diff --git a/Crypto/src/math/ec/ECFieldElement.cs b/Crypto/src/math/ec/ECFieldElement.cs
new file mode 100644
index 000000000..5235c6c0e
--- /dev/null
+++ b/Crypto/src/math/ec/ECFieldElement.cs
@@ -0,0 +1,1253 @@
+using System;
+using System.Diagnostics;
+
+using Org.BouncyCastle.Utilities;
+
+namespace Org.BouncyCastle.Math.EC
+{
+ public abstract class ECFieldElement
+ {
+ public abstract BigInteger ToBigInteger();
+ public abstract string FieldName { get; }
+ public abstract int FieldSize { get; }
+ public abstract ECFieldElement Add(ECFieldElement b);
+ public abstract ECFieldElement Subtract(ECFieldElement b);
+ public abstract ECFieldElement Multiply(ECFieldElement b);
+ public abstract ECFieldElement Divide(ECFieldElement b);
+ public abstract ECFieldElement Negate();
+ public abstract ECFieldElement Square();
+ public abstract ECFieldElement Invert();
+ public abstract ECFieldElement Sqrt();
+
+ public override bool Equals(
+ object obj)
+ {
+ if (obj == this)
+ return true;
+
+ ECFieldElement other = obj as ECFieldElement;
+
+ if (other == null)
+ return false;
+
+ return Equals(other);
+ }
+
+ protected bool Equals(
+ ECFieldElement other)
+ {
+ return ToBigInteger().Equals(other.ToBigInteger());
+ }
+
+ public override int GetHashCode()
+ {
+ return ToBigInteger().GetHashCode();
+ }
+
+ public override string ToString()
+ {
+ return this.ToBigInteger().ToString(2);
+ }
+ }
+
+ public class FpFieldElement
+ : ECFieldElement
+ {
+ private readonly BigInteger q, x;
+
+ public FpFieldElement(
+ BigInteger q,
+ BigInteger x)
+ {
+ if (x.CompareTo(q) >= 0)
+ throw new ArgumentException("x value too large in field element");
+
+ this.q = q;
+ this.x = x;
+ }
+
+ public override BigInteger ToBigInteger()
+ {
+ return x;
+ }
+
+ /**
+ * return the field name for this field.
+ *
+ * @return the string "Fp".
+ */
+ public override string FieldName
+ {
+ get { return "Fp"; }
+ }
+
+ public override int FieldSize
+ {
+ get { return q.BitLength; }
+ }
+
+ public BigInteger Q
+ {
+ get { return q; }
+ }
+
+ public override ECFieldElement Add(
+ ECFieldElement b)
+ {
+ return new FpFieldElement(q, x.Add(b.ToBigInteger()).Mod(q));
+ }
+
+ public override ECFieldElement Subtract(
+ ECFieldElement b)
+ {
+ return new FpFieldElement(q, x.Subtract(b.ToBigInteger()).Mod(q));
+ }
+
+ public override ECFieldElement Multiply(
+ ECFieldElement b)
+ {
+ return new FpFieldElement(q, x.Multiply(b.ToBigInteger()).Mod(q));
+ }
+
+ public override ECFieldElement Divide(
+ ECFieldElement b)
+ {
+ return new FpFieldElement(q, x.Multiply(b.ToBigInteger().ModInverse(q)).Mod(q));
+ }
+
+ public override ECFieldElement Negate()
+ {
+ return new FpFieldElement(q, x.Negate().Mod(q));
+ }
+
+ public override ECFieldElement Square()
+ {
+ return new FpFieldElement(q, x.Multiply(x).Mod(q));
+ }
+
+ public override ECFieldElement Invert()
+ {
+ return new FpFieldElement(q, x.ModInverse(q));
+ }
+
+ // D.1.4 91
+ /**
+ * return a sqrt root - the routine verifies that the calculation
+ * returns the right value - if none exists it returns null.
+ */
+ public override ECFieldElement Sqrt()
+ {
+ if (!q.TestBit(0))
+ throw Platform.CreateNotImplementedException("even value of q");
+
+ // p mod 4 == 3
+ if (q.TestBit(1))
+ {
+ // TODO Can this be optimised (inline the Square?)
+ // z = g^(u+1) + p, p = 4u + 3
+ ECFieldElement z = new FpFieldElement(q, x.ModPow(q.ShiftRight(2).Add(BigInteger.One), q));
+
+ return this.Equals(z.Square()) ? z : null;
+ }
+
+ // p mod 4 == 1
+ BigInteger qMinusOne = q.Subtract(BigInteger.One);
+
+ BigInteger legendreExponent = qMinusOne.ShiftRight(1);
+ if (!(x.ModPow(legendreExponent, q).Equals(BigInteger.One)))
+ return null;
+
+ BigInteger u = qMinusOne.ShiftRight(2);
+ BigInteger k = u.ShiftLeft(1).Add(BigInteger.One);
+
+ BigInteger Q = this.x;
+ BigInteger fourQ = Q.ShiftLeft(2).Mod(q);
+
+ BigInteger U, V;
+ do
+ {
+ Random rand = new Random();
+ BigInteger P;
+ do
+ {
+ P = new BigInteger(q.BitLength, rand);
+ }
+ while (P.CompareTo(q) >= 0
+ || !(P.Multiply(P).Subtract(fourQ).ModPow(legendreExponent, q).Equals(qMinusOne)));
+
+ BigInteger[] result = fastLucasSequence(q, P, Q, k);
+ U = result[0];
+ V = result[1];
+
+ if (V.Multiply(V).Mod(q).Equals(fourQ))
+ {
+ // Integer division by 2, mod q
+ if (V.TestBit(0))
+ {
+ V = V.Add(q);
+ }
+
+ V = V.ShiftRight(1);
+
+ Debug.Assert(V.Multiply(V).Mod(q).Equals(x));
+
+ return new FpFieldElement(q, V);
+ }
+ }
+ while (U.Equals(BigInteger.One) || U.Equals(qMinusOne));
+
+ return null;
+
+
+// BigInteger qMinusOne = q.Subtract(BigInteger.One);
+//
+// BigInteger legendreExponent = qMinusOne.ShiftRight(1);
+// if (!(x.ModPow(legendreExponent, q).Equals(BigInteger.One)))
+// return null;
+//
+// Random rand = new Random();
+// BigInteger fourX = x.ShiftLeft(2);
+//
+// BigInteger r;
+// do
+// {
+// r = new BigInteger(q.BitLength, rand);
+// }
+// while (r.CompareTo(q) >= 0
+// || !(r.Multiply(r).Subtract(fourX).ModPow(legendreExponent, q).Equals(qMinusOne)));
+//
+// BigInteger n1 = qMinusOne.ShiftRight(2);
+// BigInteger n2 = n1.Add(BigInteger.One);
+//
+// BigInteger wOne = WOne(r, x, q);
+// BigInteger wSum = W(n1, wOne, q).Add(W(n2, wOne, q)).Mod(q);
+// BigInteger twoR = r.ShiftLeft(1);
+//
+// BigInteger root = twoR.ModPow(q.Subtract(BigInteger.Two), q)
+// .Multiply(x).Mod(q)
+// .Multiply(wSum).Mod(q);
+//
+// return new FpFieldElement(q, root);
+ }
+
+// private static BigInteger W(BigInteger n, BigInteger wOne, BigInteger p)
+// {
+// if (n.Equals(BigInteger.One))
+// return wOne;
+//
+// bool isEven = !n.TestBit(0);
+// n = n.ShiftRight(1);
+// if (isEven)
+// {
+// BigInteger w = W(n, wOne, p);
+// return w.Multiply(w).Subtract(BigInteger.Two).Mod(p);
+// }
+// BigInteger w1 = W(n.Add(BigInteger.One), wOne, p);
+// BigInteger w2 = W(n, wOne, p);
+// return w1.Multiply(w2).Subtract(wOne).Mod(p);
+// }
+//
+// private BigInteger WOne(BigInteger r, BigInteger x, BigInteger p)
+// {
+// return r.Multiply(r).Multiply(x.ModPow(q.Subtract(BigInteger.Two), q)).Subtract(BigInteger.Two).Mod(p);
+// }
+
+ private static BigInteger[] fastLucasSequence(
+ BigInteger p,
+ BigInteger P,
+ BigInteger Q,
+ BigInteger k)
+ {
+ // TODO Research and apply "common-multiplicand multiplication here"
+
+ int n = k.BitLength;
+ int s = k.GetLowestSetBit();
+
+ Debug.Assert(k.TestBit(s));
+
+ BigInteger Uh = BigInteger.One;
+ BigInteger Vl = BigInteger.Two;
+ BigInteger Vh = P;
+ BigInteger Ql = BigInteger.One;
+ BigInteger Qh = BigInteger.One;
+
+ for (int j = n - 1; j >= s + 1; --j)
+ {
+ Ql = Ql.Multiply(Qh).Mod(p);
+
+ if (k.TestBit(j))
+ {
+ Qh = Ql.Multiply(Q).Mod(p);
+ Uh = Uh.Multiply(Vh).Mod(p);
+ Vl = Vh.Multiply(Vl).Subtract(P.Multiply(Ql)).Mod(p);
+ Vh = Vh.Multiply(Vh).Subtract(Qh.ShiftLeft(1)).Mod(p);
+ }
+ else
+ {
+ Qh = Ql;
+ Uh = Uh.Multiply(Vl).Subtract(Ql).Mod(p);
+ Vh = Vh.Multiply(Vl).Subtract(P.Multiply(Ql)).Mod(p);
+ Vl = Vl.Multiply(Vl).Subtract(Ql.ShiftLeft(1)).Mod(p);
+ }
+ }
+
+ Ql = Ql.Multiply(Qh).Mod(p);
+ Qh = Ql.Multiply(Q).Mod(p);
+ Uh = Uh.Multiply(Vl).Subtract(Ql).Mod(p);
+ Vl = Vh.Multiply(Vl).Subtract(P.Multiply(Ql)).Mod(p);
+ Ql = Ql.Multiply(Qh).Mod(p);
+
+ for (int j = 1; j <= s; ++j)
+ {
+ Uh = Uh.Multiply(Vl).Mod(p);
+ Vl = Vl.Multiply(Vl).Subtract(Ql.ShiftLeft(1)).Mod(p);
+ Ql = Ql.Multiply(Ql).Mod(p);
+ }
+
+ return new BigInteger[]{ Uh, Vl };
+ }
+
+// private static BigInteger[] verifyLucasSequence(
+// BigInteger p,
+// BigInteger P,
+// BigInteger Q,
+// BigInteger k)
+// {
+// BigInteger[] actual = fastLucasSequence(p, P, Q, k);
+// BigInteger[] plus1 = fastLucasSequence(p, P, Q, k.Add(BigInteger.One));
+// BigInteger[] plus2 = fastLucasSequence(p, P, Q, k.Add(BigInteger.Two));
+//
+// BigInteger[] check = stepLucasSequence(p, P, Q, actual, plus1);
+//
+// Debug.Assert(check[0].Equals(plus2[0]));
+// Debug.Assert(check[1].Equals(plus2[1]));
+//
+// return actual;
+// }
+//
+// private static BigInteger[] stepLucasSequence(
+// BigInteger p,
+// BigInteger P,
+// BigInteger Q,
+// BigInteger[] backTwo,
+// BigInteger[] backOne)
+// {
+// return new BigInteger[]
+// {
+// P.Multiply(backOne[0]).Subtract(Q.Multiply(backTwo[0])).Mod(p),
+// P.Multiply(backOne[1]).Subtract(Q.Multiply(backTwo[1])).Mod(p)
+// };
+// }
+
+ public override bool Equals(
+ object obj)
+ {
+ if (obj == this)
+ return true;
+
+ FpFieldElement other = obj as FpFieldElement;
+
+ if (other == null)
+ return false;
+
+ return Equals(other);
+ }
+
+ protected bool Equals(
+ FpFieldElement other)
+ {
+ return q.Equals(other.q) && base.Equals(other);
+ }
+
+ public override int GetHashCode()
+ {
+ return q.GetHashCode() ^ base.GetHashCode();
+ }
+ }
+
+// /**
+// * Class representing the Elements of the finite field
+// * <code>F<sub>2<sup>m</sup></sub></code> in polynomial basis (PB)
+// * representation. Both trinomial (Tpb) and pentanomial (Ppb) polynomial
+// * basis representations are supported. Gaussian normal basis (GNB)
+// * representation is not supported.
+// */
+// public class F2mFieldElement
+// : ECFieldElement
+// {
+// /**
+// * Indicates gaussian normal basis representation (GNB). Number chosen
+// * according to X9.62. GNB is not implemented at present.
+// */
+// public const int Gnb = 1;
+//
+// /**
+// * Indicates trinomial basis representation (Tpb). Number chosen
+// * according to X9.62.
+// */
+// public const int Tpb = 2;
+//
+// /**
+// * Indicates pentanomial basis representation (Ppb). Number chosen
+// * according to X9.62.
+// */
+// public const int Ppb = 3;
+//
+// /**
+// * Tpb or Ppb.
+// */
+// private int representation;
+//
+// /**
+// * The exponent <code>m</code> of <code>F<sub>2<sup>m</sup></sub></code>.
+// */
+// private int m;
+//
+// /**
+// * Tpb: The integer <code>k</code> where <code>x<sup>m</sup> +
+// * x<sup>k</sup> + 1</code> represents the reduction polynomial
+// * <code>f(z)</code>.<br/>
+// * Ppb: The integer <code>k1</code> where <code>x<sup>m</sup> +
+// * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
+// * represents the reduction polynomial <code>f(z)</code>.<br/>
+// */
+// private int k1;
+//
+// /**
+// * Tpb: Always set to <code>0</code><br/>
+// * Ppb: The integer <code>k2</code> where <code>x<sup>m</sup> +
+// * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
+// * represents the reduction polynomial <code>f(z)</code>.<br/>
+// */
+// private int k2;
+//
+// /**
+// * Tpb: Always set to <code>0</code><br/>
+// * Ppb: The integer <code>k3</code> where <code>x<sup>m</sup> +
+// * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
+// * represents the reduction polynomial <code>f(z)</code>.<br/>
+// */
+// private int k3;
+//
+// /**
+// * Constructor for Ppb.
+// * @param m The exponent <code>m</code> of
+// * <code>F<sub>2<sup>m</sup></sub></code>.
+// * @param k1 The integer <code>k1</code> where <code>x<sup>m</sup> +
+// * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
+// * represents the reduction polynomial <code>f(z)</code>.
+// * @param k2 The integer <code>k2</code> where <code>x<sup>m</sup> +
+// * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
+// * represents the reduction polynomial <code>f(z)</code>.
+// * @param k3 The integer <code>k3</code> where <code>x<sup>m</sup> +
+// * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
+// * represents the reduction polynomial <code>f(z)</code>.
+// * @param x The BigInteger representing the value of the field element.
+// */
+// public F2mFieldElement(
+// int m,
+// int k1,
+// int k2,
+// int k3,
+// BigInteger x)
+// : base(x)
+// {
+// if ((k2 == 0) && (k3 == 0))
+// {
+// this.representation = Tpb;
+// }
+// else
+// {
+// if (k2 >= k3)
+// throw new ArgumentException("k2 must be smaller than k3");
+// if (k2 <= 0)
+// throw new ArgumentException("k2 must be larger than 0");
+//
+// this.representation = Ppb;
+// }
+//
+// if (x.SignValue < 0)
+// throw new ArgumentException("x value cannot be negative");
+//
+// this.m = m;
+// this.k1 = k1;
+// this.k2 = k2;
+// this.k3 = k3;
+// }
+//
+// /**
+// * Constructor for Tpb.
+// * @param m The exponent <code>m</code> of
+// * <code>F<sub>2<sup>m</sup></sub></code>.
+// * @param k The integer <code>k</code> where <code>x<sup>m</sup> +
+// * x<sup>k</sup> + 1</code> represents the reduction
+// * polynomial <code>f(z)</code>.
+// * @param x The BigInteger representing the value of the field element.
+// */
+// public F2mFieldElement(
+// int m,
+// int k,
+// BigInteger x)
+// : this(m, k, 0, 0, x)
+// {
+// // Set k1 to k, and set k2 and k3 to 0
+// }
+//
+// public override string FieldName
+// {
+// get { return "F2m"; }
+// }
+//
+// /**
+// * Checks, if the ECFieldElements <code>a</code> and <code>b</code>
+// * are elements of the same field <code>F<sub>2<sup>m</sup></sub></code>
+// * (having the same representation).
+// * @param a field element.
+// * @param b field element to be compared.
+// * @throws ArgumentException if <code>a</code> and <code>b</code>
+// * are not elements of the same field
+// * <code>F<sub>2<sup>m</sup></sub></code> (having the same
+// * representation).
+// */
+// public static void CheckFieldElements(
+// ECFieldElement a,
+// ECFieldElement b)
+// {
+// if (!(a is F2mFieldElement) || !(b is F2mFieldElement))
+// {
+// throw new ArgumentException("Field elements are not "
+// + "both instances of F2mFieldElement");
+// }
+//
+// if ((a.x.SignValue < 0) || (b.x.SignValue < 0))
+// {
+// throw new ArgumentException(
+// "x value may not be negative");
+// }
+//
+// F2mFieldElement aF2m = (F2mFieldElement)a;
+// F2mFieldElement bF2m = (F2mFieldElement)b;
+//
+// if ((aF2m.m != bF2m.m) || (aF2m.k1 != bF2m.k1)
+// || (aF2m.k2 != bF2m.k2) || (aF2m.k3 != bF2m.k3))
+// {
+// throw new ArgumentException("Field elements are not "
+// + "elements of the same field F2m");
+// }
+//
+// if (aF2m.representation != bF2m.representation)
+// {
+// // Should never occur
+// throw new ArgumentException(
+// "One of the field "
+// + "elements are not elements has incorrect representation");
+// }
+// }
+//
+// /**
+// * Computes <code>z * a(z) mod f(z)</code>, where <code>f(z)</code> is
+// * the reduction polynomial of <code>this</code>.
+// * @param a The polynomial <code>a(z)</code> to be multiplied by
+// * <code>z mod f(z)</code>.
+// * @return <code>z * a(z) mod f(z)</code>
+// */
+// private BigInteger multZModF(
+// BigInteger a)
+// {
+// // Left-shift of a(z)
+// BigInteger az = a.ShiftLeft(1);
+// if (az.TestBit(this.m))
+// {
+// // If the coefficient of z^m in a(z) Equals 1, reduction
+// // modulo f(z) is performed: Add f(z) to to a(z):
+// // Step 1: Unset mth coeffient of a(z)
+// az = az.ClearBit(this.m);
+//
+// // Step 2: Add r(z) to a(z), where r(z) is defined as
+// // f(z) = z^m + r(z), and k1, k2, k3 are the positions of
+// // the non-zero coefficients in r(z)
+// az = az.FlipBit(0);
+// az = az.FlipBit(this.k1);
+// if (this.representation == Ppb)
+// {
+// az = az.FlipBit(this.k2);
+// az = az.FlipBit(this.k3);
+// }
+// }
+// return az;
+// }
+//
+// public override ECFieldElement Add(
+// ECFieldElement b)
+// {
+// // No check performed here for performance reasons. Instead the
+// // elements involved are checked in ECPoint.F2m
+// // checkFieldElements(this, b);
+// if (b.x.SignValue == 0)
+// return this;
+//
+// return new F2mFieldElement(this.m, this.k1, this.k2, this.k3, this.x.Xor(b.x));
+// }
+//
+// public override ECFieldElement Subtract(
+// ECFieldElement b)
+// {
+// // Addition and subtraction are the same in F2m
+// return Add(b);
+// }
+//
+// public override ECFieldElement Multiply(
+// ECFieldElement b)
+// {
+// // Left-to-right shift-and-add field multiplication in F2m
+// // Input: Binary polynomials a(z) and b(z) of degree at most m-1
+// // Output: c(z) = a(z) * b(z) mod f(z)
+//
+// // No check performed here for performance reasons. Instead the
+// // elements involved are checked in ECPoint.F2m
+// // checkFieldElements(this, b);
+// BigInteger az = this.x;
+// BigInteger bz = b.x;
+// BigInteger cz;
+//
+// // Compute c(z) = a(z) * b(z) mod f(z)
+// if (az.TestBit(0))
+// {
+// cz = bz;
+// }
+// else
+// {
+// cz = BigInteger.Zero;
+// }
+//
+// for (int i = 1; i < this.m; i++)
+// {
+// // b(z) := z * b(z) mod f(z)
+// bz = multZModF(bz);
+//
+// if (az.TestBit(i))
+// {
+// // If the coefficient of x^i in a(z) Equals 1, b(z) is added
+// // to c(z)
+// cz = cz.Xor(bz);
+// }
+// }
+// return new F2mFieldElement(m, this.k1, this.k2, this.k3, cz);
+// }
+//
+//
+// public override ECFieldElement Divide(
+// ECFieldElement b)
+// {
+// // There may be more efficient implementations
+// ECFieldElement bInv = b.Invert();
+// return Multiply(bInv);
+// }
+//
+// public override ECFieldElement Negate()
+// {
+// // -x == x holds for all x in F2m
+// return this;
+// }
+//
+// public override ECFieldElement Square()
+// {
+// // Naive implementation, can probably be speeded up using modular
+// // reduction
+// return Multiply(this);
+// }
+//
+// public override ECFieldElement Invert()
+// {
+// // Inversion in F2m using the extended Euclidean algorithm
+// // Input: A nonzero polynomial a(z) of degree at most m-1
+// // Output: a(z)^(-1) mod f(z)
+//
+// // u(z) := a(z)
+// BigInteger uz = this.x;
+// if (uz.SignValue <= 0)
+// {
+// throw new ArithmeticException("x is zero or negative, " +
+// "inversion is impossible");
+// }
+//
+// // v(z) := f(z)
+// BigInteger vz = BigInteger.One.ShiftLeft(m);
+// vz = vz.SetBit(0);
+// vz = vz.SetBit(this.k1);
+// if (this.representation == Ppb)
+// {
+// vz = vz.SetBit(this.k2);
+// vz = vz.SetBit(this.k3);
+// }
+//
+// // g1(z) := 1, g2(z) := 0
+// BigInteger g1z = BigInteger.One;
+// BigInteger g2z = BigInteger.Zero;
+//
+// // while u != 1
+// while (uz.SignValue != 0)
+// {
+// // j := deg(u(z)) - deg(v(z))
+// int j = uz.BitLength - vz.BitLength;
+//
+// // If j < 0 then: u(z) <-> v(z), g1(z) <-> g2(z), j := -j
+// if (j < 0)
+// {
+// BigInteger uzCopy = uz;
+// uz = vz;
+// vz = uzCopy;
+//
+// BigInteger g1zCopy = g1z;
+// g1z = g2z;
+// g2z = g1zCopy;
+//
+// j = -j;
+// }
+//
+// // u(z) := u(z) + z^j * v(z)
+// // Note, that no reduction modulo f(z) is required, because
+// // deg(u(z) + z^j * v(z)) <= max(deg(u(z)), j + deg(v(z)))
+// // = max(deg(u(z)), deg(u(z)) - deg(v(z)) + deg(v(z))
+// // = deg(u(z))
+// uz = uz.Xor(vz.ShiftLeft(j));
+//
+// // g1(z) := g1(z) + z^j * g2(z)
+// g1z = g1z.Xor(g2z.ShiftLeft(j));
+// // if (g1z.BitLength() > this.m) {
+// // throw new ArithmeticException(
+// // "deg(g1z) >= m, g1z = " + g1z.ToString(2));
+// // }
+// }
+// return new F2mFieldElement(this.m, this.k1, this.k2, this.k3, g2z);
+// }
+//
+// public override ECFieldElement Sqrt()
+// {
+// throw new ArithmeticException("Not implemented");
+// }
+//
+// /**
+// * @return the representation of the field
+// * <code>F<sub>2<sup>m</sup></sub></code>, either of
+// * {@link F2mFieldElement.Tpb} (trinomial
+// * basis representation) or
+// * {@link F2mFieldElement.Ppb} (pentanomial
+// * basis representation).
+// */
+// public int Representation
+// {
+// get { return this.representation; }
+// }
+//
+// /**
+// * @return the degree <code>m</code> of the reduction polynomial
+// * <code>f(z)</code>.
+// */
+// public int M
+// {
+// get { return this.m; }
+// }
+//
+// /**
+// * @return Tpb: The integer <code>k</code> where <code>x<sup>m</sup> +
+// * x<sup>k</sup> + 1</code> represents the reduction polynomial
+// * <code>f(z)</code>.<br/>
+// * Ppb: The integer <code>k1</code> where <code>x<sup>m</sup> +
+// * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
+// * represents the reduction polynomial <code>f(z)</code>.<br/>
+// */
+// public int K1
+// {
+// get { return this.k1; }
+// }
+//
+// /**
+// * @return Tpb: Always returns <code>0</code><br/>
+// * Ppb: The integer <code>k2</code> where <code>x<sup>m</sup> +
+// * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
+// * represents the reduction polynomial <code>f(z)</code>.<br/>
+// */
+// public int K2
+// {
+// get { return this.k2; }
+// }
+//
+// /**
+// * @return Tpb: Always set to <code>0</code><br/>
+// * Ppb: The integer <code>k3</code> where <code>x<sup>m</sup> +
+// * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
+// * represents the reduction polynomial <code>f(z)</code>.<br/>
+// */
+// public int K3
+// {
+// get { return this.k3; }
+// }
+//
+// public override bool Equals(
+// object obj)
+// {
+// if (obj == this)
+// return true;
+//
+// F2mFieldElement other = obj as F2mFieldElement;
+//
+// if (other == null)
+// return false;
+//
+// return Equals(other);
+// }
+//
+// protected bool Equals(
+// F2mFieldElement other)
+// {
+// return m == other.m
+// && k1 == other.k1
+// && k2 == other.k2
+// && k3 == other.k3
+// && representation == other.representation
+// && base.Equals(other);
+// }
+//
+// public override int GetHashCode()
+// {
+// return base.GetHashCode() ^ m ^ k1 ^ k2 ^ k3;
+// }
+// }
+
+ /**
+ * Class representing the Elements of the finite field
+ * <code>F<sub>2<sup>m</sup></sub></code> in polynomial basis (PB)
+ * representation. Both trinomial (Tpb) and pentanomial (Ppb) polynomial
+ * basis representations are supported. Gaussian normal basis (GNB)
+ * representation is not supported.
+ */
+ public class F2mFieldElement
+ : ECFieldElement
+ {
+ /**
+ * Indicates gaussian normal basis representation (GNB). Number chosen
+ * according to X9.62. GNB is not implemented at present.
+ */
+ public const int Gnb = 1;
+
+ /**
+ * Indicates trinomial basis representation (Tpb). Number chosen
+ * according to X9.62.
+ */
+ public const int Tpb = 2;
+
+ /**
+ * Indicates pentanomial basis representation (Ppb). Number chosen
+ * according to X9.62.
+ */
+ public const int Ppb = 3;
+
+ /**
+ * Tpb or Ppb.
+ */
+ private int representation;
+
+ /**
+ * The exponent <code>m</code> of <code>F<sub>2<sup>m</sup></sub></code>.
+ */
+ private int m;
+
+ /**
+ * Tpb: The integer <code>k</code> where <code>x<sup>m</sup> +
+ * x<sup>k</sup> + 1</code> represents the reduction polynomial
+ * <code>f(z)</code>.<br/>
+ * Ppb: The integer <code>k1</code> where <code>x<sup>m</sup> +
+ * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
+ * represents the reduction polynomial <code>f(z)</code>.<br/>
+ */
+ private int k1;
+
+ /**
+ * Tpb: Always set to <code>0</code><br/>
+ * Ppb: The integer <code>k2</code> where <code>x<sup>m</sup> +
+ * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
+ * represents the reduction polynomial <code>f(z)</code>.<br/>
+ */
+ private int k2;
+
+ /**
+ * Tpb: Always set to <code>0</code><br/>
+ * Ppb: The integer <code>k3</code> where <code>x<sup>m</sup> +
+ * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
+ * represents the reduction polynomial <code>f(z)</code>.<br/>
+ */
+ private int k3;
+
+ /**
+ * The <code>IntArray</code> holding the bits.
+ */
+ private IntArray x;
+
+ /**
+ * The number of <code>int</code>s required to hold <code>m</code> bits.
+ */
+ private readonly int t;
+
+ /**
+ * Constructor for Ppb.
+ * @param m The exponent <code>m</code> of
+ * <code>F<sub>2<sup>m</sup></sub></code>.
+ * @param k1 The integer <code>k1</code> where <code>x<sup>m</sup> +
+ * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
+ * represents the reduction polynomial <code>f(z)</code>.
+ * @param k2 The integer <code>k2</code> where <code>x<sup>m</sup> +
+ * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
+ * represents the reduction polynomial <code>f(z)</code>.
+ * @param k3 The integer <code>k3</code> where <code>x<sup>m</sup> +
+ * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
+ * represents the reduction polynomial <code>f(z)</code>.
+ * @param x The BigInteger representing the value of the field element.
+ */
+ public F2mFieldElement(
+ int m,
+ int k1,
+ int k2,
+ int k3,
+ BigInteger x)
+ {
+ // t = m / 32 rounded up to the next integer
+ this.t = (m + 31) >> 5;
+ this.x = new IntArray(x, t);
+
+ if ((k2 == 0) && (k3 == 0))
+ {
+ this.representation = Tpb;
+ }
+ else
+ {
+ if (k2 >= k3)
+ throw new ArgumentException("k2 must be smaller than k3");
+ if (k2 <= 0)
+ throw new ArgumentException("k2 must be larger than 0");
+
+ this.representation = Ppb;
+ }
+
+ if (x.SignValue < 0)
+ throw new ArgumentException("x value cannot be negative");
+
+ this.m = m;
+ this.k1 = k1;
+ this.k2 = k2;
+ this.k3 = k3;
+ }
+
+ /**
+ * Constructor for Tpb.
+ * @param m The exponent <code>m</code> of
+ * <code>F<sub>2<sup>m</sup></sub></code>.
+ * @param k The integer <code>k</code> where <code>x<sup>m</sup> +
+ * x<sup>k</sup> + 1</code> represents the reduction
+ * polynomial <code>f(z)</code>.
+ * @param x The BigInteger representing the value of the field element.
+ */
+ public F2mFieldElement(
+ int m,
+ int k,
+ BigInteger x)
+ : this(m, k, 0, 0, x)
+ {
+ // Set k1 to k, and set k2 and k3 to 0
+ }
+
+ private F2mFieldElement(int m, int k1, int k2, int k3, IntArray x)
+ {
+ t = (m + 31) >> 5;
+ this.x = x;
+ this.m = m;
+ this.k1 = k1;
+ this.k2 = k2;
+ this.k3 = k3;
+
+ if ((k2 == 0) && (k3 == 0))
+ {
+ this.representation = Tpb;
+ }
+ else
+ {
+ this.representation = Ppb;
+ }
+ }
+
+ public override BigInteger ToBigInteger()
+ {
+ return x.ToBigInteger();
+ }
+
+ public override string FieldName
+ {
+ get { return "F2m"; }
+ }
+
+ public override int FieldSize
+ {
+ get { return m; }
+ }
+
+ /**
+ * Checks, if the ECFieldElements <code>a</code> and <code>b</code>
+ * are elements of the same field <code>F<sub>2<sup>m</sup></sub></code>
+ * (having the same representation).
+ * @param a field element.
+ * @param b field element to be compared.
+ * @throws ArgumentException if <code>a</code> and <code>b</code>
+ * are not elements of the same field
+ * <code>F<sub>2<sup>m</sup></sub></code> (having the same
+ * representation).
+ */
+ public static void CheckFieldElements(
+ ECFieldElement a,
+ ECFieldElement b)
+ {
+ if (!(a is F2mFieldElement) || !(b is F2mFieldElement))
+ {
+ throw new ArgumentException("Field elements are not "
+ + "both instances of F2mFieldElement");
+ }
+
+ F2mFieldElement aF2m = (F2mFieldElement)a;
+ F2mFieldElement bF2m = (F2mFieldElement)b;
+
+ if ((aF2m.m != bF2m.m) || (aF2m.k1 != bF2m.k1)
+ || (aF2m.k2 != bF2m.k2) || (aF2m.k3 != bF2m.k3))
+ {
+ throw new ArgumentException("Field elements are not "
+ + "elements of the same field F2m");
+ }
+
+ if (aF2m.representation != bF2m.representation)
+ {
+ // Should never occur
+ throw new ArgumentException(
+ "One of the field "
+ + "elements are not elements has incorrect representation");
+ }
+ }
+
+ public override ECFieldElement Add(
+ ECFieldElement b)
+ {
+ // No check performed here for performance reasons. Instead the
+ // elements involved are checked in ECPoint.F2m
+ // checkFieldElements(this, b);
+ IntArray iarrClone = (IntArray) this.x.Copy();
+ F2mFieldElement bF2m = (F2mFieldElement) b;
+ iarrClone.AddShifted(bF2m.x, 0);
+ return new F2mFieldElement(m, k1, k2, k3, iarrClone);
+ }
+
+ public override ECFieldElement Subtract(
+ ECFieldElement b)
+ {
+ // Addition and subtraction are the same in F2m
+ return Add(b);
+ }
+
+ public override ECFieldElement Multiply(
+ ECFieldElement b)
+ {
+ // Right-to-left comb multiplication in the IntArray
+ // Input: Binary polynomials a(z) and b(z) of degree at most m-1
+ // Output: c(z) = a(z) * b(z) mod f(z)
+
+ // No check performed here for performance reasons. Instead the
+ // elements involved are checked in ECPoint.F2m
+ // checkFieldElements(this, b);
+ F2mFieldElement bF2m = (F2mFieldElement) b;
+ IntArray mult = x.Multiply(bF2m.x, m);
+ mult.Reduce(m, new int[]{k1, k2, k3});
+ return new F2mFieldElement(m, k1, k2, k3, mult);
+ }
+
+ public override ECFieldElement Divide(
+ ECFieldElement b)
+ {
+ // There may be more efficient implementations
+ ECFieldElement bInv = b.Invert();
+ return Multiply(bInv);
+ }
+
+ public override ECFieldElement Negate()
+ {
+ // -x == x holds for all x in F2m
+ return this;
+ }
+
+ public override ECFieldElement Square()
+ {
+ IntArray squared = x.Square(m);
+ squared.Reduce(m, new int[]{k1, k2, k3});
+ return new F2mFieldElement(m, k1, k2, k3, squared);
+ }
+
+ public override ECFieldElement Invert()
+ {
+ // Inversion in F2m using the extended Euclidean algorithm
+ // Input: A nonzero polynomial a(z) of degree at most m-1
+ // Output: a(z)^(-1) mod f(z)
+
+ // u(z) := a(z)
+ IntArray uz = (IntArray)this.x.Copy();
+
+ // v(z) := f(z)
+ IntArray vz = new IntArray(t);
+ vz.SetBit(m);
+ vz.SetBit(0);
+ vz.SetBit(this.k1);
+ if (this.representation == Ppb)
+ {
+ vz.SetBit(this.k2);
+ vz.SetBit(this.k3);
+ }
+
+ // g1(z) := 1, g2(z) := 0
+ IntArray g1z = new IntArray(t);
+ g1z.SetBit(0);
+ IntArray g2z = new IntArray(t);
+
+ // while u != 0
+ while (uz.GetUsedLength() > 0)
+// while (uz.bitLength() > 1)
+ {
+ // j := deg(u(z)) - deg(v(z))
+ int j = uz.BitLength - vz.BitLength;
+
+ // If j < 0 then: u(z) <-> v(z), g1(z) <-> g2(z), j := -j
+ if (j < 0)
+ {
+ IntArray uzCopy = uz;
+ uz = vz;
+ vz = uzCopy;
+
+ IntArray g1zCopy = g1z;
+ g1z = g2z;
+ g2z = g1zCopy;
+
+ j = -j;
+ }
+
+ // u(z) := u(z) + z^j * v(z)
+ // Note, that no reduction modulo f(z) is required, because
+ // deg(u(z) + z^j * v(z)) <= max(deg(u(z)), j + deg(v(z)))
+ // = max(deg(u(z)), deg(u(z)) - deg(v(z)) + deg(v(z))
+ // = deg(u(z))
+ // uz = uz.xor(vz.ShiftLeft(j));
+ // jInt = n / 32
+ int jInt = j >> 5;
+ // jInt = n % 32
+ int jBit = j & 0x1F;
+ IntArray vzShift = vz.ShiftLeft(jBit);
+ uz.AddShifted(vzShift, jInt);
+
+ // g1(z) := g1(z) + z^j * g2(z)
+// g1z = g1z.xor(g2z.ShiftLeft(j));
+ IntArray g2zShift = g2z.ShiftLeft(jBit);
+ g1z.AddShifted(g2zShift, jInt);
+ }
+ return new F2mFieldElement(this.m, this.k1, this.k2, this.k3, g2z);
+ }
+
+ public override ECFieldElement Sqrt()
+ {
+ throw new ArithmeticException("Not implemented");
+ }
+
+ /**
+ * @return the representation of the field
+ * <code>F<sub>2<sup>m</sup></sub></code>, either of
+ * {@link F2mFieldElement.Tpb} (trinomial
+ * basis representation) or
+ * {@link F2mFieldElement.Ppb} (pentanomial
+ * basis representation).
+ */
+ public int Representation
+ {
+ get { return this.representation; }
+ }
+
+ /**
+ * @return the degree <code>m</code> of the reduction polynomial
+ * <code>f(z)</code>.
+ */
+ public int M
+ {
+ get { return this.m; }
+ }
+
+ /**
+ * @return Tpb: The integer <code>k</code> where <code>x<sup>m</sup> +
+ * x<sup>k</sup> + 1</code> represents the reduction polynomial
+ * <code>f(z)</code>.<br/>
+ * Ppb: The integer <code>k1</code> where <code>x<sup>m</sup> +
+ * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
+ * represents the reduction polynomial <code>f(z)</code>.<br/>
+ */
+ public int K1
+ {
+ get { return this.k1; }
+ }
+
+ /**
+ * @return Tpb: Always returns <code>0</code><br/>
+ * Ppb: The integer <code>k2</code> where <code>x<sup>m</sup> +
+ * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
+ * represents the reduction polynomial <code>f(z)</code>.<br/>
+ */
+ public int K2
+ {
+ get { return this.k2; }
+ }
+
+ /**
+ * @return Tpb: Always set to <code>0</code><br/>
+ * Ppb: The integer <code>k3</code> where <code>x<sup>m</sup> +
+ * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
+ * represents the reduction polynomial <code>f(z)</code>.<br/>
+ */
+ public int K3
+ {
+ get { return this.k3; }
+ }
+
+ public override bool Equals(
+ object obj)
+ {
+ if (obj == this)
+ return true;
+
+ F2mFieldElement other = obj as F2mFieldElement;
+
+ if (other == null)
+ return false;
+
+ return Equals(other);
+ }
+
+ protected bool Equals(
+ F2mFieldElement other)
+ {
+ return m == other.m
+ && k1 == other.k1
+ && k2 == other.k2
+ && k3 == other.k3
+ && representation == other.representation
+ && base.Equals(other);
+ }
+
+ public override int GetHashCode()
+ {
+ return m.GetHashCode()
+ ^ k1.GetHashCode()
+ ^ k2.GetHashCode()
+ ^ k3.GetHashCode()
+ ^ representation.GetHashCode()
+ ^ base.GetHashCode();
+ }
+ }
+}
|