // -x == x holds for all x in F2m +// return this; +// } +// +// public override ECFieldElement Square() +// { +// // Naive implementation, can probably be speeded up using modular +// // reduction +// return Multiply(this); +// } +// +// public override ECFieldElement Invert() +// { +// // Inversion in F2m using the extended Euclidean algorithm +// // Input: A nonzero polynomial a(z) of degree at most m-1 +// // Output: a(z)^(-1) mod f(z) +// +// // u(z) := a(z) +// BigInteger uz = this.x; +// if (uz.SignValue <= 0) +// { +// throw new ArithmeticException("x is zero or negative, " + +// "inversion is impossible"); +// } +// +// // v(z) := f(z) +// BigInteger vz = BigInteger.One.ShiftLeft(m); +// vz = vz.SetBit(0); +// vz = vz.SetBit(this.k1); +// if (this.representation == Ppb) +// { +// vz = vz.SetBit(this.k2); +// vz = vz.SetBit(this.k3); +// } +// +// // g1(z) := 1, g2(z) := 0 +// BigInteger g1z = BigInteger.One; +// BigInteger g2z = BigInteger.Zero; +// +// // while u != 1 +// while (uz.SignValue != 0) +// { +// // j := deg(u(z)) - deg(v(z)) +// int j = uz.BitLength - vz.BitLength; +// +// // If j < 0 then: u(z) <-> v(z), g1(z) <-> g2(z), j := -j +// if (j < 0) +// { +// BigInteger uzCopy = uz; +// uz = vz; +// vz = uzCopy; +// +// BigInteger g1zCopy = g1z; +// g1z = g2z; +// g2z = g1zCopy; +// +// j = -j; +// } +// +// // u(z) := u(z) + z^j * v(z) +// // Note, that no reduction modulo f(z) is required, because +// // deg(u(z) + z^j * v(z)) <= max(deg(u(z)), j + deg(v(z))) +// // = max(deg(u(z)), deg(u(z)) - deg(v(z)) + deg(v(z)) +// // = deg(u(z)) +// uz = uz.Xor(vz.ShiftLeft(j)); +// +// // g1(z) := g1(z) + z^j * g2(z) +// g1z = g1z.Xor(g2z.ShiftLeft(j)); +// // if (g1z.BitLength() > this.m) { +// // throw new ArithmeticException( +// // "deg(g1z) >= m, g1z = " + g1z.ToString(2)); +// // } +// } +// return new F2mFieldElement(this.m, this.k1, this.k2, this.k3, g2z); +// } +// +// public override ECFieldElement Sqrt() +// { +// throw new ArithmeticException("Not implemented"); +// } +// +// /** +// * @return the representation of the field +// * <code>F<sub>2<sup>m</sup></sub></code>, either of +// * {@link F2mFieldElement.Tpb} (trinomial +// * basis representation) or +// * {@link F2mFieldElement.Ppb} (pentanomial +// * basis representation). +// */ +// public int Representation +// { +// get { return this.representation; } +// } +// +// /** +// * @return the degree <code>m</code> of the reduction polynomial +// * <code>f(z)</code>. +// */ +// public int M +// { +// get { return this.m; } +// } +// +// /** +// * @return Tpb: The integer <code>k</code> where <code>x<sup>m</sup> + +// * x<sup>k</sup> + 1</code> represents the reduction polynomial +// * <code>f(z)</code>.<br/> +// * Ppb: The integer <code>k1</code> where <code>x<sup>m</sup> + +// * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code> +// * represents the reduction polynomial <code>f(z)</code>.<br/> +// */ +// public int K1 +// { +// get { return this.k1; } +// } +// +// /** +// * @return Tpb: Always returns <code>0</code><br/> +// * Ppb: The integer <code>k2</code> where <code>x<sup>m</sup> + +// * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code> +// * represents the reduction polynomial <code>f(z)</code>.<br/> +// */ +// public int K2 +// { +// get { return this.k2; } +// } +// +// /** +// * @return Tpb: Always set to <code>0</code><br/> +// * Ppb: The integer <code>k3</code> where <code>x<sup>m</sup> + +// * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code> +// * represents the reduction polynomial <code>f(z)</code>.<br/> +// */ +// public int K3 +// { +// get { return this.k3; } +// } +// +// public override bool Equals( +// object obj) +// { +// if (obj == this) +// return true; +// +// F2mFieldElement other = obj as F2mFieldElement; +// +// if (other == null) +// return false; +// +// return Equals(other); +// } +// +// protected bool Equals( +// F2mFieldElement other) +// { +// return m == other.m +// && k1 == other.k1 +// && k2 == other.k2 +// && k3 == other.k3 +// && representation == other.representation +// && base.Equals(other); +// } +// +// public override int GetHashCode() +// { +// return base.GetHashCode() ^ m ^ k1 ^ k2 ^ k3; +// } +// } + + /** + * Class representing the Elements of the finite field + * <code>F<sub>2<sup>m</sup></sub></code> in polynomial basis (PB) + * representation. Both trinomial (Tpb) and pentanomial (Ppb) polynomial + * basis representations are supported. Gaussian normal basis (GNB) + * representation is not supported. + */ + public class F2mFieldElement + : ECFieldElement + { + /** + * Indicates gaussian normal basis representation (GNB). Number chosen + * according to X9.62. GNB is not implemented at present. + */ + public const int Gnb = 1; + + /** + * Indicates trinomial basis representation (Tpb). Number chosen + * according to X9.62. + */ + public const int Tpb = 2; + + /** + * Indicates pentanomial basis representation (Ppb). Number chosen + * according to X9.62. + */ + public const int Ppb = 3; + + /** + * Tpb or Ppb. + */ + private int representation; + + /** + * The exponent <code>m</code> of <code>F<sub>2<sup>m</sup></sub></code>. + */ + private int m; + + /** + * Tpb: The integer <code>k</code> where <code>x<sup>m</sup> + + * x<sup>k</sup> + 1</code> represents the reduction polynomial + * <code>f(z)</code>.<br/> + * Ppb: The integer <code>k1</code> where <code>x<sup>m</sup> + + * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code> + * represents the reduction polynomial <code>f(z)</code>.<br/> + */ + private int k1; + + /** + * Tpb: Always set to <code>0</code><br/> + * Ppb: The integer <code>k2</code> where <code>x<sup>m</sup> + + * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code> + * represents the reduction polynomial <code>f(z)</code>.<br/> + */ + private int k2; + + /** + * Tpb: Always set to <code>0</code><br/> + * Ppb: The integer <code>k3</code> where <code>x<sup>m</sup> + + * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code> + * represents the reduction polynomial <code>f(z)</code>.<br/> + */ + private int k3; + + /** + * The <code>IntArray</code> holding the bits. + */ + private IntArray x; + + /** + * The number of <code>int</code>s required to hold <code>m</code> bits. + */ + private readonly int t; + + /** + * Constructor for Ppb. + * @param m The exponent <code>m</code> of + * <code>F<sub>2<sup>m</sup></sub></code>. + * @param k1 The integer <code>k1</code> where <code>x<sup>m</sup> + + * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code> + * represents the reduction polynomial <code>f(z)</code>. + * @param k2 The integer <code>k2</code> where <code>x<sup>m</sup> + + * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code> + * represents the reduction polynomial <code>f(z)</code>. + * @param k3 The integer <code>k3</code> where <code>x<sup>m</sup> + + * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code> + * represents the reduction polynomial <code>f(z)</code>. + * @param x The BigInteger representing the value of the field element. + */ + public F2mFieldElement( + int m, + int k1, + int k2, + int k3, + BigInteger x) + { + // t = m / 32 rounded up to the next integer + this.t = (m + 31) >> 5; + this.x = new IntArray(x, t); + + if ((k2 == 0) && (k3 == 0)) + { + this.representation = Tpb; + } + else + { + if (k2 >= k3) + throw new ArgumentException("k2 must be smaller than k3"); + if (k2 <= 0) + throw new ArgumentException("k2 must be larger than 0"); + + this.representation = Ppb; + } + + if (x.SignValue < 0) + throw new ArgumentException("x value cannot be negative"); + + this.m = m; + this.k1 = k1; + this.k2 = k2; + this.k3 = k3; + } + + /** + * Constructor for Tpb. + * @param m The exponent <code>m</code> of + * <code>F<sub>2<sup>m</sup></sub></code>. + * @param k The integer <code>k</code> where <code>x<sup>m</sup> + + * x<sup>k</sup> + 1</code> represents the reduction + * polynomial <code>f(z)</code>. + * @param x The BigInteger representing the value of the field element. + */ + public F2mFieldElement( + int m, + int k, + BigInteger x) + : this(m, k, 0, 0, x) + { + // Set k1 to k, and set k2 and k3 to 0 + } + + private F2mFieldElement(int m, int k1, int k2, int k3, IntArray x) + { + t = (m + 31) >> 5; + this.x = x; + this.m = m; + this.k1 = k1; + this.k2 = k2; + this.k3 = k3; + + if ((k2 == 0) && (k3 == 0)) + { + this.representation = Tpb; + } + else + { + this.representation = Ppb; + } + } + + public override BigInteger ToBigInteger() + { + return x.ToBigInteger(); + } + + public override string FieldName + { + get { return "F2m"; } + } + + public override int FieldSize + { + get { return m; } + } + + /** + * Checks, if the ECFieldElements <code>a</code> and <code>b</code> + * are elements of the same field <code>F<sub>2<sup>m</sup></sub></code> + * (having the same representation). + * @param a field element. + * @param b field element to be compared. + * @throws ArgumentException if <code>a</code> and <code>b</code> + * are not elements of the same field + * <code>F<sub>2<sup>m</sup></sub></code> (having the same + * representation). + */ + public static void CheckFieldElements( + ECFieldElement a, + ECFieldElement b) + { + if (!(a is F2mFieldElement) || !(b is F2mFieldElement)) + { + throw new ArgumentException("Field elements are not " + + "both instances of F2mFieldElement"); + } + + F2mFieldElement aF2m = (F2mFieldElement)a; + F2mFieldElement bF2m = (F2mFieldElement)b; + + if ((aF2m.m != bF2m.m) || (aF2m.k1 != bF2m.k1) + || (aF2m.k2 != bF2m.k2) || (aF2m.k3 != bF2m.k3)) + { + throw new ArgumentException("Field elements are not " + + "elements of the same field F2m"); + } + + if (aF2m.representation != bF2m.representation) + { + // Should never occur + throw new ArgumentException( + "One of the field " + + "elements are not elements has incorrect representation"); + } + } + + public override ECFieldElement Add( + ECFieldElement b) + { + // No check performed here for performance reasons. Instead the + // elements involved are checked in ECPoint.F2m + // checkFieldElements(this, b); + IntArray iarrClone = (IntArray) this.x.Copy(); + F2mFieldElement bF2m = (F2mFieldElement) b; + iarrClone.AddShifted(bF2m.x, 0); + return new F2mFieldElement(m, k1, k2, k3, iarrClone); + } + + public override ECFieldElement Subtract( + ECFieldElement b) + { + // Addition and subtraction are the same in F2m + return Add(b); + } + + public override ECFieldElement Multiply( + ECFieldElement b) + { + // Right-to-left comb multiplication in the IntArray + // Input: Binary polynomials a(z) and b(z) of degree at most m-1 + // Output: c(z) = a(z) * b(z) mod f(z) + + // No check performed here for performance reasons. Instead the + // elements involved are checked in ECPoint.F2m + // checkFieldElements(this, b); + F2mFieldElement bF2m = (F2mFieldElement) b; + IntArray mult = x.Multiply(bF2m.x, m); + mult.Reduce(m, new int[]{k1, k2, k3}); + return new F2mFieldElement(m, k1, k2, k3, mult); + } + + public override ECFieldElement Divide( + ECFieldElement b) + { + // There may be more efficient implementations + ECFieldElement bInv = b.Invert(); + return Multiply(bInv); + } + + public override ECFieldElement Negate() + { + // -x == x holds for all x in F2m + return this; + } + + public override ECFieldElement Square() + { + IntArray squared = x.Square(m); + squared.Reduce(m, new int[]{k1, k2, k3}); + return new F2mFieldElement(m, k1, k2, k3, squared); + } + + public override ECFieldElement Invert() + { + // Inversion in F2m using the extended Euclidean algorithm + // Input: A nonzero polynomial a(z) of degree at most m-1 + // Output: a(z)^(-1) mod f(z) + + // u(z) := a(z) + IntArray uz = (IntArray)this.x.Copy(); + + // v(z) := f(z) + IntArray vz = new IntArray(t); + vz.SetBit(m); + vz.SetBit(0); + vz.SetBit(this.k1); + if (this.representation == Ppb) + { + vz.SetBit(this.k2); + vz.SetBit(this.k3); + } + + // g1(z) := 1, g2(z) := 0 + IntArray g1z = new IntArray(t); + g1z.SetBit(0); + IntArray g2z = new IntArray(t); + + // while u != 0 + while (uz.GetUsedLength() > 0) +// while (uz.bitLength() > 1) + { + // j := deg(u(z)) - deg(v(z)) + int j = uz.BitLength - vz.BitLength; + + // If j < 0 then: u(z) <-> v(z), g1(z) <-> g2(z), j := -j + if (j < 0) + { + IntArray uzCopy = uz; + uz = vz; + vz = uzCopy; + + IntArray g1zCopy = g1z; + g1z = g2z; + g2z = g1zCopy; + + j = -j; + } + + // u(z) := u(z) + z^j * v(z) + // Note, that no reduction modulo f(z) is required, because + // deg(u(z) + z^j * v(z)) <= max(deg(u(z)), j + deg(v(z))) + // = max(deg(u(z)), deg(u(z)) - deg(v(z)) + deg(v(z)) + // = deg(u(z)) + // uz = uz.xor(vz.ShiftLeft(j)); + // jInt = n / 32 + int jInt = j >> 5; + // jInt = n % 32 + int jBit = j & 0x1F; + IntArray vzShift = vz.ShiftLeft(jBit); + uz.AddShifted(vzShift, jInt); + + // g1(z) := g1(z) + z^j * g2(z) +// g1z = g1z.xor(g2z.ShiftLeft(j)); + IntArray g2zShift = g2z.ShiftLeft(jBit); + g1z.AddShifted(g2zShift, jInt); + } + return new F2mFieldElement(this.m, this.k1, this.k2, this.k3, g2z); + } + + public override ECFieldElement Sqrt() + { + throw new ArithmeticException("Not implemented"); + } + + /** + * @return the representation of the field + * <code>F<sub>2<sup>m</sup></sub></code>, either of + * {@link F2mFieldElement.Tpb} (trinomial + * basis representation) or + * {@link F2mFieldElement.Ppb} (pentanomial + * basis representation). + */ + public int Representation + { + get { return this.representation; } + } + + /** + * @return the degree <code>m</code> of the reduction polynomial + * <code>f(z)</code>. + */ + public int M + { + get { return this.m; } + } + + /** + * @return Tpb: The integer <code>k</code> where <code>x<sup>m</sup> + + * x<sup>k</sup> + 1</code> represents the reduction polynomial + * <code>f(z)</code>.<br/> + * Ppb: The integer <code>k1</code> where <code>x<sup>m</sup> + + * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code> + * represents the reduction polynomial <code>f(z)</code>.<br/> + */ + public int K1 + { + get { return this.k1; } + } + + /** + * @return Tpb: Always returns <code>0</code><br/> + * Ppb: The integer <code>k2</code> where <code>x<sup>m</sup> + + * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code> + * represents the reduction polynomial <code>f(z)</code>.<br/> + */ + public int K2 + { + get { return this.k2; } + } + + /** + * @return Tpb: Always set to <code>0</code><br/> + * Ppb: The integer <code>k3</code> where <code>x<sup>m</sup> + + * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code> + * represents the reduction polynomial <code>f(z)</code>.<br/> + */ + public int K3 + { + get { return this.k3; } + } + + public override bool Equals( + object obj) + { + if (obj == this) + return true; + + F2mFieldElement other = obj as F2mFieldElement; + + if (other == null) + return false; + + return Equals(other); + } + + protected bool Equals( + F2mFieldElement other) + { + return m == other.m + && k1 == other.k1 + && k2 == other.k2 + && k3 == other.k3 + && representation == other.representation + && base.Equals(other); + } + + public override int GetHashCode() + { + return m.GetHashCode() + ^ k1.GetHashCode() + ^ k2.GetHashCode() + ^ k3.GetHashCode() + ^ representation.GetHashCode() + ^ base.GetHashCode(); + } + } +} |