summary refs log tree commit diff
path: root/Crypto/src/crypto/engines/TwofishEngine.cs
diff options
context:
space:
mode:
Diffstat (limited to 'Crypto/src/crypto/engines/TwofishEngine.cs')
-rw-r--r--Crypto/src/crypto/engines/TwofishEngine.cs675
1 files changed, 675 insertions, 0 deletions
diff --git a/Crypto/src/crypto/engines/TwofishEngine.cs b/Crypto/src/crypto/engines/TwofishEngine.cs
new file mode 100644
index 000000000..b983d9d31
--- /dev/null
+++ b/Crypto/src/crypto/engines/TwofishEngine.cs
@@ -0,0 +1,675 @@
+using System;
+
+using Org.BouncyCastle.Crypto.Parameters;
+
+namespace Org.BouncyCastle.Crypto.Engines
+{
+    /**
+    * A class that provides Twofish encryption operations.
+    *
+    * This Java implementation is based on the Java reference
+    * implementation provided by Bruce Schneier and developed
+    * by Raif S. Naffah.
+    */
+    public sealed class TwofishEngine
+		: IBlockCipher
+    {
+        private static readonly byte[,] P =  {
+        {  // p0
+            (byte) 0xA9, (byte) 0x67, (byte) 0xB3, (byte) 0xE8,
+            (byte) 0x04, (byte) 0xFD, (byte) 0xA3, (byte) 0x76,
+            (byte) 0x9A, (byte) 0x92, (byte) 0x80, (byte) 0x78,
+            (byte) 0xE4, (byte) 0xDD, (byte) 0xD1, (byte) 0x38,
+            (byte) 0x0D, (byte) 0xC6, (byte) 0x35, (byte) 0x98,
+            (byte) 0x18, (byte) 0xF7, (byte) 0xEC, (byte) 0x6C,
+            (byte) 0x43, (byte) 0x75, (byte) 0x37, (byte) 0x26,
+            (byte) 0xFA, (byte) 0x13, (byte) 0x94, (byte) 0x48,
+            (byte) 0xF2, (byte) 0xD0, (byte) 0x8B, (byte) 0x30,
+            (byte) 0x84, (byte) 0x54, (byte) 0xDF, (byte) 0x23,
+            (byte) 0x19, (byte) 0x5B, (byte) 0x3D, (byte) 0x59,
+            (byte) 0xF3, (byte) 0xAE, (byte) 0xA2, (byte) 0x82,
+            (byte) 0x63, (byte) 0x01, (byte) 0x83, (byte) 0x2E,
+            (byte) 0xD9, (byte) 0x51, (byte) 0x9B, (byte) 0x7C,
+            (byte) 0xA6, (byte) 0xEB, (byte) 0xA5, (byte) 0xBE,
+            (byte) 0x16, (byte) 0x0C, (byte) 0xE3, (byte) 0x61,
+            (byte) 0xC0, (byte) 0x8C, (byte) 0x3A, (byte) 0xF5,
+            (byte) 0x73, (byte) 0x2C, (byte) 0x25, (byte) 0x0B,
+            (byte) 0xBB, (byte) 0x4E, (byte) 0x89, (byte) 0x6B,
+            (byte) 0x53, (byte) 0x6A, (byte) 0xB4, (byte) 0xF1,
+            (byte) 0xE1, (byte) 0xE6, (byte) 0xBD, (byte) 0x45,
+            (byte) 0xE2, (byte) 0xF4, (byte) 0xB6, (byte) 0x66,
+            (byte) 0xCC, (byte) 0x95, (byte) 0x03, (byte) 0x56,
+            (byte) 0xD4, (byte) 0x1C, (byte) 0x1E, (byte) 0xD7,
+            (byte) 0xFB, (byte) 0xC3, (byte) 0x8E, (byte) 0xB5,
+            (byte) 0xE9, (byte) 0xCF, (byte) 0xBF, (byte) 0xBA,
+            (byte) 0xEA, (byte) 0x77, (byte) 0x39, (byte) 0xAF,
+            (byte) 0x33, (byte) 0xC9, (byte) 0x62, (byte) 0x71,
+            (byte) 0x81, (byte) 0x79, (byte) 0x09, (byte) 0xAD,
+            (byte) 0x24, (byte) 0xCD, (byte) 0xF9, (byte) 0xD8,
+            (byte) 0xE5, (byte) 0xC5, (byte) 0xB9, (byte) 0x4D,
+            (byte) 0x44, (byte) 0x08, (byte) 0x86, (byte) 0xE7,
+            (byte) 0xA1, (byte) 0x1D, (byte) 0xAA, (byte) 0xED,
+            (byte) 0x06, (byte) 0x70, (byte) 0xB2, (byte) 0xD2,
+            (byte) 0x41, (byte) 0x7B, (byte) 0xA0, (byte) 0x11,
+            (byte) 0x31, (byte) 0xC2, (byte) 0x27, (byte) 0x90,
+            (byte) 0x20, (byte) 0xF6, (byte) 0x60, (byte) 0xFF,
+            (byte) 0x96, (byte) 0x5C, (byte) 0xB1, (byte) 0xAB,
+            (byte) 0x9E, (byte) 0x9C, (byte) 0x52, (byte) 0x1B,
+            (byte) 0x5F, (byte) 0x93, (byte) 0x0A, (byte) 0xEF,
+            (byte) 0x91, (byte) 0x85, (byte) 0x49, (byte) 0xEE,
+            (byte) 0x2D, (byte) 0x4F, (byte) 0x8F, (byte) 0x3B,
+            (byte) 0x47, (byte) 0x87, (byte) 0x6D, (byte) 0x46,
+            (byte) 0xD6, (byte) 0x3E, (byte) 0x69, (byte) 0x64,
+            (byte) 0x2A, (byte) 0xCE, (byte) 0xCB, (byte) 0x2F,
+            (byte) 0xFC, (byte) 0x97, (byte) 0x05, (byte) 0x7A,
+            (byte) 0xAC, (byte) 0x7F, (byte) 0xD5, (byte) 0x1A,
+            (byte) 0x4B, (byte) 0x0E, (byte) 0xA7, (byte) 0x5A,
+            (byte) 0x28, (byte) 0x14, (byte) 0x3F, (byte) 0x29,
+            (byte) 0x88, (byte) 0x3C, (byte) 0x4C, (byte) 0x02,
+            (byte) 0xB8, (byte) 0xDA, (byte) 0xB0, (byte) 0x17,
+            (byte) 0x55, (byte) 0x1F, (byte) 0x8A, (byte) 0x7D,
+            (byte) 0x57, (byte) 0xC7, (byte) 0x8D, (byte) 0x74,
+            (byte) 0xB7, (byte) 0xC4, (byte) 0x9F, (byte) 0x72,
+            (byte) 0x7E, (byte) 0x15, (byte) 0x22, (byte) 0x12,
+            (byte) 0x58, (byte) 0x07, (byte) 0x99, (byte) 0x34,
+            (byte) 0x6E, (byte) 0x50, (byte) 0xDE, (byte) 0x68,
+            (byte) 0x65, (byte) 0xBC, (byte) 0xDB, (byte) 0xF8,
+            (byte) 0xC8, (byte) 0xA8, (byte) 0x2B, (byte) 0x40,
+            (byte) 0xDC, (byte) 0xFE, (byte) 0x32, (byte) 0xA4,
+            (byte) 0xCA, (byte) 0x10, (byte) 0x21, (byte) 0xF0,
+            (byte) 0xD3, (byte) 0x5D, (byte) 0x0F, (byte) 0x00,
+            (byte) 0x6F, (byte) 0x9D, (byte) 0x36, (byte) 0x42,
+            (byte) 0x4A, (byte) 0x5E, (byte) 0xC1, (byte) 0xE0 },
+        {  // p1
+            (byte) 0x75, (byte) 0xF3, (byte) 0xC6, (byte) 0xF4,
+            (byte) 0xDB, (byte) 0x7B, (byte) 0xFB, (byte) 0xC8,
+            (byte) 0x4A, (byte) 0xD3, (byte) 0xE6, (byte) 0x6B,
+            (byte) 0x45, (byte) 0x7D, (byte) 0xE8, (byte) 0x4B,
+            (byte) 0xD6, (byte) 0x32, (byte) 0xD8, (byte) 0xFD,
+            (byte) 0x37, (byte) 0x71, (byte) 0xF1, (byte) 0xE1,
+            (byte) 0x30, (byte) 0x0F, (byte) 0xF8, (byte) 0x1B,
+            (byte) 0x87, (byte) 0xFA, (byte) 0x06, (byte) 0x3F,
+            (byte) 0x5E, (byte) 0xBA, (byte) 0xAE, (byte) 0x5B,
+            (byte) 0x8A, (byte) 0x00, (byte) 0xBC, (byte) 0x9D,
+            (byte) 0x6D, (byte) 0xC1, (byte) 0xB1, (byte) 0x0E,
+            (byte) 0x80, (byte) 0x5D, (byte) 0xD2, (byte) 0xD5,
+            (byte) 0xA0, (byte) 0x84, (byte) 0x07, (byte) 0x14,
+            (byte) 0xB5, (byte) 0x90, (byte) 0x2C, (byte) 0xA3,
+            (byte) 0xB2, (byte) 0x73, (byte) 0x4C, (byte) 0x54,
+            (byte) 0x92, (byte) 0x74, (byte) 0x36, (byte) 0x51,
+            (byte) 0x38, (byte) 0xB0, (byte) 0xBD, (byte) 0x5A,
+            (byte) 0xFC, (byte) 0x60, (byte) 0x62, (byte) 0x96,
+            (byte) 0x6C, (byte) 0x42, (byte) 0xF7, (byte) 0x10,
+            (byte) 0x7C, (byte) 0x28, (byte) 0x27, (byte) 0x8C,
+            (byte) 0x13, (byte) 0x95, (byte) 0x9C, (byte) 0xC7,
+            (byte) 0x24, (byte) 0x46, (byte) 0x3B, (byte) 0x70,
+            (byte) 0xCA, (byte) 0xE3, (byte) 0x85, (byte) 0xCB,
+            (byte) 0x11, (byte) 0xD0, (byte) 0x93, (byte) 0xB8,
+            (byte) 0xA6, (byte) 0x83, (byte) 0x20, (byte) 0xFF,
+            (byte) 0x9F, (byte) 0x77, (byte) 0xC3, (byte) 0xCC,
+            (byte) 0x03, (byte) 0x6F, (byte) 0x08, (byte) 0xBF,
+            (byte) 0x40, (byte) 0xE7, (byte) 0x2B, (byte) 0xE2,
+            (byte) 0x79, (byte) 0x0C, (byte) 0xAA, (byte) 0x82,
+            (byte) 0x41, (byte) 0x3A, (byte) 0xEA, (byte) 0xB9,
+            (byte) 0xE4, (byte) 0x9A, (byte) 0xA4, (byte) 0x97,
+            (byte) 0x7E, (byte) 0xDA, (byte) 0x7A, (byte) 0x17,
+            (byte) 0x66, (byte) 0x94, (byte) 0xA1, (byte) 0x1D,
+            (byte) 0x3D, (byte) 0xF0, (byte) 0xDE, (byte) 0xB3,
+            (byte) 0x0B, (byte) 0x72, (byte) 0xA7, (byte) 0x1C,
+            (byte) 0xEF, (byte) 0xD1, (byte) 0x53, (byte) 0x3E,
+            (byte) 0x8F, (byte) 0x33, (byte) 0x26, (byte) 0x5F,
+            (byte) 0xEC, (byte) 0x76, (byte) 0x2A, (byte) 0x49,
+            (byte) 0x81, (byte) 0x88, (byte) 0xEE, (byte) 0x21,
+            (byte) 0xC4, (byte) 0x1A, (byte) 0xEB, (byte) 0xD9,
+            (byte) 0xC5, (byte) 0x39, (byte) 0x99, (byte) 0xCD,
+            (byte) 0xAD, (byte) 0x31, (byte) 0x8B, (byte) 0x01,
+            (byte) 0x18, (byte) 0x23, (byte) 0xDD, (byte) 0x1F,
+            (byte) 0x4E, (byte) 0x2D, (byte) 0xF9, (byte) 0x48,
+            (byte) 0x4F, (byte) 0xF2, (byte) 0x65, (byte) 0x8E,
+            (byte) 0x78, (byte) 0x5C, (byte) 0x58, (byte) 0x19,
+            (byte) 0x8D, (byte) 0xE5, (byte) 0x98, (byte) 0x57,
+            (byte) 0x67, (byte) 0x7F, (byte) 0x05, (byte) 0x64,
+            (byte) 0xAF, (byte) 0x63, (byte) 0xB6, (byte) 0xFE,
+            (byte) 0xF5, (byte) 0xB7, (byte) 0x3C, (byte) 0xA5,
+            (byte) 0xCE, (byte) 0xE9, (byte) 0x68, (byte) 0x44,
+            (byte) 0xE0, (byte) 0x4D, (byte) 0x43, (byte) 0x69,
+            (byte) 0x29, (byte) 0x2E, (byte) 0xAC, (byte) 0x15,
+            (byte) 0x59, (byte) 0xA8, (byte) 0x0A, (byte) 0x9E,
+            (byte) 0x6E, (byte) 0x47, (byte) 0xDF, (byte) 0x34,
+            (byte) 0x35, (byte) 0x6A, (byte) 0xCF, (byte) 0xDC,
+            (byte) 0x22, (byte) 0xC9, (byte) 0xC0, (byte) 0x9B,
+            (byte) 0x89, (byte) 0xD4, (byte) 0xED, (byte) 0xAB,
+            (byte) 0x12, (byte) 0xA2, (byte) 0x0D, (byte) 0x52,
+            (byte) 0xBB, (byte) 0x02, (byte) 0x2F, (byte) 0xA9,
+            (byte) 0xD7, (byte) 0x61, (byte) 0x1E, (byte) 0xB4,
+            (byte) 0x50, (byte) 0x04, (byte) 0xF6, (byte) 0xC2,
+            (byte) 0x16, (byte) 0x25, (byte) 0x86, (byte) 0x56,
+            (byte) 0x55, (byte) 0x09, (byte) 0xBE, (byte) 0x91  }
+        };
+
+        /**
+        * Define the fixed p0/p1 permutations used in keyed S-box lookup.
+        * By changing the following constant definitions, the S-boxes will
+        * automatically Get changed in the Twofish engine.
+        */
+        private const int P_00 = 1;
+        private const int P_01 = 0;
+        private const int P_02 = 0;
+        private const int P_03 = P_01 ^ 1;
+        private const int P_04 = 1;
+
+        private const int P_10 = 0;
+        private const int P_11 = 0;
+        private const int P_12 = 1;
+        private const int P_13 = P_11 ^ 1;
+        private const int P_14 = 0;
+
+        private const int P_20 = 1;
+        private const int P_21 = 1;
+        private const int P_22 = 0;
+        private const int P_23 = P_21 ^ 1;
+        private const int P_24 = 0;
+
+        private const int P_30 = 0;
+        private const int P_31 = 1;
+        private const int P_32 = 1;
+        private const int P_33 = P_31 ^ 1;
+        private const int P_34 = 1;
+
+        /* Primitive polynomial for GF(256) */
+        private const int GF256_FDBK = 0x169;
+        private const int GF256_FDBK_2 = GF256_FDBK / 2;
+        private const int GF256_FDBK_4 = GF256_FDBK / 4;
+
+        private const int RS_GF_FDBK = 0x14D; // field generator
+
+        //====================================
+        // Useful constants
+        //====================================
+
+        private const int    ROUNDS = 16;
+        private const int    MAX_ROUNDS = 16;  // bytes = 128 bits
+        private const int    BLOCK_SIZE = 16;  // bytes = 128 bits
+        private const int    MAX_KEY_BITS = 256;
+
+        private const int    INPUT_WHITEN=0;
+        private const int    OUTPUT_WHITEN=INPUT_WHITEN+BLOCK_SIZE/4; // 4
+        private const int    ROUND_SUBKEYS=OUTPUT_WHITEN+BLOCK_SIZE/4;// 8
+
+        private const int    TOTAL_SUBKEYS=ROUND_SUBKEYS+2*MAX_ROUNDS;// 40
+
+        private const int    SK_STEP = 0x02020202;
+        private const int    SK_BUMP = 0x01010101;
+        private const int    SK_ROTL = 9;
+
+        private bool encrypting;
+
+        private int[] gMDS0 = new int[MAX_KEY_BITS];
+        private int[] gMDS1 = new int[MAX_KEY_BITS];
+        private int[] gMDS2 = new int[MAX_KEY_BITS];
+        private int[] gMDS3 = new int[MAX_KEY_BITS];
+
+        /**
+        * gSubKeys[] and gSBox[] are eventually used in the
+        * encryption and decryption methods.
+        */
+        private int[] gSubKeys;
+        private int[] gSBox;
+
+        private int k64Cnt;
+
+        private byte[] workingKey;
+
+        public TwofishEngine()
+        {
+            // calculate the MDS matrix
+            int[] m1 = new int[2];
+            int[] mX = new int[2];
+            int[] mY = new int[2];
+            int j;
+
+            for (int i=0; i< MAX_KEY_BITS ; i++)
+            {
+                j = P[0,i] & 0xff;
+                m1[0] = j;
+                mX[0] = Mx_X(j) & 0xff;
+                mY[0] = Mx_Y(j) & 0xff;
+
+                j = P[1,i] & 0xff;
+                m1[1] = j;
+                mX[1] = Mx_X(j) & 0xff;
+                mY[1] = Mx_Y(j) & 0xff;
+
+                gMDS0[i] = m1[P_00]       | mX[P_00] <<  8 |
+                            mY[P_00] << 16 | mY[P_00] << 24;
+
+                gMDS1[i] = mY[P_10]       | mY[P_10] <<  8 |
+                            mX[P_10] << 16 | m1[P_10] << 24;
+
+                gMDS2[i] = mX[P_20]       | mY[P_20] <<  8 |
+                            m1[P_20] << 16 | mY[P_20] << 24;
+
+                gMDS3[i] = mX[P_30]       | m1[P_30] <<  8 |
+                            mY[P_30] << 16 | mX[P_30] << 24;
+            }
+        }
+
+        /**
+        * initialise a Twofish cipher.
+        *
+        * @param forEncryption whether or not we are for encryption.
+        * @param parameters the parameters required to set up the cipher.
+        * @exception ArgumentException if the parameters argument is
+        * inappropriate.
+        */
+        public void Init(
+            bool              forEncryption,
+            ICipherParameters parameters)
+        {
+            if (!(parameters is KeyParameter))
+				throw new ArgumentException("invalid parameter passed to Twofish init - " + parameters.GetType().ToString());
+
+			this.encrypting = forEncryption;
+			this.workingKey = ((KeyParameter)parameters).GetKey();
+			this.k64Cnt = (this.workingKey.Length / 8); // pre-padded ?
+			SetKey(this.workingKey);
+        }
+
+		public string AlgorithmName
+        {
+            get { return "Twofish"; }
+        }
+
+		public bool IsPartialBlockOkay
+		{
+			get { return false; }
+		}
+
+		public int ProcessBlock(
+            byte[]	input,
+            int		inOff,
+            byte[]	output,
+            int		outOff)
+        {
+            if (workingKey == null)
+                throw new InvalidOperationException("Twofish not initialised");
+            if ((inOff + BLOCK_SIZE) > input.Length)
+                throw new DataLengthException("input buffer too short");
+            if ((outOff + BLOCK_SIZE) > output.Length)
+                throw new DataLengthException("output buffer too short");
+
+			if (encrypting)
+            {
+                EncryptBlock(input, inOff, output, outOff);
+            }
+            else
+            {
+                DecryptBlock(input, inOff, output, outOff);
+            }
+
+            return BLOCK_SIZE;
+        }
+
+        public void Reset()
+        {
+            if (this.workingKey != null)
+            {
+                SetKey(this.workingKey);
+            }
+        }
+
+        public int GetBlockSize()
+        {
+            return BLOCK_SIZE;
+        }
+
+        //==================================
+        // Private Implementation
+        //==================================
+
+        private void SetKey(byte[] key)
+        {
+            int[] k32e = new int[MAX_KEY_BITS/64]; // 4
+            int[] k32o = new int[MAX_KEY_BITS/64]; // 4
+
+            int[] sBoxKeys = new int[MAX_KEY_BITS/64]; // 4
+            gSubKeys = new int[TOTAL_SUBKEYS];
+
+            if (k64Cnt < 1)
+            {
+                throw new ArgumentException("Key size less than 64 bits");
+            }
+
+            if (k64Cnt > 4)
+            {
+                throw new ArgumentException("Key size larger than 256 bits");
+            }
+
+            /*
+            * k64Cnt is the number of 8 byte blocks (64 chunks)
+            * that are in the input key.  The input key is a
+            * maximum of 32 bytes ( 256 bits ), so the range
+            * for k64Cnt is 1..4
+            */
+            for (int i=0,p=0; i<k64Cnt ; i++)
+            {
+                p = i* 8;
+
+                k32e[i] = BytesTo32Bits(key, p);
+                k32o[i] = BytesTo32Bits(key, p+4);
+
+                sBoxKeys[k64Cnt-1-i] = RS_MDS_Encode(k32e[i], k32o[i]);
+            }
+
+            int q,A,B;
+            for (int i=0; i < TOTAL_SUBKEYS / 2 ; i++)
+            {
+                q = i*SK_STEP;
+                A = F32(q,         k32e);
+                B = F32(q+SK_BUMP, k32o);
+                B = B << 8 | (int)((uint)B >> 24);
+                A += B;
+                gSubKeys[i*2] = A;
+                A += B;
+                gSubKeys[i*2 + 1] = A << SK_ROTL | (int)((uint)A >> (32-SK_ROTL));
+            }
+
+            /*
+            * fully expand the table for speed
+            */
+            int k0 = sBoxKeys[0];
+            int k1 = sBoxKeys[1];
+            int k2 = sBoxKeys[2];
+            int k3 = sBoxKeys[3];
+            int b0, b1, b2, b3;
+            gSBox = new int[4*MAX_KEY_BITS];
+            for (int i=0; i<MAX_KEY_BITS; i++)
+            {
+                b0 = b1 = b2 = b3 = i;
+                switch (k64Cnt & 3)
+                {
+                    case 1:
+                        gSBox[i*2]       = gMDS0[(P[P_01,b0] & 0xff) ^ M_b0(k0)];
+                        gSBox[i*2+1]     = gMDS1[(P[P_11,b1] & 0xff) ^ M_b1(k0)];
+                        gSBox[i*2+0x200] = gMDS2[(P[P_21,b2] & 0xff) ^ M_b2(k0)];
+                        gSBox[i*2+0x201] = gMDS3[(P[P_31,b3] & 0xff) ^ M_b3(k0)];
+                    break;
+                    case 0: // 256 bits of key
+                        b0 = (P[P_04,b0] & 0xff) ^ M_b0(k3);
+                        b1 = (P[P_14,b1] & 0xff) ^ M_b1(k3);
+                        b2 = (P[P_24,b2] & 0xff) ^ M_b2(k3);
+                        b3 = (P[P_34,b3] & 0xff) ^ M_b3(k3);
+                        // fall through, having pre-processed b[0]..b[3] with k32[3]
+                        goto case 3;
+                    case 3: // 192 bits of key
+                        b0 = (P[P_03,b0] & 0xff) ^ M_b0(k2);
+                        b1 = (P[P_13,b1] & 0xff) ^ M_b1(k2);
+                        b2 = (P[P_23,b2] & 0xff) ^ M_b2(k2);
+                        b3 = (P[P_33,b3] & 0xff) ^ M_b3(k2);
+                        // fall through, having pre-processed b[0]..b[3] with k32[2]
+                        goto case 2;
+                    case 2: // 128 bits of key
+                        gSBox[i * 2] = gMDS0[(P[P_01, (P[P_02, b0] & 0xff) ^ M_b0(k1)] & 0xff) ^ M_b0(k0)];
+                        gSBox[i*2+1] = gMDS1[(P[P_11,(P[P_12,b1] & 0xff) ^ M_b1(k1)] & 0xff) ^ M_b1(k0)];
+                        gSBox[i*2+0x200] = gMDS2[(P[P_21,(P[P_22,b2] & 0xff) ^ M_b2(k1)] & 0xff) ^ M_b2(k0)];
+                        gSBox[i * 2 + 0x201] = gMDS3[(P[P_31, (P[P_32, b3] & 0xff) ^ M_b3(k1)] & 0xff) ^ M_b3(k0)];
+                        break;
+                }
+            }
+
+            /*
+            * the function exits having setup the gSBox with the
+            * input key material.
+            */
+        }
+
+        /**
+        * Encrypt the given input starting at the given offset and place
+        * the result in the provided buffer starting at the given offset.
+        * The input will be an exact multiple of our blocksize.
+        *
+        * encryptBlock uses the pre-calculated gSBox[] and subKey[]
+        * arrays.
+        */
+        private void EncryptBlock(
+            byte[] src,
+            int srcIndex,
+            byte[] dst,
+            int dstIndex)
+        {
+            int x0 = BytesTo32Bits(src, srcIndex) ^ gSubKeys[INPUT_WHITEN];
+            int x1 = BytesTo32Bits(src, srcIndex + 4) ^ gSubKeys[INPUT_WHITEN + 1];
+            int x2 = BytesTo32Bits(src, srcIndex + 8) ^ gSubKeys[INPUT_WHITEN + 2];
+            int x3 = BytesTo32Bits(src, srcIndex + 12) ^ gSubKeys[INPUT_WHITEN + 3];
+
+            int k = ROUND_SUBKEYS;
+            int t0, t1;
+            for (int r = 0; r < ROUNDS; r +=2)
+            {
+                t0 = Fe32_0(x0);
+                t1 = Fe32_3(x1);
+                x2 ^= t0 + t1 + gSubKeys[k++];
+                x2 = (int)((uint)x2 >>1) | x2 << 31;
+                x3 = (x3 << 1 | (int) ((uint)x3 >> 31)) ^ (t0 + 2*t1 + gSubKeys[k++]);
+
+                t0 = Fe32_0(x2);
+                t1 = Fe32_3(x3);
+                x0 ^= t0 + t1 + gSubKeys[k++];
+                x0 = (int) ((uint)x0 >>1) | x0 << 31;
+                x1 = (x1 << 1 | (int)((uint)x1 >> 31)) ^ (t0 + 2*t1 + gSubKeys[k++]);
+            }
+
+            Bits32ToBytes(x2 ^ gSubKeys[OUTPUT_WHITEN], dst, dstIndex);
+            Bits32ToBytes(x3 ^ gSubKeys[OUTPUT_WHITEN + 1], dst, dstIndex + 4);
+            Bits32ToBytes(x0 ^ gSubKeys[OUTPUT_WHITEN + 2], dst, dstIndex + 8);
+            Bits32ToBytes(x1 ^ gSubKeys[OUTPUT_WHITEN + 3], dst, dstIndex + 12);
+        }
+
+        /**
+        * Decrypt the given input starting at the given offset and place
+        * the result in the provided buffer starting at the given offset.
+        * The input will be an exact multiple of our blocksize.
+        */
+        private void DecryptBlock(
+            byte[] src,
+            int srcIndex,
+            byte[] dst,
+            int dstIndex)
+        {
+            int x2 = BytesTo32Bits(src, srcIndex) ^ gSubKeys[OUTPUT_WHITEN];
+            int x3 = BytesTo32Bits(src, srcIndex+4) ^ gSubKeys[OUTPUT_WHITEN + 1];
+            int x0 = BytesTo32Bits(src, srcIndex+8) ^ gSubKeys[OUTPUT_WHITEN + 2];
+            int x1 = BytesTo32Bits(src, srcIndex+12) ^ gSubKeys[OUTPUT_WHITEN + 3];
+
+            int k = ROUND_SUBKEYS + 2 * ROUNDS -1 ;
+            int t0, t1;
+            for (int r = 0; r< ROUNDS ; r +=2)
+            {
+                t0 = Fe32_0(x2);
+                t1 = Fe32_3(x3);
+                x1 ^= t0 + 2*t1 + gSubKeys[k--];
+                x0 = (x0 << 1 | (int)((uint) x0 >> 31)) ^ (t0 + t1 + gSubKeys[k--]);
+                x1 = (int) ((uint)x1 >>1) | x1 << 31;
+
+                t0 = Fe32_0(x0);
+                t1 = Fe32_3(x1);
+                x3 ^= t0 + 2*t1 + gSubKeys[k--];
+                x2 = (x2 << 1 | (int)((uint)x2 >> 31)) ^ (t0 + t1 + gSubKeys[k--]);
+                x3 = (int)((uint)x3 >>1) | x3 << 31;
+            }
+
+            Bits32ToBytes(x0 ^ gSubKeys[INPUT_WHITEN], dst, dstIndex);
+            Bits32ToBytes(x1 ^ gSubKeys[INPUT_WHITEN + 1], dst, dstIndex + 4);
+            Bits32ToBytes(x2 ^ gSubKeys[INPUT_WHITEN + 2], dst, dstIndex + 8);
+            Bits32ToBytes(x3 ^ gSubKeys[INPUT_WHITEN + 3], dst, dstIndex + 12);
+        }
+
+        /*
+        * TODO:  This can be optimised and made cleaner by combining
+        * the functionality in this function and applying it appropriately
+        * to the creation of the subkeys during key setup.
+        */
+        private  int F32(int x, int[] k32)
+        {
+            int b0 = M_b0(x);
+            int b1 = M_b1(x);
+            int b2 = M_b2(x);
+            int b3 = M_b3(x);
+            int k0 = k32[0];
+            int k1 = k32[1];
+            int k2 = k32[2];
+            int k3 = k32[3];
+
+            int result = 0;
+            switch (k64Cnt & 3)
+            {
+                case 1:
+                    result = gMDS0[(P[P_01,b0] & 0xff) ^ M_b0(k0)] ^
+                            gMDS1[(P[P_11,b1] & 0xff) ^ M_b1(k0)] ^
+                            gMDS2[(P[P_21,b2] & 0xff) ^ M_b2(k0)] ^
+                            gMDS3[(P[P_31,b3] & 0xff) ^ M_b3(k0)];
+                    break;
+                case 0: /* 256 bits of key */
+                    b0 = (P[P_04,b0] & 0xff) ^ M_b0(k3);
+                    b1 = (P[P_14,b1] & 0xff) ^ M_b1(k3);
+                    b2 = (P[P_24,b2] & 0xff) ^ M_b2(k3);
+                    b3 = (P[P_34,b3] & 0xff) ^ M_b3(k3);
+                    goto case 3;
+                case 3:
+                    b0 = (P[P_03,b0] & 0xff) ^ M_b0(k2);
+                    b1 = (P[P_13,b1] & 0xff) ^ M_b1(k2);
+                    b2 = (P[P_23,b2] & 0xff) ^ M_b2(k2);
+                    b3 = (P[P_33,b3] & 0xff) ^ M_b3(k2);
+                    goto case 2;
+                case 2:
+                    result =
+                    gMDS0[(P[P_01,(P[P_02,b0]&0xff)^M_b0(k1)]&0xff)^M_b0(k0)] ^
+                    gMDS1[(P[P_11,(P[P_12,b1]&0xff)^M_b1(k1)]&0xff)^M_b1(k0)] ^
+                    gMDS2[(P[P_21,(P[P_22,b2]&0xff)^M_b2(k1)]&0xff)^M_b2(k0)] ^
+                    gMDS3[(P[P_31,(P[P_32,b3]&0xff)^M_b3(k1)]&0xff)^M_b3(k0)];
+                break;
+            }
+            return result;
+        }
+
+        /**
+        * Use (12, 8) Reed-Solomon code over GF(256) to produce
+        * a key S-box 32-bit entity from 2 key material 32-bit
+        * entities.
+        *
+        * @param    k0 first 32-bit entity
+        * @param    k1 second 32-bit entity
+        * @return     Remainder polynomial Generated using RS code
+        */
+        private  int RS_MDS_Encode(int k0, int k1)
+        {
+            int r = k1;
+            for (int i = 0 ; i < 4 ; i++) // shift 1 byte at a time
+            {
+                r = RS_rem(r);
+            }
+            r ^= k0;
+            for (int i=0 ; i < 4 ; i++)
+            {
+                r = RS_rem(r);
+            }
+
+            return r;
+        }
+
+        /**
+        * Reed-Solomon code parameters: (12,8) reversible code:
+		* <p>
+        * <pre>
+        * G(x) = x^4 + (a+1/a)x^3 + ax^2 + (a+1/a)x + 1
+        * </pre>
+        * where a = primitive root of field generator 0x14D
+		* </p>
+        */
+        private  int RS_rem(int x)
+        {
+            int b = (int) (((uint)x >> 24) & 0xff);
+            int g2 = ((b << 1) ^
+                    ((b & 0x80) != 0 ? RS_GF_FDBK : 0)) & 0xff;
+            int g3 = ( (int)((uint)b >> 1) ^
+                    ((b & 0x01) != 0 ? (int)((uint)RS_GF_FDBK >> 1) : 0)) ^ g2 ;
+            return ((x << 8) ^ (g3 << 24) ^ (g2 << 16) ^ (g3 << 8) ^ b);
+        }
+
+        private  int LFSR1(int x)
+        {
+            return (x >> 1) ^
+                    (((x & 0x01) != 0) ? GF256_FDBK_2 : 0);
+        }
+
+        private  int LFSR2(int x)
+        {
+            return (x >> 2) ^
+                    (((x & 0x02) != 0) ? GF256_FDBK_2 : 0) ^
+                    (((x & 0x01) != 0) ? GF256_FDBK_4 : 0);
+        }
+
+        private  int Mx_X(int x)
+        {
+            return x ^ LFSR2(x);
+        } // 5B
+
+        private  int Mx_Y(int x)
+        {
+            return x ^ LFSR1(x) ^ LFSR2(x);
+        } // EF
+
+        private  int M_b0(int x)
+        {
+            return x & 0xff;
+        }
+
+        private  int M_b1(int x)
+        {
+            return (int)((uint)x >> 8) & 0xff;
+        }
+
+        private  int M_b2(int x)
+        {
+            return (int)((uint)x >> 16) & 0xff;
+        }
+
+        private  int M_b3(int x)
+        {
+            return (int)((uint)x >> 24) & 0xff;
+        }
+
+        private  int Fe32_0(int x)
+        {
+            return gSBox[ 0x000 + 2*(x & 0xff) ] ^
+                gSBox[ 0x001 + 2*((int)((uint)x >> 8) & 0xff) ] ^
+                gSBox[ 0x200 + 2*((int)((uint)x >> 16) & 0xff) ] ^
+                gSBox[ 0x201 + 2*((int)((uint)x >> 24) & 0xff) ];
+        }
+
+        private  int Fe32_3(int x)
+        {
+            return gSBox[ 0x000 + 2*((int)((uint)x >> 24) & 0xff) ] ^
+                gSBox[ 0x001 + 2*(x & 0xff) ] ^
+                gSBox[ 0x200 + 2*((int)((uint)x >> 8) & 0xff) ] ^
+                gSBox[ 0x201 + 2*((int)((uint)x >> 16) & 0xff) ];
+        }
+
+        private  int BytesTo32Bits(byte[] b, int p)
+        {
+            return ((b[p] & 0xff) ) |
+                ((b[p+1] & 0xff) << 8) |
+                ((b[p+2] & 0xff) << 16) |
+                ((b[p+3] & 0xff) << 24);
+        }
+
+        private  void Bits32ToBytes(int inData,  byte[] b, int offset)
+        {
+            b[offset] = (byte)inData;
+            b[offset + 1] = (byte)(inData >> 8);
+            b[offset + 2] = (byte)(inData >> 16);
+            b[offset + 3] = (byte)(inData >> 24);
+        }
+    }
+
+}