diff --git a/Crypto/src/math/ec/ECPoint.cs b/Crypto/src/math/ec/ECPoint.cs
new file mode 100644
index 000000000..f95f09974
--- /dev/null
+++ b/Crypto/src/math/ec/ECPoint.cs
@@ -0,0 +1,567 @@
+using System;
+using System.Collections;
+using System.Diagnostics;
+
+using Org.BouncyCastle.Asn1.X9;
+
+using Org.BouncyCastle.Math.EC.Multiplier;
+
+namespace Org.BouncyCastle.Math.EC
+{
+ /**
+ * base class for points on elliptic curves.
+ */
+ public abstract class ECPoint
+ {
+ internal readonly ECCurve curve;
+ internal readonly ECFieldElement x, y;
+ internal readonly bool withCompression;
+ internal ECMultiplier multiplier = null;
+ internal PreCompInfo preCompInfo = null;
+
+ protected internal ECPoint(
+ ECCurve curve,
+ ECFieldElement x,
+ ECFieldElement y,
+ bool withCompression)
+ {
+ if (curve == null)
+ throw new ArgumentNullException("curve");
+
+ this.curve = curve;
+ this.x = x;
+ this.y = y;
+ this.withCompression = withCompression;
+ }
+
+ public ECCurve Curve
+ {
+ get { return curve; }
+ }
+
+ public ECFieldElement X
+ {
+ get { return x; }
+ }
+
+ public ECFieldElement Y
+ {
+ get { return y; }
+ }
+
+ public bool IsInfinity
+ {
+ get { return x == null && y == null; }
+ }
+
+ public bool IsCompressed
+ {
+ get { return withCompression; }
+ }
+
+ public override bool Equals(
+ object obj)
+ {
+ if (obj == this)
+ return true;
+
+ ECPoint o = obj as ECPoint;
+
+ if (o == null)
+ return false;
+
+ if (this.IsInfinity)
+ return o.IsInfinity;
+
+ return x.Equals(o.x) && y.Equals(o.y);
+ }
+
+ public override int GetHashCode()
+ {
+ if (this.IsInfinity)
+ return 0;
+
+ return x.GetHashCode() ^ y.GetHashCode();
+ }
+
+// /**
+// * Mainly for testing. Explicitly set the <code>ECMultiplier</code>.
+// * @param multiplier The <code>ECMultiplier</code> to be used to multiply
+// * this <code>ECPoint</code>.
+// */
+// internal void SetECMultiplier(
+// ECMultiplier multiplier)
+// {
+// this.multiplier = multiplier;
+// }
+
+ /**
+ * Sets the <code>PreCompInfo</code>. Used by <code>ECMultiplier</code>s
+ * to save the precomputation for this <code>ECPoint</code> to store the
+ * precomputation result for use by subsequent multiplication.
+ * @param preCompInfo The values precomputed by the
+ * <code>ECMultiplier</code>.
+ */
+ internal void SetPreCompInfo(
+ PreCompInfo preCompInfo)
+ {
+ this.preCompInfo = preCompInfo;
+ }
+
+ public abstract byte[] GetEncoded();
+
+ public abstract ECPoint Add(ECPoint b);
+ public abstract ECPoint Subtract(ECPoint b);
+ public abstract ECPoint Negate();
+ public abstract ECPoint Twice();
+ public abstract ECPoint Multiply(BigInteger b);
+
+ /**
+ * Sets the appropriate <code>ECMultiplier</code>, unless already set.
+ */
+ internal virtual void AssertECMultiplier()
+ {
+ if (this.multiplier == null)
+ {
+ lock (this)
+ {
+ if (this.multiplier == null)
+ {
+ this.multiplier = new FpNafMultiplier();
+ }
+ }
+ }
+ }
+ }
+
+ public abstract class ECPointBase
+ : ECPoint
+ {
+ protected internal ECPointBase(
+ ECCurve curve,
+ ECFieldElement x,
+ ECFieldElement y,
+ bool withCompression)
+ : base(curve, x, y, withCompression)
+ {
+ }
+
+ protected internal abstract bool YTilde { get; }
+
+ /**
+ * return the field element encoded with point compression. (S 4.3.6)
+ */
+ public override byte[] GetEncoded()
+ {
+ if (this.IsInfinity)
+ return new byte[1];
+
+ // Note: some of the tests rely on calculating byte length from the field element
+ // (since the test cases use mismatching fields for curve/elements)
+ int byteLength = X9IntegerConverter.GetByteLength(x);
+ byte[] X = X9IntegerConverter.IntegerToBytes(this.X.ToBigInteger(), byteLength);
+ byte[] PO;
+
+ if (withCompression)
+ {
+ PO = new byte[1 + X.Length];
+
+ PO[0] = (byte)(YTilde ? 0x03 : 0x02);
+ }
+ else
+ {
+ byte[] Y = X9IntegerConverter.IntegerToBytes(this.Y.ToBigInteger(), byteLength);
+ PO = new byte[1 + X.Length + Y.Length];
+
+ PO[0] = 0x04;
+
+ Y.CopyTo(PO, 1 + X.Length);
+ }
+
+ X.CopyTo(PO, 1);
+
+ return PO;
+ }
+
+ /**
+ * Multiplies this <code>ECPoint</code> by the given number.
+ * @param k The multiplicator.
+ * @return <code>k * this</code>.
+ */
+ public override ECPoint Multiply(
+ BigInteger k)
+ {
+ if (k.SignValue < 0)
+ throw new ArgumentException("The multiplicator cannot be negative", "k");
+
+ if (this.IsInfinity)
+ return this;
+
+ if (k.SignValue == 0)
+ return this.curve.Infinity;
+
+ AssertECMultiplier();
+ return this.multiplier.Multiply(this, k, preCompInfo);
+ }
+ }
+
+ /**
+ * Elliptic curve points over Fp
+ */
+ public class FpPoint
+ : ECPointBase
+ {
+ /**
+ * Create a point which encodes with point compression.
+ *
+ * @param curve the curve to use
+ * @param x affine x co-ordinate
+ * @param y affine y co-ordinate
+ */
+ public FpPoint(
+ ECCurve curve,
+ ECFieldElement x,
+ ECFieldElement y)
+ : this(curve, x, y, false)
+ {
+ }
+
+ /**
+ * Create a point that encodes with or without point compresion.
+ *
+ * @param curve the curve to use
+ * @param x affine x co-ordinate
+ * @param y affine y co-ordinate
+ * @param withCompression if true encode with point compression
+ */
+ public FpPoint(
+ ECCurve curve,
+ ECFieldElement x,
+ ECFieldElement y,
+ bool withCompression)
+ : base(curve, x, y, withCompression)
+ {
+ if ((x != null && y == null) || (x == null && y != null))
+ throw new ArgumentException("Exactly one of the field elements is null");
+ }
+
+ protected internal override bool YTilde
+ {
+ get
+ {
+ return this.Y.ToBigInteger().TestBit(0);
+ }
+ }
+
+ // B.3 pg 62
+ public override ECPoint Add(
+ ECPoint b)
+ {
+ if (this.IsInfinity)
+ return b;
+
+ if (b.IsInfinity)
+ return this;
+
+ // Check if b = this or b = -this
+ if (this.x.Equals(b.x))
+ {
+ if (this.y.Equals(b.y))
+ {
+ // this = b, i.e. this must be doubled
+ return this.Twice();
+ }
+
+ Debug.Assert(this.y.Equals(b.y.Negate()));
+
+ // this = -b, i.e. the result is the point at infinity
+ return this.curve.Infinity;
+ }
+
+ ECFieldElement gamma = b.y.Subtract(this.y).Divide(b.x.Subtract(this.x));
+
+ ECFieldElement x3 = gamma.Square().Subtract(this.x).Subtract(b.x);
+ ECFieldElement y3 = gamma.Multiply(this.x.Subtract(x3)).Subtract(this.y);
+
+ return new FpPoint(curve, x3, y3);
+ }
+
+ // B.3 pg 62
+ public override ECPoint Twice()
+ {
+ // Twice identity element (point at infinity) is identity
+ if (this.IsInfinity)
+ return this;
+
+ // if y1 == 0, then (x1, y1) == (x1, -y1)
+ // and hence this = -this and thus 2(x1, y1) == infinity
+ if (this.y.ToBigInteger().SignValue == 0)
+ return this.curve.Infinity;
+
+ ECFieldElement TWO = this.curve.FromBigInteger(BigInteger.Two);
+ ECFieldElement THREE = this.curve.FromBigInteger(BigInteger.Three);
+ ECFieldElement gamma = this.x.Square().Multiply(THREE).Add(curve.a).Divide(y.Multiply(TWO));
+
+ ECFieldElement x3 = gamma.Square().Subtract(this.x.Multiply(TWO));
+ ECFieldElement y3 = gamma.Multiply(this.x.Subtract(x3)).Subtract(this.y);
+
+ return new FpPoint(curve, x3, y3, this.withCompression);
+ }
+
+ // D.3.2 pg 102 (see Note:)
+ public override ECPoint Subtract(
+ ECPoint b)
+ {
+ if (b.IsInfinity)
+ return this;
+
+ // Add -b
+ return Add(b.Negate());
+ }
+
+ public override ECPoint Negate()
+ {
+ return new FpPoint(this.curve, this.x, this.y.Negate(), this.withCompression);
+ }
+
+ /**
+ * Sets the default <code>ECMultiplier</code>, unless already set.
+ */
+ internal override void AssertECMultiplier()
+ {
+ if (this.multiplier == null)
+ {
+ lock (this)
+ {
+ if (this.multiplier == null)
+ {
+ this.multiplier = new WNafMultiplier();
+ }
+ }
+ }
+ }
+ }
+
+ /**
+ * Elliptic curve points over F2m
+ */
+ public class F2mPoint
+ : ECPointBase
+ {
+ /**
+ * @param curve base curve
+ * @param x x point
+ * @param y y point
+ */
+ public F2mPoint(
+ ECCurve curve,
+ ECFieldElement x,
+ ECFieldElement y)
+ : this(curve, x, y, false)
+ {
+ }
+
+ /**
+ * @param curve base curve
+ * @param x x point
+ * @param y y point
+ * @param withCompression true if encode with point compression.
+ */
+ public F2mPoint(
+ ECCurve curve,
+ ECFieldElement x,
+ ECFieldElement y,
+ bool withCompression)
+ : base(curve, x, y, withCompression)
+ {
+ if ((x != null && y == null) || (x == null && y != null))
+ {
+ throw new ArgumentException("Exactly one of the field elements is null");
+ }
+
+ if (x != null)
+ {
+ // Check if x and y are elements of the same field
+ F2mFieldElement.CheckFieldElements(this.x, this.y);
+
+ // Check if x and a are elements of the same field
+ F2mFieldElement.CheckFieldElements(this.x, this.curve.A);
+ }
+ }
+
+ /**
+ * Constructor for point at infinity
+ */
+ [Obsolete("Use ECCurve.Infinity property")]
+ public F2mPoint(
+ ECCurve curve)
+ : this(curve, null, null)
+ {
+ }
+
+ protected internal override bool YTilde
+ {
+ get
+ {
+ // X9.62 4.2.2 and 4.3.6:
+ // if x = 0 then ypTilde := 0, else ypTilde is the rightmost
+ // bit of y * x^(-1)
+ return this.X.ToBigInteger().SignValue != 0
+ && this.Y.Multiply(this.X.Invert()).ToBigInteger().TestBit(0);
+ }
+ }
+
+ /**
+ * Check, if two <code>ECPoint</code>s can be added or subtracted.
+ * @param a The first <code>ECPoint</code> to check.
+ * @param b The second <code>ECPoint</code> to check.
+ * @throws IllegalArgumentException if <code>a</code> and <code>b</code>
+ * cannot be added.
+ */
+ private static void CheckPoints(
+ ECPoint a,
+ ECPoint b)
+ {
+ // Check, if points are on the same curve
+ if (!a.curve.Equals(b.curve))
+ throw new ArgumentException("Only points on the same curve can be added or subtracted");
+
+// F2mFieldElement.CheckFieldElements(a.x, b.x);
+ }
+
+ /* (non-Javadoc)
+ * @see org.bouncycastle.math.ec.ECPoint#add(org.bouncycastle.math.ec.ECPoint)
+ */
+ public override ECPoint Add(ECPoint b)
+ {
+ CheckPoints(this, b);
+ return AddSimple((F2mPoint) b);
+ }
+
+ /**
+ * Adds another <code>ECPoints.F2m</code> to <code>this</code> without
+ * checking if both points are on the same curve. Used by multiplication
+ * algorithms, because there all points are a multiple of the same point
+ * and hence the checks can be omitted.
+ * @param b The other <code>ECPoints.F2m</code> to add to
+ * <code>this</code>.
+ * @return <code>this + b</code>
+ */
+ internal F2mPoint AddSimple(F2mPoint b)
+ {
+ if (this.IsInfinity)
+ return b;
+
+ if (b.IsInfinity)
+ return this;
+
+ F2mFieldElement x2 = (F2mFieldElement) b.X;
+ F2mFieldElement y2 = (F2mFieldElement) b.Y;
+
+ // Check if b == this or b == -this
+ if (this.x.Equals(x2))
+ {
+ // this == b, i.e. this must be doubled
+ if (this.y.Equals(y2))
+ return (F2mPoint) this.Twice();
+
+ // this = -other, i.e. the result is the point at infinity
+ return (F2mPoint) this.curve.Infinity;
+ }
+
+ ECFieldElement xSum = this.x.Add(x2);
+
+ F2mFieldElement lambda
+ = (F2mFieldElement)(this.y.Add(y2)).Divide(xSum);
+
+ F2mFieldElement x3
+ = (F2mFieldElement)lambda.Square().Add(lambda).Add(xSum).Add(this.curve.A);
+
+ F2mFieldElement y3
+ = (F2mFieldElement)lambda.Multiply(this.x.Add(x3)).Add(x3).Add(this.y);
+
+ return new F2mPoint(curve, x3, y3, withCompression);
+ }
+
+ /* (non-Javadoc)
+ * @see org.bouncycastle.math.ec.ECPoint#subtract(org.bouncycastle.math.ec.ECPoint)
+ */
+ public override ECPoint Subtract(
+ ECPoint b)
+ {
+ CheckPoints(this, b);
+ return SubtractSimple((F2mPoint) b);
+ }
+
+ /**
+ * Subtracts another <code>ECPoints.F2m</code> from <code>this</code>
+ * without checking if both points are on the same curve. Used by
+ * multiplication algorithms, because there all points are a multiple
+ * of the same point and hence the checks can be omitted.
+ * @param b The other <code>ECPoints.F2m</code> to subtract from
+ * <code>this</code>.
+ * @return <code>this - b</code>
+ */
+ internal F2mPoint SubtractSimple(
+ F2mPoint b)
+ {
+ if (b.IsInfinity)
+ return this;
+
+ // Add -b
+ return AddSimple((F2mPoint) b.Negate());
+ }
+
+ /* (non-Javadoc)
+ * @see Org.BouncyCastle.Math.EC.ECPoint#twice()
+ */
+ public override ECPoint Twice()
+ {
+ // Twice identity element (point at infinity) is identity
+ if (this.IsInfinity)
+ return this;
+
+ // if x1 == 0, then (x1, y1) == (x1, x1 + y1)
+ // and hence this = -this and thus 2(x1, y1) == infinity
+ if (this.x.ToBigInteger().SignValue == 0)
+ return this.curve.Infinity;
+
+ F2mFieldElement lambda = (F2mFieldElement) this.x.Add(this.y.Divide(this.x));
+ F2mFieldElement x2 = (F2mFieldElement)lambda.Square().Add(lambda).Add(this.curve.A);
+ ECFieldElement ONE = this.curve.FromBigInteger(BigInteger.One);
+ F2mFieldElement y2 = (F2mFieldElement)this.x.Square().Add(
+ x2.Multiply(lambda.Add(ONE)));
+
+ return new F2mPoint(this.curve, x2, y2, withCompression);
+ }
+
+ public override ECPoint Negate()
+ {
+ return new F2mPoint(curve, this.x, this.x.Add(this.y), withCompression);
+ }
+
+ /**
+ * Sets the appropriate <code>ECMultiplier</code>, unless already set.
+ */
+ internal override void AssertECMultiplier()
+ {
+ if (this.multiplier == null)
+ {
+ lock (this)
+ {
+ if (this.multiplier == null)
+ {
+ if (((F2mCurve) this.curve).IsKoblitz)
+ {
+ this.multiplier = new WTauNafMultiplier();
+ }
+ else
+ {
+ this.multiplier = new WNafMultiplier();
+ }
+ }
+ }
+ }
+ }
+ }
+}
|