summary refs log tree commit diff
diff options
context:
space:
mode:
-rw-r--r--crypto/src/crypto/engines/RSABlindedEngine.cs36
-rw-r--r--crypto/src/crypto/engines/RSACoreEngine.cs60
2 files changed, 47 insertions, 49 deletions
diff --git a/crypto/src/crypto/engines/RSABlindedEngine.cs b/crypto/src/crypto/engines/RSABlindedEngine.cs
index d207f617c..8bb9a4f8c 100644
--- a/crypto/src/crypto/engines/RSABlindedEngine.cs
+++ b/crypto/src/crypto/engines/RSABlindedEngine.cs
@@ -110,31 +110,25 @@ namespace Org.BouncyCastle.Crypto.Engines
                 throw new InvalidOperationException("RSA engine not initialised");
 
             BigInteger input = core.ConvertInput(inBuf, inOff, inLen);
+            BigInteger result = ProcessInput(input);
+            return core.ConvertOutput(result);
+        }
 
-            BigInteger result;
-            if (key is RsaPrivateCrtKeyParameters crt)
-            {
-                BigInteger e = crt.PublicExponent;
-                BigInteger m = crt.Modulus;
-                BigInteger r = BigIntegers.CreateRandomInRange(
-                    BigInteger.One, m.Subtract(BigInteger.One), random);
-
-                BigInteger blindedInput = r.ModPow(e, m).Multiply(input).Mod(m);
-                BigInteger blindedResult = core.ProcessBlock(blindedInput);
+        private BigInteger ProcessInput(BigInteger input)
+        {
+            if (!(key is RsaPrivateCrtKeyParameters crt))
+                return core.ProcessBlock(input);
 
-                BigInteger rInv = BigIntegers.ModOddInverse(m, r);
-                result = blindedResult.Multiply(rInv).Mod(m);
+            BigInteger e = crt.PublicExponent;
+            BigInteger m = crt.Modulus;
 
-                // defence against Arjen Lenstra’s CRT attack
-                if (!input.Equals(result.ModPow(e, m)))
-                    throw new InvalidOperationException("RSA engine faulty decryption/signing detected");
-            }
-            else
-            {
-                result = core.ProcessBlock(input);
-            }
+            BigInteger r = BigIntegers.CreateRandomInRange(BigInteger.One, m.Subtract(BigInteger.One), random);
+            BigInteger blind = r.ModPow(e, m);
+            BigInteger unblind = BigIntegers.ModOddInverse(m, r);
 
-            return core.ConvertOutput(result);
+            BigInteger blindedInput = blind.Multiply(input).Mod(m);
+            BigInteger blindedResult = core.ProcessBlock(blindedInput);
+            return unblind.Multiply(blindedResult).Mod(m);
         }
     }
 }
diff --git a/crypto/src/crypto/engines/RSACoreEngine.cs b/crypto/src/crypto/engines/RSACoreEngine.cs
index ffa448b3d..ee0f86c3f 100644
--- a/crypto/src/crypto/engines/RSACoreEngine.cs
+++ b/crypto/src/crypto/engines/RSACoreEngine.cs
@@ -113,38 +113,42 @@ namespace Org.BouncyCastle.Crypto.Engines
 				: BigIntegers.AsUnsignedByteArray(result);
 		}
 
-        public virtual BigInteger ProcessBlock(
-			BigInteger input)
+        public virtual BigInteger ProcessBlock(BigInteger input)
 		{
             CheckInitialised();
 
-            if (key is RsaPrivateCrtKeyParameters crt)
-			{
-				//
-				// we have the extra factors, use the Chinese Remainder Theorem - the author
-				// wishes to express his thanks to Dirk Bonekaemper at rtsffm.com for
-				// advice regarding the expression of this.
-				//
-				BigInteger p = crt.P;
-				BigInteger q = crt.Q;
-				BigInteger dP = crt.DP;
-				BigInteger dQ = crt.DQ;
-				BigInteger qInv = crt.QInv;
-
-				// mP = ((input Mod p) ^ dP)) Mod p
-				BigInteger mP = (input.Remainder(p)).ModPow(dP, p);
-
-                // mQ = ((input Mod q) ^ dQ)) Mod q
-                BigInteger mQ = (input.Remainder(q)).ModPow(dQ, q);
-
-				// h = qInv * (mP - mQ) Mod p
-				BigInteger h = mP.Subtract(mQ).Multiply(qInv).Mod(p);
-
-                // m = h * q + mQ
-                return h.Multiply(q).Add(mQ);
-			}
+            if (!(key is RsaPrivateCrtKeyParameters crt))
+                return input.ModPow(key.Exponent, key.Modulus);
+
+            //
+            // we have the extra factors, use the Chinese Remainder Theorem - the author
+            // wishes to express his thanks to Dirk Bonekaemper at rtsffm.com for
+            // advice regarding the expression of this.
+            //
+            BigInteger p = crt.P;
+			BigInteger q = crt.Q;
+			BigInteger dP = crt.DP;
+			BigInteger dQ = crt.DQ;
+			BigInteger qInv = crt.QInv;
+
+			// mP = ((input Mod p) ^ dP)) Mod p
+			BigInteger mP = (input.Remainder(p)).ModPow(dP, p);
+
+            // mQ = ((input Mod q) ^ dQ)) Mod q
+            BigInteger mQ = (input.Remainder(q)).ModPow(dQ, q);
+
+			// h = qInv * (mP - mQ) Mod p
+			BigInteger h = mP.Subtract(mQ).Multiply(qInv).Mod(p);
+
+            // m = h * q + mQ
+            BigInteger m = h.Multiply(q).Add(mQ);
+
+			// defence against Arjen Lenstra’s CRT attack
+			BigInteger check = m.ModPow(crt.PublicExponent, crt.Modulus);
+            if (!check.Equals(input))
+                throw new InvalidOperationException("RSA engine faulty decryption/signing detected");
 
-			return input.ModPow(key.Exponent, key.Modulus);
+            return m;
 		}
 	}
 }