diff --git a/crypto/src/bzip2/CBZip2OutputStream.cs b/crypto/src/bzip2/CBZip2OutputStream.cs
new file mode 100644
index 000000000..262a52f84
--- /dev/null
+++ b/crypto/src/bzip2/CBZip2OutputStream.cs
@@ -0,0 +1,1608 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ *
+ */
+
+/*
+ * This package is based on the work done by Keiron Liddle, Aftex Software
+ * <keiron@aftexsw.com> to whom the Ant project is very grateful for his
+ * great code.
+ */
+
+using System;
+using System.Collections;
+using System.Diagnostics;
+using System.IO;
+
+using Org.BouncyCastle.Utilities;
+using Org.BouncyCastle.Utilities.IO;
+
+namespace Org.BouncyCastle.Apache.Bzip2
+{
+ /**
+ * An output stream that compresses into the BZip2 format (with the file
+ * header chars) into another stream.
+ *
+ * @author <a href="mailto:keiron@aftexsw.com">Keiron Liddle</a>
+ *
+ * TODO: Update to BZip2 1.0.1
+ * <b>NB:</b> note this class has been modified to add a leading BZ to the
+ * start of the BZIP2 stream to make it compatible with other PGP programs.
+ */
+ public class CBZip2OutputStream
+ : BaseOutputStream
+ {
+ protected const int SETMASK = 1 << 21;
+ protected const int CLEARMASK = ~SETMASK;
+ protected const int GREATER_ICOST = 15;
+ protected const int LESSER_ICOST = 0;
+ protected const int SMALL_THRESH = 20;
+ protected const int DEPTH_THRESH = 10;
+
+ internal static readonly ushort[] RNums = {
+ 619, 720, 127, 481, 931, 816, 813, 233, 566, 247, 985, 724, 205, 454, 863, 491, 741, 242, 949, 214, 733,
+ 859, 335, 708, 621, 574, 73, 654, 730, 472, 419, 436, 278, 496, 867, 210, 399, 680, 480, 51, 878, 465, 811,
+ 169, 869, 675, 611, 697, 867, 561, 862, 687, 507, 283, 482, 129, 807, 591, 733, 623, 150, 238, 59, 379, 684,
+ 877, 625, 169, 643, 105, 170, 607, 520, 932, 727, 476, 693, 425, 174, 647, 73, 122, 335, 530, 442, 853, 695,
+ 249, 445, 515, 909, 545, 703, 919, 874, 474, 882, 500, 594, 612, 641, 801, 220, 162, 819, 984, 589, 513,
+ 495, 799, 161, 604, 958, 533, 221, 400, 386, 867, 600, 782, 382, 596, 414, 171, 516, 375, 682, 485, 911,
+ 276, 98, 553, 163, 354, 666, 933, 424, 341, 533, 870, 227, 730, 475, 186, 263, 647, 537, 686, 600, 224, 469,
+ 68, 770, 919, 190, 373, 294, 822, 808, 206, 184, 943, 795, 384, 383, 461, 404, 758, 839, 887, 715, 67, 618,
+ 276, 204, 918, 873, 777, 604, 560, 951, 160, 578, 722, 79, 804, 96, 409, 713, 940, 652, 934, 970, 447, 318,
+ 353, 859, 672, 112, 785, 645, 863, 803, 350, 139, 93, 354, 99, 820, 908, 609, 772, 154, 274, 580, 184, 79,
+ 626, 630, 742, 653, 282, 762, 623, 680, 81, 927, 626, 789, 125, 411, 521, 938, 300, 821, 78, 343, 175, 128,
+ 250, 170, 774, 972, 275, 999, 639, 495, 78, 352, 126, 857, 956, 358, 619, 580, 124, 737, 594, 701, 612, 669,
+ 112, 134, 694, 363, 992, 809, 743, 168, 974, 944, 375, 748, 52, 600, 747, 642, 182, 862, 81, 344, 805, 988,
+ 739, 511, 655, 814, 334, 249, 515, 897, 955, 664, 981, 649, 113, 974, 459, 893, 228, 433, 837, 553, 268,
+ 926, 240, 102, 654, 459, 51, 686, 754, 806, 760, 493, 403, 415, 394, 687, 700, 946, 670, 656, 610, 738, 392,
+ 760, 799, 887, 653, 978, 321, 576, 617, 626, 502, 894, 679, 243, 440, 680, 879, 194, 572, 640, 724, 926, 56,
+ 204, 700, 707, 151, 457, 449, 797, 195, 791, 558, 945, 679, 297, 59, 87, 824, 713, 663, 412, 693, 342, 606,
+ 134, 108, 571, 364, 631, 212, 174, 643, 304, 329, 343, 97, 430, 751, 497, 314, 983, 374, 822, 928, 140, 206,
+ 73, 263, 980, 736, 876, 478, 430, 305, 170, 514, 364, 692, 829, 82, 855, 953, 676, 246, 369, 970, 294, 750,
+ 807, 827, 150, 790, 288, 923, 804, 378, 215, 828, 592, 281, 565, 555, 710, 82, 896, 831, 547, 261, 524, 462,
+ 293, 465, 502, 56, 661, 821, 976, 991, 658, 869, 905, 758, 745, 193, 768, 550, 608, 933, 378, 286, 215, 979,
+ 792, 961, 61, 688, 793, 644, 986, 403, 106, 366, 905, 644, 372, 567, 466, 434, 645, 210, 389, 550, 919, 135,
+ 780, 773, 635, 389, 707, 100, 626, 958, 165, 504, 920, 176, 193, 713, 857, 265, 203, 50, 668, 108, 645, 990,
+ 626, 197, 510, 357, 358, 850, 858, 364, 936, 638 };
+
+ /*
+ * Knuth's increments seem to work better than Incerpi-Sedgewick here, possibly because the number of elements
+ * to sort is usually small, typically <= 20.
+ */
+ private static readonly int[] Incs = { 1, 4, 13, 40, 121, 364, 1093, 3280, 9841, 29524, 88573, 265720, 797161,
+ 2391484 };
+
+ private bool finished;
+
+ protected static void HbMakeCodeLengths(byte[] len, int[] freq, int alphaSize, int maxLen)
+ {
+ /*
+ Nodes and heap entries run from 1. Entry 0
+ for both the heap and nodes is a sentinel.
+ */
+ int[] heap = new int[BZip2Constants.MAX_ALPHA_SIZE + 2];
+ int[] weight = new int[BZip2Constants.MAX_ALPHA_SIZE * 2];
+ int[] parent = new int[BZip2Constants.MAX_ALPHA_SIZE * 2];
+
+ for (int i = 0; i < alphaSize; i++)
+ {
+ weight[i + 1] = (freq[i] == 0 ? 1 : freq[i]) << 8;
+ }
+
+ while (true)
+ {
+ int nNodes = alphaSize;
+ int nHeap = 0;
+
+ heap[0] = 0;
+ weight[0] = 0;
+ parent[0] = -2;
+
+ for (int i = 1; i <= alphaSize; i++)
+ {
+ parent[i] = -1;
+ heap[++nHeap] = i;
+ {
+ int zz = nHeap;
+ int tmp = heap[zz];
+ while (weight[tmp] < weight[heap[zz >> 1]])
+ {
+ heap[zz] = heap[zz >> 1];
+ zz >>= 1;
+ }
+ heap[zz] = tmp;
+ }
+ }
+ if (!(nHeap < (BZip2Constants.MAX_ALPHA_SIZE + 2)))
+ throw new InvalidOperationException();
+
+ while (nHeap > 1)
+ {
+ int n1 = heap[1];
+ heap[1] = heap[nHeap--];
+ {
+ int zz = 1;
+ int tmp = heap[zz];
+ while (true)
+ {
+ int yy = zz << 1;
+ if (yy > nHeap)
+ break;
+
+ if (yy < nHeap
+ && weight[heap[yy + 1]] < weight[heap[yy]])
+ {
+ yy++;
+ }
+
+ if (weight[tmp] < weight[heap[yy]])
+ break;
+
+ heap[zz] = heap[yy];
+ zz = yy;
+ }
+ heap[zz] = tmp;
+ }
+ int n2 = heap[1];
+ heap[1] = heap[nHeap--];
+ {
+ int zz = 1;
+ int tmp = heap[zz];
+ while (true)
+ {
+ int yy = zz << 1;
+ if (yy > nHeap)
+ break;
+
+ if (yy < nHeap
+ && weight[heap[yy + 1]] < weight[heap[yy]])
+ {
+ yy++;
+ }
+
+ if (weight[tmp] < weight[heap[yy]])
+ break;
+
+ heap[zz] = heap[yy];
+ zz = yy;
+ }
+ heap[zz] = tmp;
+ }
+ nNodes++;
+ parent[n1] = parent[n2] = nNodes;
+
+ weight[nNodes] = (int)((uint)((weight[n1] & 0xffffff00)
+ + (weight[n2] & 0xffffff00))
+ | (uint)(1 + (((weight[n1] & 0x000000ff) >
+ (weight[n2] & 0x000000ff)) ?
+ (weight[n1] & 0x000000ff) :
+ (weight[n2] & 0x000000ff))));
+
+ parent[nNodes] = -1;
+ heap[++nHeap] = nNodes;
+ {
+ int zz = nHeap;
+ int tmp = heap[zz];
+ while (weight[tmp] < weight[heap[zz >> 1]])
+ {
+ heap[zz] = heap[zz >> 1];
+ zz >>= 1;
+ }
+ heap[zz] = tmp;
+ }
+ }
+ if (!(nNodes < (BZip2Constants.MAX_ALPHA_SIZE * 2)))
+ throw new InvalidOperationException();
+
+ //bool tooLong = false;
+ int tooLongBits = 0;
+ for (int i = 1; i <= alphaSize; i++)
+ {
+ int j = 0;
+ int k = i;
+ while (parent[k] >= 0)
+ {
+ k = parent[k];
+ j++;
+ }
+ len[i - 1] = (byte)j;
+ //tooLong |= j > maxLen;
+ tooLongBits |= maxLen - j;
+ }
+
+ //if (!tooLong)
+ if (tooLongBits >= 0)
+ break;
+
+ for (int i = 1; i <= alphaSize; i++)
+ {
+ int j = weight[i] >> 8;
+ j = 1 + (j / 2);
+ weight[i] = j << 8;
+ }
+ }
+ }
+
+ /*
+ * number of characters in the block
+ */
+ int count;
+
+ /*
+ index in zptr[] of original string after sorting.
+ */
+ int origPtr;
+
+ /*
+ always: in the range 0 .. 9.
+ The current block size is 100000 * this number.
+ */
+ private readonly int blockSize100k;
+ private readonly int allowableBlockSize;
+
+ bool blockRandomised;
+ private readonly IList blocksortStack = Platform.CreateArrayList();
+
+ int bsBuff;
+ int bsLivePos;
+ private readonly CRC m_blockCrc = new CRC();
+
+ private bool[] inUse = new bool[256];
+ private int nInUse;
+
+ private byte[] m_selectors = new byte[BZip2Constants.MAX_SELECTORS];
+
+ private byte[] blockBytes;
+ private ushort[] quadrantShorts;
+ private int[] zptr;
+ private int[] szptr;
+ private int[] ftab;
+
+ private int nMTF;
+
+ private int[] mtfFreq = new int[BZip2Constants.MAX_ALPHA_SIZE];
+
+ /*
+ * Used when sorting. If too many long comparisons
+ * happen, we stop sorting, randomise the block
+ * slightly, and try again.
+ */
+ private int workFactor;
+ private int workDone;
+ private int workLimit;
+ private bool firstAttempt;
+
+ private int currentByte = -1;
+ private int runLength = 0;
+ private int m_streamCrc;
+
+ public CBZip2OutputStream(Stream outStream)
+ : this(outStream, 9)
+ {
+ }
+
+ public CBZip2OutputStream(Stream outStream, int blockSize)
+ {
+ blockBytes = null;
+ quadrantShorts = null;
+ zptr = null;
+ ftab = null;
+
+ outStream.WriteByte((byte)'B');
+ outStream.WriteByte((byte)'Z');
+
+ bsStream = outStream;
+ bsBuff = 0;
+ bsLivePos = 32;
+
+ workFactor = 50;
+ if (blockSize > 9)
+ {
+ blockSize = 9;
+ }
+ else if (blockSize < 1)
+ {
+ blockSize = 1;
+ }
+ blockSize100k = blockSize;
+
+ /* 20 is just a paranoia constant */
+ allowableBlockSize = BZip2Constants.baseBlockSize * blockSize100k - 20;
+
+ int n = BZip2Constants.baseBlockSize * blockSize100k;
+ blockBytes = new byte[(n + 1 + BZip2Constants.NUM_OVERSHOOT_BYTES)];
+ quadrantShorts = new ushort[(n + 1 + BZip2Constants.NUM_OVERSHOOT_BYTES)];
+ zptr = new int[n];
+ ftab = new int[65537];
+
+ /*
+ The back end needs a place to store the MTF values
+ whilst it calculates the coding tables. We could
+ put them in the zptr array. However, these values
+ will fit in a short, so we overlay szptr at the
+ start of zptr, in the hope of reducing the number
+ of cache misses induced by the multiple traversals
+ of the MTF values when calculating coding tables.
+ Seems to improve compression speed by about 1%.
+ */
+ // NOTE: We can't "overlay" in C#, so we just share zptr
+ szptr = zptr;
+
+ // Write `magic' bytes h indicating file-format == huffmanised, followed by a digit indicating blockSize100k
+ outStream.WriteByte((byte)'h');
+ outStream.WriteByte((byte)('0' + blockSize100k));
+
+ m_streamCrc = 0;
+
+ InitBlock();
+ }
+
+ /**
+ *
+ * modified by Oliver Merkel, 010128
+ *
+ */
+ public override void WriteByte(byte value)
+ {
+ if (currentByte == value)
+ {
+ if (++runLength > 254)
+ {
+ WriteRun();
+ currentByte = -1;
+ runLength = 0;
+ }
+ return;
+ }
+
+ if (currentByte >= 0)
+ {
+ WriteRun();
+ }
+
+ currentByte = value;
+ runLength = 1;
+ }
+
+ private void WriteRun()
+ {
+ if (count > allowableBlockSize)
+ {
+ EndBlock();
+ InitBlock();
+ }
+
+ inUse[currentByte] = true;
+
+ switch (runLength)
+ {
+ case 1:
+ blockBytes[++count] = (byte)currentByte;
+ m_blockCrc.Update((byte)currentByte);
+ break;
+ case 2:
+ blockBytes[++count] = (byte)currentByte;
+ blockBytes[++count] = (byte)currentByte;
+ m_blockCrc.Update((byte)currentByte);
+ m_blockCrc.Update((byte)currentByte);
+ break;
+ case 3:
+ blockBytes[++count] = (byte)currentByte;
+ blockBytes[++count] = (byte)currentByte;
+ blockBytes[++count] = (byte)currentByte;
+ m_blockCrc.Update((byte)currentByte);
+ m_blockCrc.Update((byte)currentByte);
+ m_blockCrc.Update((byte)currentByte);
+ break;
+ default:
+ blockBytes[++count] = (byte)currentByte;
+ blockBytes[++count] = (byte)currentByte;
+ blockBytes[++count] = (byte)currentByte;
+ blockBytes[++count] = (byte)currentByte;
+ blockBytes[++count] = (byte)(runLength - 4);
+ inUse[runLength - 4] = true;
+ m_blockCrc.UpdateRun((byte)currentByte, runLength);
+ break;
+ }
+ }
+
+ bool closed = false;
+
+// protected void Finalize()
+// {
+// Close();
+// }
+
+#if PORTABLE
+ protected override void Dispose(bool disposing)
+ {
+ if (disposing)
+ {
+ if (closed)
+ return;
+
+ Finish();
+ closed = true;
+ Platform.Dispose(this.bsStream);
+ }
+ base.Dispose(disposing);
+ }
+#else
+ public override void Close()
+ {
+ if (closed)
+ return;
+
+ Finish();
+
+ closed = true;
+ Platform.Dispose(this.bsStream);
+
+ base.Close();
+ }
+#endif
+
+ public void Finish()
+ {
+ if (finished)
+ return;
+
+ if (runLength > 0)
+ {
+ WriteRun();
+ }
+ currentByte = -1;
+ if (count > 0)
+ {
+ EndBlock();
+ }
+ EndCompression();
+ finished = true;
+ Flush();
+ }
+
+ public override void Flush()
+ {
+ bsStream.Flush();
+ }
+
+ private void InitBlock()
+ {
+ m_blockCrc.Initialise();
+ count = 0;
+
+ for (int i = 0; i < 256; i++)
+ {
+ inUse[i] = false;
+ }
+ }
+
+ private void EndBlock()
+ {
+ int blockFinalCrc = m_blockCrc.GetFinal();
+ m_streamCrc = Integers.RotateLeft(m_streamCrc, 1) ^ blockFinalCrc;
+
+ /* sort the block and establish posn of original string */
+ DoReversibleTransformation();
+
+ /*
+ A 6-byte block header, the value chosen arbitrarily
+ as 0x314159265359 :-). A 32 bit value does not really
+ give a strong enough guarantee that the value will not
+ appear by chance in the compressed datastream. Worst-case
+ probability of this event, for a 900k block, is about
+ 2.0e-3 for 32 bits, 1.0e-5 for 40 bits and 4.0e-8 for 48 bits.
+ For a compressed file of size 100Gb -- about 100000 blocks --
+ only a 48-bit marker will do. NB: normal compression/
+ decompression do *not* rely on these statistical properties.
+ They are only important when trying to recover blocks from
+ damaged files.
+ */
+ BsPutLong48(0x314159265359L);
+
+ /* Now the block's CRC, so it is in a known place. */
+ BsPutInt32(blockFinalCrc);
+
+ /* Now a single bit indicating randomisation. */
+ BsPutBit(blockRandomised ? 1 : 0);
+
+ /* Finally, block's contents proper. */
+ MoveToFrontCodeAndSend();
+ }
+
+ private void EndCompression()
+ {
+ /*
+ Now another magic 48-bit number, 0x177245385090, to
+ indicate the end of the last block. (Sqrt(pi), if
+ you want to know. I did want to use e, but it contains
+ too much repetition -- 27 18 28 18 28 46 -- for me
+ to feel statistically comfortable. Call me paranoid.)
+ */
+ BsPutLong48(0x177245385090L);
+
+ BsPutInt32(m_streamCrc);
+
+ BsFinishedWithStream();
+ }
+
+ private void HbAssignCodes(int[] code, byte[] length, int minLen, int maxLen, int alphaSize)
+ {
+ int vec = 0;
+ for (int n = minLen; n <= maxLen; n++)
+ {
+ for (int i = 0; i < alphaSize; i++)
+ {
+ if (length[i] == n)
+ {
+ code[i] = vec++;
+ }
+ }
+ vec <<= 1;
+ }
+ }
+
+ private void BsFinishedWithStream()
+ {
+ if (bsLivePos < 32)
+ {
+ bsStream.WriteByte((byte)(bsBuff >> 24));
+ bsBuff = 0;
+ bsLivePos = 32;
+ }
+ }
+
+ private void BsPutBit(int v)
+ {
+ --bsLivePos;
+ bsBuff |= v << bsLivePos;
+
+ if (bsLivePos <= 24)
+ {
+ bsStream.WriteByte((byte)(bsBuff >> 24));
+ bsBuff <<= 8;
+ bsLivePos += 8;
+ }
+ }
+
+ private void BsPutBits(int n, int v)
+ {
+ Debug.Assert(1 <= n && n <= 24);
+
+ bsLivePos -= n;
+ bsBuff |= v << bsLivePos;
+
+ while (bsLivePos <= 24)
+ {
+ bsStream.WriteByte((byte)(bsBuff >> 24));
+ bsBuff <<= 8;
+ bsLivePos += 8;
+ }
+ }
+
+ private void BsPutBitsSmall(int n, int v)
+ {
+ Debug.Assert(1 <= n && n <= 8);
+
+ bsLivePos -= n;
+ bsBuff |= v << bsLivePos;
+
+ if (bsLivePos <= 24)
+ {
+ bsStream.WriteByte((byte)(bsBuff >> 24));
+ bsBuff <<= 8;
+ bsLivePos += 8;
+ }
+ }
+
+ private void BsPutInt32(int u)
+ {
+ BsPutBits(16, (u >> 16) & 0xFFFF);
+ BsPutBits(16, u & 0xFFFF);
+ }
+
+ private void BsPutLong48(long u)
+ {
+ BsPutBits(24, (int)(u >> 24) & 0xFFFFFF);
+ BsPutBits(24, (int)u & 0xFFFFFF);
+ }
+
+ private void SendMtfValues()
+ {
+
+ int v, t, i, j, bt, bc, iter;
+
+ int alphaSize = nInUse + 2;
+
+ /* Decide how many coding tables to use */
+ if (nMTF <= 0)
+ throw new InvalidOperationException();
+
+ int nGroups;
+ if (nMTF < 200)
+ {
+ nGroups = 2;
+ }
+ else if (nMTF < 600)
+ {
+ nGroups = 3;
+ }
+ else if (nMTF < 1200)
+ {
+ nGroups = 4;
+ }
+ else if (nMTF < 2400)
+ {
+ nGroups = 5;
+ }
+ else
+ {
+ nGroups = 6;
+ }
+
+ byte[][] len = CreateByteArray(nGroups, alphaSize);
+ for (t = 0; t < nGroups; t++)
+ {
+ Arrays.Fill(len[t], GREATER_ICOST);
+ }
+
+ /* Generate an initial set of coding tables */
+ {
+ int nPart = nGroups;
+ int remF = nMTF;
+ int ge = -1;
+ while (nPart > 0)
+ {
+ int gs = ge + 1;
+ int aFreq = 0, tFreq = remF / nPart;
+ while (aFreq < tFreq && ge < alphaSize - 1)
+ {
+ aFreq += mtfFreq[++ge];
+ }
+
+ if (ge > gs && nPart != nGroups && nPart != 1
+ && ((nGroups - nPart) % 2 == 1))
+ {
+ aFreq -= mtfFreq[ge--];
+ }
+
+ byte[] len_np = len[nPart - 1];
+ for (v = 0; v < alphaSize; v++)
+ {
+ if (v >= gs && v <= ge)
+ {
+ len_np[v] = LESSER_ICOST;
+ }
+ else
+ {
+ len_np[v] = GREATER_ICOST;
+ }
+ }
+
+ nPart--;
+ remF -= aFreq;
+ }
+ }
+
+ int[][] rfreq = CBZip2InputStream.CreateIntArray(BZip2Constants.N_GROUPS, BZip2Constants.MAX_ALPHA_SIZE);
+ int[] fave = new int[BZip2Constants.N_GROUPS];
+ short[] cost = new short[BZip2Constants.N_GROUPS];
+
+ // Iterate up to N_ITERS times to improve the tables.
+ int nSelectors = 0;
+ for (iter = 0; iter < BZip2Constants.N_ITERS; iter++)
+ {
+ for (t = 0; t < nGroups; t++)
+ {
+ fave[t] = 0;
+
+ int[] rfreq_t = rfreq[t];
+ for (v = 0; v < alphaSize; v++)
+ {
+ rfreq_t[v] = 0;
+ }
+ }
+
+ nSelectors = 0;
+ int gs = 0;
+ while (gs < nMTF)
+ {
+ /* Set group start & end marks. */
+
+ /*
+ * Calculate the cost of this group as coded by each of the coding tables.
+ */
+
+ int ge = System.Math.Min(gs + BZip2Constants.G_SIZE - 1, nMTF - 1);
+
+ if (nGroups == 6)
+ {
+ byte[] len_0 = len[0], len_1 = len[1], len_2 = len[2], len_3 = len[3], len_4 = len[4], len_5 = len[5];
+ short cost0 = 0, cost1 = 0, cost2 = 0, cost3 = 0, cost4 = 0, cost5 = 0;
+
+ for (i = gs; i <= ge; i++)
+ {
+ int icv = szptr[i];
+ cost0 += len_0[icv];
+ cost1 += len_1[icv];
+ cost2 += len_2[icv];
+ cost3 += len_3[icv];
+ cost4 += len_4[icv];
+ cost5 += len_5[icv];
+ }
+
+ cost[0] = cost0;
+ cost[1] = cost1;
+ cost[2] = cost2;
+ cost[3] = cost3;
+ cost[4] = cost4;
+ cost[5] = cost5;
+ }
+ else
+ {
+ for (t = 0; t < nGroups; t++)
+ {
+ cost[t] = 0;
+ }
+
+ for (i = gs; i <= ge; i++)
+ {
+ int icv = szptr[i];
+ for (t = 0; t < nGroups; t++)
+ {
+ cost[t] += len[t][icv];
+ }
+ }
+ }
+
+ /*
+ Find the coding table which is best for this group,
+ and record its identity in the selector table.
+ */
+ bc = cost[0];
+ bt = 0;
+ for (t = 1; t < nGroups; t++)
+ {
+ short cost_t = cost[t];
+ if (cost_t < bc)
+ {
+ bc = cost_t;
+ bt = t;
+ }
+ }
+ fave[bt]++;
+ m_selectors[nSelectors] = (byte)bt;
+ nSelectors++;
+
+ /*
+ Increment the symbol frequencies for the selected table.
+ */
+ int[] rfreq_bt = rfreq[bt];
+ for (i = gs; i <= ge; i++)
+ {
+ rfreq_bt[szptr[i]]++;
+ }
+
+ gs = ge + 1;
+ }
+
+ /*
+ Recompute the tables based on the accumulated frequencies.
+ */
+ for (t = 0; t < nGroups; t++)
+ {
+ HbMakeCodeLengths(len[t], rfreq[t], alphaSize, BZip2Constants.MAX_CODE_LEN_GEN);
+ }
+ }
+
+ if (nGroups >= 8 || nGroups > BZip2Constants.N_GROUPS)
+ throw new InvalidOperationException();
+ if (nSelectors >= 32768 || nSelectors > BZip2Constants.MAX_SELECTORS)
+ throw new InvalidOperationException();
+
+ int[][] code = CBZip2InputStream.CreateIntArray(BZip2Constants.N_GROUPS, BZip2Constants.MAX_ALPHA_SIZE);
+
+ /* Assign actual codes for the tables. */
+ for (t = 0; t < nGroups; t++)
+ {
+ int maxLen = 0, minLen = 32;
+ byte[] len_t = len[t];
+ for (i = 0; i < alphaSize; i++)
+ {
+ int lti = len_t[i];
+ maxLen = System.Math.Max(maxLen, lti);
+ minLen = System.Math.Min(minLen, lti);
+ }
+ if (minLen < 1 | maxLen > BZip2Constants.MAX_CODE_LEN_GEN)
+ throw new InvalidOperationException();
+
+ HbAssignCodes(code[t], len_t, minLen, maxLen, alphaSize);
+ }
+
+ /* Transmit the mapping table. */
+ {
+ bool[] inUse16 = new bool[16];
+ for (i = 0; i < 16; i++)
+ {
+ inUse16[i] = false;
+ int i16 = i * 16;
+ for (j = 0; j < 16; j++)
+ {
+ if (inUse[i16 + j])
+ {
+ inUse16[i] = true;
+ break;
+ }
+ }
+ }
+
+ for (i = 0; i < 16; i++)
+ {
+ BsPutBit(inUse16[i] ? 1 : 0);
+ }
+
+ for (i = 0; i < 16; i++)
+ {
+ if (inUse16[i])
+ {
+ int i16 = i * 16;
+ for (j = 0; j < 16; j++)
+ {
+ BsPutBit(inUse[i16 + j] ? 1 : 0);
+ }
+ }
+ }
+ }
+
+ /* Now the selectors. */
+ BsPutBitsSmall(3, nGroups);
+ BsPutBits(15, nSelectors);
+ {
+ int mtfSelectors = 0x00654321;
+
+ for (i = 0; i < nSelectors; i++)
+ {
+ // Compute MTF value for the selector.
+ int ll_i = m_selectors[i];
+ int bitPos = ll_i << 2;
+ int mtfSelector = (mtfSelectors >> bitPos) & 0xF;
+
+ if (mtfSelector != 1)
+ {
+ int mtfIncMask = (0x00888888 - mtfSelectors + 0x00111111 * mtfSelector) & 0x00888888;
+ mtfSelectors = mtfSelectors - (mtfSelector << bitPos) + (mtfIncMask >> 3);
+ }
+
+ BsPutBitsSmall(mtfSelector, (1 << mtfSelector) - 2);
+ }
+ }
+
+ /* Now the coding tables. */
+ for (t = 0; t < nGroups; t++)
+ {
+ byte[] len_t = len[t];
+ int curr = len_t[0];
+ BsPutBitsSmall(6, curr << 1);
+ for (i = 1; i < alphaSize; i++)
+ {
+ int lti = len_t[i];
+ while (curr < lti)
+ {
+ BsPutBitsSmall(2, 2);
+ curr++; /* 10 */
+ }
+ while (curr > lti)
+ {
+ BsPutBitsSmall(2, 3);
+ curr--; /* 11 */
+ }
+ BsPutBit(0);
+ }
+ }
+
+ /* And finally, the block data proper */
+ {
+ int selCtr = 0;
+ int gs = 0;
+ while (gs < nMTF)
+ {
+ int ge = System.Math.Min(gs + BZip2Constants.G_SIZE - 1, nMTF - 1);
+
+ int selector_selCtr = m_selectors[selCtr];
+ byte[] len_selCtr = len[selector_selCtr];
+ int[] code_selCtr = code[selector_selCtr];
+
+ for (i = gs; i <= ge; i++)
+ {
+ int sfmap_i = szptr[i];
+ BsPutBits(len_selCtr[sfmap_i], code_selCtr[sfmap_i]);
+ }
+
+ gs = ge + 1;
+ selCtr++;
+ }
+ if (selCtr != nSelectors)
+ throw new InvalidOperationException();
+ }
+ }
+
+ private void MoveToFrontCodeAndSend()
+ {
+ BsPutBits(24, origPtr);
+ GenerateMtfValues();
+ SendMtfValues();
+ }
+
+ private Stream bsStream;
+
+ private void SimpleSort(int lo, int hi, int d)
+ {
+ int i, j, h, v;
+
+ int bigN = hi - lo + 1;
+ if (bigN < 2)
+ return;
+
+ int hp = 0;
+ while (Incs[hp] < bigN)
+ {
+ hp++;
+ }
+ hp--;
+
+ for (; hp >= 0; hp--)
+ {
+ h = Incs[hp];
+
+ i = lo + h;
+ while (i <= hi)
+ {
+ /* copy 1 */
+ v = zptr[i];
+ j = i;
+ while (FullGtU(zptr[j - h] + d, v + d))
+ {
+ zptr[j] = zptr[j - h];
+ j = j - h;
+ if (j <= (lo + h - 1))
+ break;
+ }
+ zptr[j] = v;
+
+ /* copy 2 */
+ if (++i > hi)
+ break;
+
+ v = zptr[i];
+ j = i;
+ while (FullGtU(zptr[j - h] + d, v + d))
+ {
+ zptr[j] = zptr[j - h];
+ j = j - h;
+ if (j <= (lo + h - 1))
+ break;
+ }
+ zptr[j] = v;
+
+ /* copy 3 */
+ if (++i > hi)
+ break;
+
+ v = zptr[i];
+ j = i;
+ while (FullGtU(zptr[j - h] + d, v + d))
+ {
+ zptr[j] = zptr[j - h];
+ j = j - h;
+ if (j <= (lo + h - 1))
+ break;
+ }
+ zptr[j] = v;
+ i++;
+
+ if (workDone > workLimit && firstAttempt)
+ return;
+ }
+ }
+ }
+
+ private void Vswap(int p1, int p2, int n)
+ {
+ while (--n >= 0)
+ {
+ int t1 = zptr[p1], t2 = zptr[p2];
+ zptr[p1++] = t2;
+ zptr[p2++] = t1;
+ }
+ }
+
+ private int Med3(int a, int b, int c)
+ {
+ return a > b
+ ? (c < b ? b : c > a ? a : c)
+ : (c < a ? a : c > b ? b : c);
+ }
+
+ internal class StackElem
+ {
+ internal int ll;
+ internal int hh;
+ internal int dd;
+ }
+
+ private static void PushStackElem(IList stack, int stackCount, int ll, int hh, int dd)
+ {
+ StackElem stackElem;
+ if (stackCount < stack.Count)
+ {
+ stackElem = (StackElem)stack[stackCount];
+ }
+ else
+ {
+ stackElem = new StackElem();
+ stack.Add(stackElem);
+ }
+
+ stackElem.ll = ll;
+ stackElem.hh = hh;
+ stackElem.dd = dd;
+ }
+
+ private void QSort3(int loSt, int hiSt, int dSt)
+ {
+ int unLo, unHi, ltLo, gtHi, n, m;
+
+ IList stack = blocksortStack;
+ int stackCount = 0;
+ StackElem stackElem;
+
+ int lo = loSt;
+ int hi = hiSt;
+ int d = dSt;
+
+ for (;;)
+ {
+ if (hi - lo < SMALL_THRESH || d > DEPTH_THRESH)
+ {
+ SimpleSort(lo, hi, d);
+ if (stackCount < 1 || (workDone > workLimit && firstAttempt))
+ return;
+
+ stackElem = (StackElem)stack[--stackCount];
+ lo = stackElem.ll;
+ hi = stackElem.hh;
+ d = stackElem.dd;
+ continue;
+ }
+
+ int d1 = d + 1;
+ int med = Med3(
+ blockBytes[zptr[lo] + d1],
+ blockBytes[zptr[hi] + d1],
+ blockBytes[zptr[(lo + hi) >> 1] + d1]);
+
+ unLo = ltLo = lo;
+ unHi = gtHi = hi;
+
+ while (true)
+ {
+ while (unLo <= unHi)
+ {
+ int zUnLo = zptr[unLo];
+ n = blockBytes[zUnLo + d1] - med;
+ if (n > 0)
+ break;
+
+ if (n == 0)
+ {
+ zptr[unLo] = zptr[ltLo];
+ zptr[ltLo++] = zUnLo;
+ }
+ unLo++;
+ }
+ while (unLo <= unHi)
+ {
+ int zUnHi = zptr[unHi];
+ n = blockBytes[zUnHi + d1] - med;
+ if (n < 0)
+ break;
+
+ if (n == 0)
+ {
+ zptr[unHi] = zptr[gtHi];
+ zptr[gtHi--] = zUnHi;
+ }
+ unHi--;
+ }
+ if (unLo > unHi)
+ break;
+
+ int temp = zptr[unLo];
+ zptr[unLo++] = zptr[unHi];
+ zptr[unHi--] = temp;
+ }
+
+ if (gtHi < ltLo)
+ {
+ d = d1;
+ continue;
+ }
+
+ n = System.Math.Min(ltLo - lo, unLo - ltLo);
+ Vswap(lo, unLo - n, n);
+
+ m = System.Math.Min(hi - gtHi, gtHi - unHi);
+ Vswap(unLo, hi - m + 1, m);
+
+ n = lo + (unLo - ltLo);
+ m = hi - (gtHi - unHi);
+
+ PushStackElem(stack, stackCount++, lo, n - 1, d);
+ PushStackElem(stack, stackCount++, n, m, d1);
+
+ lo = m + 1;
+ }
+ }
+
+ private void MainSort()
+ {
+ int i, j, ss, sb;
+ int[] runningOrder = new int[256];
+ int[] copy = new int[256];
+ bool[] bigDone = new bool[256];
+ int c1, c2;
+
+ /*
+ In the various block-sized structures, live data runs
+ from 0 to last+NUM_OVERSHOOT_BYTES inclusive. First,
+ set up the overshoot area for block.
+ */
+ for (i = 0; i < BZip2Constants.NUM_OVERSHOOT_BYTES; i++)
+ {
+ blockBytes[count + i + 1] = blockBytes[(i % count) + 1];
+ }
+ for (i = 0; i <= count + BZip2Constants.NUM_OVERSHOOT_BYTES; i++)
+ {
+ quadrantShorts[i] = 0;
+ }
+
+ blockBytes[0] = blockBytes[count];
+
+ if (count <= 4000)
+ {
+ /*
+ Use SimpleSort(), since the full sorting mechanism
+ has quite a large constant overhead.
+ */
+ for (i = 0; i < count; i++)
+ {
+ zptr[i] = i;
+ }
+ firstAttempt = false;
+ workDone = workLimit = 0;
+ SimpleSort(0, count - 1, 0);
+ }
+ else
+ {
+ for (i = 0; i <= 255; i++)
+ {
+ bigDone[i] = false;
+ }
+
+ for (i = 0; i <= 65536; i++)
+ {
+ ftab[i] = 0;
+ }
+
+ c1 = blockBytes[0];
+ for (i = 1; i <= count; i++)
+ {
+ c2 = blockBytes[i];
+ ftab[(c1 << 8) + c2]++;
+ c1 = c2;
+ }
+
+ for (i = 0; i < 65536; i++)
+ {
+ ftab[i + 1] += ftab[i];
+ }
+
+ c1 = blockBytes[1];
+ for (i = 0; i < (count - 1); i++)
+ {
+ c2 = blockBytes[i + 2];
+ j = (c1 << 8) + c2;
+ c1 = c2;
+ ftab[j]--;
+ zptr[ftab[j]] = i;
+ }
+
+ j = ((int)blockBytes[count] << 8) + blockBytes[1];
+ ftab[j]--;
+ zptr[ftab[j]] = count - 1;
+
+ /*
+ Now ftab contains the first loc of every small bucket.
+ Calculate the running order, from smallest to largest
+ big bucket.
+ */
+
+ for (i = 0; i <= 255; i++)
+ {
+ runningOrder[i] = i;
+ }
+
+ {
+ int h = 1;
+ do
+ {
+ h = 3 * h + 1;
+ }
+ while (h <= 256);
+ do
+ {
+ h = h / 3;
+ for (i = h; i <= 255; i++)
+ {
+ int vv = runningOrder[i];
+ j = i;
+ while ((ftab[(runningOrder[j - h] + 1) << 8] - ftab[runningOrder[j - h] << 8])
+ > (ftab[(vv + 1) << 8] - ftab[vv << 8]))
+ {
+ runningOrder[j] = runningOrder[j - h];
+ j = j - h;
+ if (j < h)
+ break;
+ }
+ runningOrder[j] = vv;
+ }
+ }
+ while (h != 1);
+ }
+
+ /*
+ The main sorting loop.
+ */
+ for (i = 0; i <= 255; i++)
+ {
+ /*
+ Process big buckets, starting with the least full.
+ */
+ ss = runningOrder[i];
+
+ /*
+ Complete the big bucket [ss] by quicksorting
+ any unsorted small buckets [ss, j]. Hopefully
+ previous pointer-scanning phases have already
+ completed many of the small buckets [ss, j], so
+ we don't have to sort them at all.
+ */
+ for (j = 0; j <= 255; j++)
+ {
+ sb = (ss << 8) + j;
+ if ((ftab[sb] & SETMASK) != SETMASK)
+ {
+ int lo = ftab[sb] & CLEARMASK;
+ int hi = (ftab[sb + 1] & CLEARMASK) - 1;
+ if (hi > lo)
+ {
+ QSort3(lo, hi, 2);
+ if (workDone > workLimit && firstAttempt)
+ return;
+ }
+ ftab[sb] |= SETMASK;
+ }
+ }
+
+ /*
+ The ss big bucket is now done. Record this fact,
+ and update the quadrant descriptors. Remember to
+ update quadrants in the overshoot area too, if
+ necessary. The "if (i < 255)" test merely skips
+ this updating for the last bucket processed, since
+ updating for the last bucket is pointless.
+ */
+ bigDone[ss] = true;
+
+ if (i < 255)
+ {
+ int bbStart = ftab[ss << 8] & CLEARMASK;
+ int bbSize = (ftab[(ss + 1) << 8] & CLEARMASK) - bbStart;
+
+ int shifts = 0;
+ while ((bbSize >> shifts) > 65534)
+ {
+ shifts++;
+ }
+
+ for (j = 0; j < bbSize; j++)
+ {
+ int a2update = zptr[bbStart + j] + 1;
+ ushort qVal = (ushort)(j >> shifts);
+ quadrantShorts[a2update] = qVal;
+ if (a2update <= BZip2Constants.NUM_OVERSHOOT_BYTES)
+ {
+ quadrantShorts[a2update + count] = qVal;
+ }
+ }
+
+ if (!(((bbSize - 1) >> shifts) <= 65535))
+ throw new InvalidOperationException();
+ }
+
+ /*
+ Now scan this big bucket so as to synthesise the
+ sorted order for small buckets [t, ss] for all t != ss.
+ */
+ for (j = 0; j <= 255; j++)
+ {
+ copy[j] = ftab[(j << 8) + ss] & CLEARMASK;
+ }
+
+ for (j = ftab[ss << 8] & CLEARMASK;
+ j < (ftab[(ss + 1) << 8] & CLEARMASK); j++)
+ {
+ int zptr_j = zptr[j];
+ c1 = blockBytes[zptr_j];
+ if (!bigDone[c1])
+ {
+ zptr[copy[c1]] = (zptr_j == 0 ? count : zptr_j) - 1;
+ copy[c1]++;
+ }
+ }
+
+ for (j = 0; j <= 255; j++)
+ {
+ ftab[(j << 8) + ss] |= SETMASK;
+ }
+ }
+ }
+ }
+
+ private void RandomiseBlock()
+ {
+ for (int i = 0; i < 256; i++)
+ {
+ inUse[i] = false;
+ }
+
+ int rNToGo = 0, rTPos = 0;
+
+ for (int i = 1; i <= count; i++)
+ {
+ if (rNToGo == 0)
+ {
+ rNToGo = RNums[rTPos++];
+ rTPos &= 0x1FF;
+ }
+ rNToGo--;
+ blockBytes[i] ^= (byte)(rNToGo == 1 ? 1 : 0);
+
+ inUse[blockBytes[i]] = true;
+ }
+ }
+
+ private void DoReversibleTransformation()
+ {
+ workLimit = workFactor * (count - 1);
+ workDone = 0;
+ blockRandomised = false;
+ firstAttempt = true;
+
+ MainSort();
+
+ if (workDone > workLimit && firstAttempt)
+ {
+ RandomiseBlock();
+ workLimit = workDone = 0;
+ blockRandomised = true;
+ firstAttempt = false;
+ MainSort();
+ }
+
+ origPtr = -1;
+ for (int i = 0; i < count; i++)
+ {
+ if (zptr[i] == 0)
+ {
+ origPtr = i;
+ break;
+ }
+ }
+
+ if (origPtr == -1)
+ throw new InvalidOperationException();
+ }
+
+ private bool FullGtU(int i1, int i2)
+ {
+ int c1, c2;
+
+ c1 = blockBytes[++i1];
+ c2 = blockBytes[++i2];
+ if (c1 != c2)
+ return c1 > c2;
+
+ c1 = blockBytes[++i1];
+ c2 = blockBytes[++i2];
+ if (c1 != c2)
+ return c1 > c2;
+
+ c1 = blockBytes[++i1];
+ c2 = blockBytes[++i2];
+ if (c1 != c2)
+ return c1 > c2;
+
+ c1 = blockBytes[++i1];
+ c2 = blockBytes[++i2];
+ if (c1 != c2)
+ return c1 > c2;
+
+ c1 = blockBytes[++i1];
+ c2 = blockBytes[++i2];
+ if (c1 != c2)
+ return c1 > c2;
+
+ c1 = blockBytes[++i1];
+ c2 = blockBytes[++i2];
+ if (c1 != c2)
+ return c1 > c2;
+
+ int k = count;
+ int s1, s2;
+
+ do
+ {
+ c1 = blockBytes[++i1];
+ c2 = blockBytes[++i2];
+ if (c1 != c2)
+ return c1 > c2;
+
+ s1 = quadrantShorts[i1];
+ s2 = quadrantShorts[i2];
+ if (s1 != s2)
+ return s1 > s2;
+
+ c1 = blockBytes[++i1];
+ c2 = blockBytes[++i2];
+ if (c1 != c2)
+ return c1 > c2;
+
+ s1 = quadrantShorts[i1];
+ s2 = quadrantShorts[i2];
+ if (s1 != s2)
+ return s1 > s2;
+
+ c1 = blockBytes[++i1];
+ c2 = blockBytes[++i2];
+ if (c1 != c2)
+ return c1 > c2;
+
+ s1 = quadrantShorts[i1];
+ s2 = quadrantShorts[i2];
+ if (s1 != s2)
+ return s1 > s2;
+
+ c1 = blockBytes[++i1];
+ c2 = blockBytes[++i2];
+ if (c1 != c2)
+ return c1 > c2;
+
+ s1 = quadrantShorts[i1];
+ s2 = quadrantShorts[i2];
+ if (s1 != s2)
+ return s1 > s2;
+
+ if (i1 >= count)
+ {
+ i1 -= count;
+ }
+ if (i2 >= count)
+ {
+ i2 -= count;
+ }
+
+ k -= 4;
+ workDone++;
+ }
+ while (k >= 0);
+
+ return false;
+ }
+
+ private void GenerateMtfValues()
+ {
+ int i;
+
+ nInUse = 0;
+
+ byte[] yy = new byte[256];
+ for (i = 0; i < 256; i++)
+ {
+ if (inUse[i])
+ {
+ yy[nInUse++] = (byte)i;
+ }
+ }
+
+ int EOB = nInUse + 1;
+
+ for (i = 0; i <= EOB; i++)
+ {
+ mtfFreq[i] = 0;
+ }
+
+ int j, wr = 0, zPend = 0;
+ for (i = 0; i < count; i++)
+ {
+ byte blockByte = blockBytes[zptr[i]];
+
+ byte tmp = yy[0];
+ if (blockByte == tmp)
+ {
+ zPend++;
+ continue;
+ }
+
+ int sym = 1;
+ do
+ {
+ byte tmp2 = tmp;
+ tmp = yy[sym];
+ yy[sym++] = tmp2;
+ }
+ while (blockByte != tmp);
+ yy[0] = tmp;
+
+ while (zPend > 0)
+ {
+ // RUNA or RUNB
+ int run = --zPend & 1;
+ szptr[wr++] = run;
+ mtfFreq[run]++;
+ zPend >>= 1;
+ }
+
+ szptr[wr++] = sym;
+ mtfFreq[sym]++;
+ }
+
+ while (zPend > 0)
+ {
+ // RUNA or RUNB
+ int run = --zPend & 1;
+ szptr[wr++] = run;
+ mtfFreq[run]++;
+ zPend >>= 1;
+ }
+
+ szptr[wr++] = EOB;
+ mtfFreq[EOB]++;
+
+ nMTF = wr;
+ }
+
+ internal static byte[][] CreateByteArray(int n1, int n2)
+ {
+ byte[][] a = new byte[n1][];
+ for (int k = 0; k < n1; ++k)
+ {
+ a[k] = new byte[n2];
+ }
+ return a;
+ }
+ }
+}
|