summary refs log tree commit diff
path: root/crypto/src/math/Primes.cs
diff options
context:
space:
mode:
Diffstat (limited to 'crypto/src/math/Primes.cs')
-rw-r--r--crypto/src/math/Primes.cs584
1 files changed, 584 insertions, 0 deletions
diff --git a/crypto/src/math/Primes.cs b/crypto/src/math/Primes.cs
new file mode 100644
index 000000000..420c3cc5a
--- /dev/null
+++ b/crypto/src/math/Primes.cs
@@ -0,0 +1,584 @@
+using System;
+
+using Org.BouncyCastle.Crypto;
+using Org.BouncyCastle.Security;
+using Org.BouncyCastle.Utilities;
+
+namespace Org.BouncyCastle.Math
+{
+    /**
+     * Utility methods for generating primes and testing for primality.
+     */
+    public abstract class Primes
+    {
+        private static readonly BigInteger One = BigInteger.One;
+        private static readonly BigInteger Two = BigInteger.Two;
+        private static readonly BigInteger Three = BigInteger.Three;
+
+        /**
+         * Used to return the output from the
+         * {@linkplain Primes#enhancedMRProbablePrimeTest(BigInteger, SecureRandom, int) Enhanced
+         * Miller-Rabin Probabilistic Primality Test}
+         */
+        public class MROutput
+        {
+            internal static MROutput ProbablyPrime()
+            {
+                return new MROutput(false, null);
+            }
+
+            internal static MROutput ProvablyCompositeWithFactor(BigInteger factor)
+            {
+                return new MROutput(true, factor);
+            }
+
+            internal static MROutput ProvablyCompositeNotPrimePower()
+            {
+                return new MROutput(true, null);
+            }
+
+            private readonly bool mProvablyComposite;
+            private readonly BigInteger mFactor;
+
+            private MROutput(bool provablyComposite, BigInteger factor)
+            {
+                this.mProvablyComposite = provablyComposite;
+                this.mFactor = factor;
+            }
+
+            public BigInteger Factor
+            {
+                get { return mFactor; }
+            }
+
+            public bool IsProvablyComposite
+            {
+                get { return mProvablyComposite; }
+            }
+
+            public bool IsNotPrimePower
+            {
+                get { return mProvablyComposite && mFactor == null; }
+            }
+        }
+
+        /**
+         * Used to return the output from the {@linkplain Primes#generateSTRandomPrime(Digest, int, byte[]) Shawe-Taylor Random_Prime Routine} 
+         */
+        public class STOutput
+        {
+            private readonly BigInteger mPrime;
+            private readonly byte[] mPrimeSeed;
+            private readonly int mPrimeGenCounter;
+
+            internal STOutput(BigInteger prime, byte[] primeSeed, int primeGenCounter)
+            {
+                this.mPrime = prime;
+                this.mPrimeSeed = primeSeed;
+                this.mPrimeGenCounter = primeGenCounter;
+            }
+
+            public BigInteger Prime
+            {
+                get { return mPrime; }
+            }
+
+            public byte[] PrimeSeed
+            {
+                get { return mPrimeSeed; }
+            }
+
+            public int PrimeGenCounter
+            {
+                get { return mPrimeGenCounter; }
+            }
+        }
+
+        /**
+         * FIPS 186-4 C.6 Shawe-Taylor Random_Prime Routine
+         * 
+         * Construct a provable prime number using a hash function.
+         * 
+         * @param hash
+         *            the {@link Digest} instance to use (as "Hash()"). Cannot be null.
+         * @param length
+         *            the length (in bits) of the prime to be generated. Must be at least 2.
+         * @param inputSeed
+         *            the seed to be used for the generation of the requested prime. Cannot be null or
+         *            empty.
+         * @return an {@link STOutput} instance containing the requested prime.
+         */
+        public static STOutput GenerateSTRandomPrime(IDigest hash, int length, byte[] inputSeed)
+        {
+            if (hash == null)
+                throw new ArgumentNullException("hash");
+            if (length < 2)
+                throw new ArgumentException("must be >= 2", "length");
+            if (inputSeed == null)
+                throw new ArgumentNullException("inputSeed");
+            if (inputSeed.Length == 0)
+                throw new ArgumentException("cannot be empty", "inputSeed");
+
+            return ImplSTRandomPrime(hash, length, Arrays.Clone(inputSeed));
+        }
+
+        /**
+         * FIPS 186-4 C.3.2 Enhanced Miller-Rabin Probabilistic Primality Test
+         * 
+         * Run several iterations of the Miller-Rabin algorithm with randomly-chosen bases. This is an
+         * alternative to {@link #isMRProbablePrime(BigInteger, SecureRandom, int)} that provides more
+         * information about a composite candidate, which may be useful when generating or validating
+         * RSA moduli.
+         * 
+         * @param candidate
+         *            the {@link BigInteger} instance to test for primality.
+         * @param random
+         *            the source of randomness to use to choose bases.
+         * @param iterations
+         *            the number of randomly-chosen bases to perform the test for.
+         * @return an {@link MROutput} instance that can be further queried for details.
+         */
+        public static MROutput EnhancedMRProbablePrimeTest(BigInteger candidate, SecureRandom random, int iterations)
+        {
+            CheckCandidate(candidate, "candidate");
+
+            if (random == null)
+                throw new ArgumentNullException("random");
+            if (iterations < 1)
+                throw new ArgumentException("must be > 0", "iterations");
+
+            if (candidate.BitLength == 2)
+                return MROutput.ProbablyPrime();
+
+            if (!candidate.TestBit(0))
+                return MROutput.ProvablyCompositeWithFactor(Two);
+
+            BigInteger w = candidate;
+            BigInteger wSubOne = candidate.Subtract(One);
+            BigInteger wSubTwo = candidate.Subtract(Two);
+
+            int a = wSubOne.GetLowestSetBit();
+            BigInteger m = wSubOne.ShiftRight(a);
+
+            for (int i = 0; i < iterations; ++i)
+            {
+                BigInteger b = BigIntegers.CreateRandomInRange(Two, wSubTwo, random);
+                BigInteger g = b.Gcd(w);
+
+                if (g.CompareTo(One) > 0)
+                    return MROutput.ProvablyCompositeWithFactor(g);
+
+                BigInteger z = b.ModPow(m, w);
+
+                if (z.Equals(One) || z.Equals(wSubOne))
+                    continue;
+
+                bool primeToBase = false;
+
+                BigInteger x = z;
+                for (int j = 1; j < a; ++j)
+                {
+                    z = z.ModPow(Two, w);
+
+                    if (z.Equals(wSubOne))
+                    {
+                        primeToBase = true;
+                        break;
+                    }
+
+                    if (z.Equals(One))
+                        break;
+
+                    x = z;
+                }
+
+                if (!primeToBase)
+                {
+                    if (!z.Equals(One))
+                    {
+                        x = z;
+                        z = z.ModPow(Two, w);
+
+                        if (!z.Equals(One))
+                        {
+                            x = z;
+                        }
+                    }
+
+                    g = x.Subtract(One).Gcd(w);
+
+                    if (g.CompareTo(One) > 0)
+                        return MROutput.ProvablyCompositeWithFactor(g);
+
+                    return MROutput.ProvablyCompositeNotPrimePower();
+                }
+            }
+
+            return MROutput.ProbablyPrime();
+        }
+
+        /**
+         * A fast check for small divisors, up to some implementation-specific limit.
+         * 
+         * @param candidate
+         *            the {@link BigInteger} instance to test for division by small factors.
+         * 
+         * @return <code>true</code> if the candidate is found to have any small factors,
+         *         <code>false</code> otherwise.
+         */
+        public static bool HasAnySmallFactors(BigInteger candidate)
+        {
+            CheckCandidate(candidate, "candidate");
+
+            return ImplHasAnySmallFactors(candidate);
+        }
+
+        /**
+         * FIPS 186-4 C.3.1 Miller-Rabin Probabilistic Primality Test
+         * 
+         * Run several iterations of the Miller-Rabin algorithm with randomly-chosen bases.
+         * 
+         * @param candidate
+         *            the {@link BigInteger} instance to test for primality.
+         * @param random
+         *            the source of randomness to use to choose bases.
+         * @param iterations
+         *            the number of randomly-chosen bases to perform the test for.
+         * @return <code>false</code> if any witness to compositeness is found amongst the chosen bases
+         *         (so <code>candidate</code> is definitely NOT prime), or else <code>true</code>
+         *         (indicating primality with some probability dependent on the number of iterations
+         *         that were performed).
+         */
+        public static bool IsMRProbablePrime(BigInteger candidate, SecureRandom random, int iterations)
+        {
+            CheckCandidate(candidate, "candidate");
+
+            if (random == null)
+                throw new ArgumentException("cannot be null", "random");
+            if (iterations < 1)
+                throw new ArgumentException("must be > 0", "iterations");
+
+            if (candidate.BitLength == 2)
+                return true;
+            if (!candidate.TestBit(0))
+                return false;
+
+            BigInteger w = candidate;
+            BigInteger wSubOne = candidate.Subtract(One);
+            BigInteger wSubTwo = candidate.Subtract(Two);
+
+            int a = wSubOne.GetLowestSetBit();
+            BigInteger m = wSubOne.ShiftRight(a);
+
+            for (int i = 0; i < iterations; ++i)
+            {
+                BigInteger b = BigIntegers.CreateRandomInRange(Two, wSubTwo, random);
+
+                if (!ImplMRProbablePrimeToBase(w, wSubOne, m, a, b))
+                    return false;
+            }
+
+            return true;
+        }
+
+        /**
+         * FIPS 186-4 C.3.1 Miller-Rabin Probabilistic Primality Test (to a fixed base).
+         * 
+         * Run a single iteration of the Miller-Rabin algorithm against the specified base.
+         * 
+         * @param candidate
+         *            the {@link BigInteger} instance to test for primality.
+         * @param baseValue
+         *            the base value to use for this iteration.
+         * @return <code>false</code> if the specified base is a witness to compositeness (so
+         *         <code>candidate</code> is definitely NOT prime), or else <code>true</code>.
+         */
+        public static bool IsMRProbablePrimeToBase(BigInteger candidate, BigInteger baseValue)
+        {
+            CheckCandidate(candidate, "candidate");
+            CheckCandidate(baseValue, "baseValue");
+
+            if (baseValue.CompareTo(candidate.Subtract(One)) >= 0)
+                throw new ArgumentException("must be < ('candidate' - 1)", "baseValue");
+
+            if (candidate.BitLength == 2)
+                return true;
+
+            BigInteger w = candidate;
+            BigInteger wSubOne = candidate.Subtract(One);
+
+            int a = wSubOne.GetLowestSetBit();
+            BigInteger m = wSubOne.ShiftRight(a);
+
+            return ImplMRProbablePrimeToBase(w, wSubOne, m, a, baseValue);
+        }
+
+        private static void CheckCandidate(BigInteger n, string name)
+        {
+            if (n == null || n.SignValue < 1 || n.BitLength < 2)
+                throw new ArgumentException("must be non-null and >= 2", name);
+        }
+
+        private static bool ImplHasAnySmallFactors(BigInteger x)
+        {
+            /*
+             * Bundle trial divisors into ~32-bit moduli then use fast tests on the ~32-bit remainders.
+             */
+            int m = 2 * 3 * 5 * 7 * 11 * 13 * 17 * 19 * 23;
+            int r = x.Mod(BigInteger.ValueOf(m)).IntValue;
+            if ((r & 1) != 0 && (r % 3) != 0 && (r % 5) != 0 && (r % 7) != 0 && (r % 11) != 0
+                && (r % 13) != 0 && (r % 17) != 0 && (r % 19) != 0 && (r % 23) != 0)
+            {
+                m = 29 * 31 * 37 * 41 * 43;
+                r = x.Mod(BigInteger.ValueOf(m)).IntValue;
+                if ((r % 29) != 0 && (r % 31) != 0 && (r % 37) != 0 && (r % 41) != 0 && (r % 43) != 0)
+                {
+                    m = 47 * 53 * 59 * 61 * 67;
+                    r = x.Mod(BigInteger.ValueOf(m)).IntValue;
+                    if ((r % 47) != 0 && (r % 53) != 0 && (r % 59) != 0 && (r % 61) != 0 && (r % 67) != 0)
+                    {
+                        m = 71 * 73 * 79 * 83;
+                        r = x.Mod(BigInteger.ValueOf(m)).IntValue;
+                        if ((r % 71) != 0 && (r % 73) != 0 && (r % 79) != 0 && (r % 83) != 0)
+                        {
+                            m = 89 * 97 * 101 * 103;
+                            r = x.Mod(BigInteger.ValueOf(m)).IntValue;
+                            if ((r % 89) != 0 && (r % 97) != 0 && (r % 101) != 0 && (r % 103) != 0)
+                            {
+                                m = 107 * 109 * 113 * 127;
+                                r = x.Mod(BigInteger.ValueOf(m)).IntValue;
+                                if ((r % 107) != 0 && (r % 109) != 0 && (r % 113) != 0 && (r % 127) != 0)
+                                {
+                                    return false;
+                                }
+                            }
+                        }
+                    }
+                }
+            }
+            return true;
+        }
+
+        private static bool ImplMRProbablePrimeToBase(BigInteger w, BigInteger wSubOne, BigInteger m, int a, BigInteger b)
+        {
+            BigInteger z = b.ModPow(m, w);
+
+            if (z.Equals(One) || z.Equals(wSubOne))
+                return true;
+
+            bool result = false;
+
+            for (int j = 1; j < a; ++j)
+            {
+                z = z.ModPow(Two, w);
+
+                if (z.Equals(wSubOne))
+                {
+                    result = true;
+                    break;
+                }
+
+                if (z.Equals(One))
+                    return false;
+            }
+
+            return result;
+        }
+
+        private static STOutput ImplSTRandomPrime(IDigest d, int length, byte[] primeSeed)
+        {
+            int dLen = d.GetDigestSize();
+
+            if (length < 33)
+            {
+                int primeGenCounter = 0;
+
+                byte[] c0 = new byte[dLen];
+                byte[] c1 = new byte[dLen];
+
+                for (;;)
+                {
+                    Hash(d, primeSeed, c0, 0);
+                    Inc(primeSeed, 1);
+
+                    Hash(d, primeSeed, c1, 0);
+                    Inc(primeSeed, 1);
+
+                    uint c = Extract32(c0) ^ Extract32(c1);
+                    c &= (uint.MaxValue >> (32 - length));
+                    c |= (1U << (length - 1)) | 1U;
+
+                    ++primeGenCounter;
+
+                    if (IsPrime32(c))
+                    {
+                        return new STOutput(BigInteger.ValueOf((long)c), primeSeed, primeGenCounter);
+                    }
+
+                    if (primeGenCounter > (4 * length))
+                    {
+                        throw new InvalidOperationException("Too many iterations in Shawe-Taylor Random_Prime Routine");
+                    }
+                }
+            }
+
+            STOutput rec = ImplSTRandomPrime(d, (length + 3)/2, primeSeed);
+
+            {
+                BigInteger c0 = rec.Prime;
+                primeSeed = rec.PrimeSeed;
+                int primeGenCounter = rec.PrimeGenCounter;
+
+                int outlen = 8 * dLen;
+                int iterations = (length - 1)/outlen;
+
+                int oldCounter = primeGenCounter;
+
+                BigInteger x = HashGen(d, primeSeed, iterations + 1);
+                x = x.Mod(One.ShiftLeft(length - 1)).SetBit(length - 1);
+
+                BigInteger c0x2 = c0.ShiftLeft(1);
+                BigInteger tx2 = x.Subtract(One).Divide(c0x2).Add(One).ShiftLeft(1);
+                int dt = 0;
+
+                BigInteger c = tx2.Multiply(c0).Add(One);
+
+                /*
+                 * TODO Since the candidate primes are generated by constant steps ('c0x2'),
+                 * sieving could be used here in place of the 'HasAnySmallFactors' approach.
+                 */
+                for (;;)
+                {
+                    if (c.BitLength > length)
+                    {
+                        tx2 = One.ShiftLeft(length - 1).Subtract(One).Divide(c0x2).Add(One).ShiftLeft(1);
+                        c = tx2.Multiply(c0).Add(One);
+                    }
+
+                    ++primeGenCounter;
+
+                    /*
+                     * This is an optimization of the original algorithm, using trial division to screen out
+                     * many non-primes quickly.
+                     * 
+                     * NOTE: 'primeSeed' is still incremented as if we performed the full check!
+                     */
+                    if (!ImplHasAnySmallFactors(c))
+                    {
+                        BigInteger a = HashGen(d, primeSeed, iterations + 1);
+                        a = a.Mod(c.Subtract(Three)).Add(Two);
+
+                        tx2 = tx2.Add(BigInteger.ValueOf(dt));
+                        dt = 0;
+
+                        BigInteger z = a.ModPow(tx2, c);
+
+                        if (c.Gcd(z.Subtract(One)).Equals(One) && z.ModPow(c0, c).Equals(One))
+                        {
+                            return new STOutput(c, primeSeed, primeGenCounter);
+                        }
+                    }
+                    else
+                    {
+                        Inc(primeSeed, iterations + 1);
+                    }
+
+                    if (primeGenCounter >= ((4 * length) + oldCounter))
+                    {
+                        throw new InvalidOperationException("Too many iterations in Shawe-Taylor Random_Prime Routine");
+                    }
+
+                    dt += 2;
+                    c = c.Add(c0x2);
+                }
+            }
+        }
+
+        private static uint Extract32(byte[] bs)
+        {
+            uint result = 0;
+
+            int count = System.Math.Min(4, bs.Length);
+            for (int i = 0; i < count; ++i)
+            {
+                uint b = bs[bs.Length - (i + 1)];
+                result |= (b << (8 * i));
+            }
+
+            return result;
+        }
+
+        private static void Hash(IDigest d, byte[] input, byte[] output, int outPos)
+        {
+            d.BlockUpdate(input, 0, input.Length);
+            d.DoFinal(output, outPos);
+        }
+
+        private static BigInteger HashGen(IDigest d, byte[] seed, int count)
+        {
+            int dLen = d.GetDigestSize();
+            int pos = count * dLen;
+            byte[] buf = new byte[pos];
+            for (int i = 0; i < count; ++i)
+            {
+                pos -= dLen;
+                Hash(d, seed, buf, pos);
+                Inc(seed, 1);
+            }
+            return new BigInteger(1, buf);
+        }
+
+        private static void Inc(byte[] seed, int c)
+        {
+            int pos = seed.Length;
+            while (c > 0 && --pos >= 0)
+            {
+                c += seed[pos];
+                seed[pos] = (byte)c;
+                c >>= 8;
+            }
+        }
+
+        private static bool IsPrime32(uint x)
+        {
+            /*
+             * Use wheel factorization with 2, 3, 5 to select trial divisors.
+             */
+
+            if (x <= 5)
+            {
+                return x == 2 || x == 3 || x == 5;
+            }
+
+            if ((x & 1) == 0 || (x % 3) == 0 || (x % 5) == 0)
+            {
+                return false;
+            }
+
+            uint[] ds = new uint[]{ 1, 7, 11, 13, 17, 19, 23, 29 };
+            uint b = 0;
+            for (int pos = 1; ; pos = 0)
+            {
+                /*
+                 * Trial division by wheel-selected divisors
+                 */
+                while (pos < ds.Length)
+                {
+                    uint d = b + ds[pos];
+                    if (x % d == 0)
+                    {
+                        return x < 30;
+                    }
+                    ++pos;
+                }
+
+                b += 30;
+
+                if ((b >> 16 != 0) || (b * b >= x))
+                {
+                    return true;
+                }
+            }
+        }
+    }
+}