summary refs log tree commit diff
diff options
context:
space:
mode:
-rw-r--r--crypto/src/math/BigInteger.cs4256
1 files changed, 2128 insertions, 2128 deletions
diff --git a/crypto/src/math/BigInteger.cs b/crypto/src/math/BigInteger.cs
index 3b8a820d7..fa7cdda3e 100644
--- a/crypto/src/math/BigInteger.cs
+++ b/crypto/src/math/BigInteger.cs
@@ -9,11 +9,11 @@ using Org.BouncyCastle.Utilities;
 namespace Org.BouncyCastle.Math
 {
 #if !(NETCF_1_0 || NETCF_2_0 || SILVERLIGHT)
-	[Serializable]
+    [Serializable]
 #endif
-	public class BigInteger
-	{
-		// The first few odd primes
+    public class BigInteger
+    {
+        // The first few odd primes
         /*
                 3   5   7   11  13  17  19  23  29
             31  37  41  43  47  53  59  61  67  71
@@ -40,67 +40,67 @@ namespace Org.BouncyCastle.Math
         */
 
         // Each list has a product < 2^31
-		internal static readonly int[][] primeLists = new int[][]
-		{
-			new int[]{ 3, 5, 7, 11, 13, 17, 19, 23 },
-			new int[]{ 29, 31, 37, 41, 43 },
-			new int[]{ 47, 53, 59, 61, 67 },
-			new int[]{ 71, 73, 79, 83 },
-			new int[]{ 89, 97, 101, 103 },
-
-			new int[]{ 107, 109, 113, 127 },
-			new int[]{ 131, 137, 139, 149 },
-			new int[]{ 151, 157, 163, 167 },
-			new int[]{ 173, 179, 181, 191 },
-			new int[]{ 193, 197, 199, 211 },
-
-			new int[]{ 223, 227, 229 },
-			new int[]{ 233, 239, 241 },
-			new int[]{ 251, 257, 263 },
-			new int[]{ 269, 271, 277 },
-			new int[]{ 281, 283, 293 },
-
-			new int[]{ 307, 311, 313 },
-			new int[]{ 317, 331, 337 },
-			new int[]{ 347, 349, 353 },
-			new int[]{ 359, 367, 373 },
-			new int[]{ 379, 383, 389 },
-
-			new int[]{ 397, 401, 409 },
-			new int[]{ 419, 421, 431 },
-			new int[]{ 433, 439, 443 },
-			new int[]{ 449, 457, 461 },
-			new int[]{ 463, 467, 479 },
-
-			new int[]{ 487, 491, 499 },
-			new int[]{ 503, 509, 521 },
-			new int[]{ 523, 541, 547 },
-			new int[]{ 557, 563, 569 },
-			new int[]{ 571, 577, 587 },
-
-			new int[]{ 593, 599, 601 },
-			new int[]{ 607, 613, 617 },
-			new int[]{ 619, 631, 641 },
-			new int[]{ 643, 647, 653 },
-			new int[]{ 659, 661, 673 },
-
-			new int[]{ 677, 683, 691 },
-			new int[]{ 701, 709, 719 },
-			new int[]{ 727, 733, 739 },
-			new int[]{ 743, 751, 757 },
-			new int[]{ 761, 769, 773 },
-
-			new int[]{ 787, 797, 809 },
-			new int[]{ 811, 821, 823 },
-			new int[]{ 827, 829, 839 },
-			new int[]{ 853, 857, 859 },
-			new int[]{ 863, 877, 881 },
-
-			new int[]{ 883, 887, 907 },
-			new int[]{ 911, 919, 929 },
-			new int[]{ 937, 941, 947 },
-			new int[]{ 953, 967, 971 },
-			new int[]{ 977, 983, 991 },
+        internal static readonly int[][] primeLists = new int[][]
+        {
+            new int[]{ 3, 5, 7, 11, 13, 17, 19, 23 },
+            new int[]{ 29, 31, 37, 41, 43 },
+            new int[]{ 47, 53, 59, 61, 67 },
+            new int[]{ 71, 73, 79, 83 },
+            new int[]{ 89, 97, 101, 103 },
+
+            new int[]{ 107, 109, 113, 127 },
+            new int[]{ 131, 137, 139, 149 },
+            new int[]{ 151, 157, 163, 167 },
+            new int[]{ 173, 179, 181, 191 },
+            new int[]{ 193, 197, 199, 211 },
+
+            new int[]{ 223, 227, 229 },
+            new int[]{ 233, 239, 241 },
+            new int[]{ 251, 257, 263 },
+            new int[]{ 269, 271, 277 },
+            new int[]{ 281, 283, 293 },
+
+            new int[]{ 307, 311, 313 },
+            new int[]{ 317, 331, 337 },
+            new int[]{ 347, 349, 353 },
+            new int[]{ 359, 367, 373 },
+            new int[]{ 379, 383, 389 },
+
+            new int[]{ 397, 401, 409 },
+            new int[]{ 419, 421, 431 },
+            new int[]{ 433, 439, 443 },
+            new int[]{ 449, 457, 461 },
+            new int[]{ 463, 467, 479 },
+
+            new int[]{ 487, 491, 499 },
+            new int[]{ 503, 509, 521 },
+            new int[]{ 523, 541, 547 },
+            new int[]{ 557, 563, 569 },
+            new int[]{ 571, 577, 587 },
+
+            new int[]{ 593, 599, 601 },
+            new int[]{ 607, 613, 617 },
+            new int[]{ 619, 631, 641 },
+            new int[]{ 643, 647, 653 },
+            new int[]{ 659, 661, 673 },
+
+            new int[]{ 677, 683, 691 },
+            new int[]{ 701, 709, 719 },
+            new int[]{ 727, 733, 739 },
+            new int[]{ 743, 751, 757 },
+            new int[]{ 761, 769, 773 },
+
+            new int[]{ 787, 797, 809 },
+            new int[]{ 811, 821, 823 },
+            new int[]{ 827, 829, 839 },
+            new int[]{ 853, 857, 859 },
+            new int[]{ 863, 877, 881 },
+
+            new int[]{ 883, 887, 907 },
+            new int[]{ 911, 919, 929 },
+            new int[]{ 937, 941, 947 },
+            new int[]{ 953, 967, 971 },
+            new int[]{ 977, 983, 991 },
 
             new int[]{ 997, 1009, 1013 },
             new int[]{ 1019, 1021, 1031 },
@@ -122,15 +122,15 @@ namespace Org.BouncyCastle.Math
 
         internal static readonly int[] primeProducts;
 
-		private const long IMASK = 0xFFFFFFFFL;
+        private const long IMASK = 0xFFFFFFFFL;
         private const ulong UIMASK = 0xFFFFFFFFUL;
 
         private static readonly int[] ZeroMagnitude = new int[0];
-		private static readonly byte[] ZeroEncoding = new byte[0];
+        private static readonly byte[] ZeroEncoding = new byte[0];
 
         private static readonly BigInteger[] SMALL_CONSTANTS = new BigInteger[17];
-		public static readonly BigInteger Zero;
-		public static readonly BigInteger One;
+        public static readonly BigInteger Zero;
+        public static readonly BigInteger One;
         public static readonly BigInteger Two;
         public static readonly BigInteger Three;
         public static readonly BigInteger Ten;
@@ -156,8 +156,8 @@ namespace Org.BouncyCastle.Math
         //};
 
         private readonly static byte[] BitLengthTable =
-		{
-			0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4,
+        {
+            0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4,
             5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
             6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
             6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
@@ -173,11 +173,11 @@ namespace Org.BouncyCastle.Math
             8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
             8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
             8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8
-		};
+        };
 
         // TODO Parse radix-2 64 bits at a time and radix-8 63 bits at a time
         private const int chunk2 = 1, chunk8 = 1, chunk10 = 19, chunk16 = 16;
-		private static readonly BigInteger radix2, radix2E, radix8, radix8E, radix10, radix10E, radix16, radix16E;
+        private static readonly BigInteger radix2, radix2E, radix8, radix8E, radix10, radix10E, radix16, radix16E;
 
         private static readonly Random RandomSource = new Random();
 
@@ -189,11 +189,11 @@ namespace Org.BouncyCastle.Math
         private static readonly int[] ExpWindowThresholds = { 7, 25, 81, 241, 673, 1793, 4609, Int32.MaxValue };
 
         private const int BitsPerByte = 8;
-		private const int BitsPerInt = 32;
-		private const int BytesPerInt = 4;
+        private const int BitsPerInt = 32;
+        private const int BytesPerInt = 4;
 
-		static BigInteger()
-		{
+        static BigInteger()
+        {
             Zero = new BigInteger(0, ZeroMagnitude, false);
             Zero.nBits = 0; Zero.nBitLength = 0;
 
@@ -215,105 +215,105 @@ namespace Org.BouncyCastle.Math
             radix8E = radix8.Pow(chunk8);
 
             radix10 = ValueOf(10);
-		    radix10E = radix10.Pow(chunk10);
+            radix10E = radix10.Pow(chunk10);
 
             radix16 = ValueOf(16);
             radix16E = radix16.Pow(chunk16);
 
             primeProducts = new int[primeLists.Length];
 
-			for (int i = 0; i < primeLists.Length; ++i)
-			{
-				int[] primeList = primeLists[i];
-				int product = primeList[0];
-				for (int j = 1; j < primeList.Length; ++j)
-				{
-					product *= primeList[j];
-				}
-				primeProducts[i] = product;
-			}
-		}
-
-		private int[] magnitude; // array of ints with [0] being the most significant
+            for (int i = 0; i < primeLists.Length; ++i)
+            {
+                int[] primeList = primeLists[i];
+                int product = primeList[0];
+                for (int j = 1; j < primeList.Length; ++j)
+                {
+                    product *= primeList[j];
+                }
+                primeProducts[i] = product;
+            }
+        }
+
+        private int[] magnitude; // array of ints with [0] being the most significant
         private int sign; // -1 means -ve; +1 means +ve; 0 means 0;
-		private int nBits = -1; // cache BitCount() value
-		private int nBitLength = -1; // cache BitLength() value
+        private int nBits = -1; // cache BitCount() value
+        private int nBitLength = -1; // cache BitLength() value
         private int mQuote = 0; // -m^(-1) mod b, b = 2^32 (see Montgomery mult.), 0 when uninitialised
 
         private static int GetByteLength(
-			int nBits)
-		{
-			return (nBits + BitsPerByte - 1) / BitsPerByte;
-		}
-
-		private BigInteger(
-			int		signum,
-			int[]	mag,
-			bool	checkMag)
-		{
-			if (checkMag)
-			{
-				int i = 0;
-				while (i < mag.Length && mag[i] == 0)
-				{
-					++i;
-				}
-
-				if (i == mag.Length)
-				{
-					this.sign = 0;
-					this.magnitude = ZeroMagnitude;
-				}
-				else
-				{
-					this.sign = signum;
-
-					if (i == 0)
-					{
-						this.magnitude = mag;
-					}
-					else
-					{
-						// strip leading 0 words
-						this.magnitude = new int[mag.Length - i];
-						Array.Copy(mag, i, this.magnitude, 0, this.magnitude.Length);
-					}
-				}
-			}
-			else
-			{
-				this.sign = signum;
-				this.magnitude = mag;
-			}
-		}
-
-		public BigInteger(
-			string value)
-			: this(value, 10)
-		{
-		}
-
-		public BigInteger(
-			string	str,
-			int		radix)
-		{
-			if (str.Length == 0)
-				throw new FormatException("Zero length BigInteger");
-
-			NumberStyles style;
-			int chunk;
-			BigInteger r;
-			BigInteger rE;
-
-			switch (radix)
-			{
-				case 2:
-					// Is there anyway to restrict to binary digits?
-					style = NumberStyles.Integer;
-					chunk = chunk2;
-					r = radix2;
-					rE = radix2E;
-					break;
+            int nBits)
+        {
+            return (nBits + BitsPerByte - 1) / BitsPerByte;
+        }
+
+        private BigInteger(
+            int		signum,
+            int[]	mag,
+            bool	checkMag)
+        {
+            if (checkMag)
+            {
+                int i = 0;
+                while (i < mag.Length && mag[i] == 0)
+                {
+                    ++i;
+                }
+
+                if (i == mag.Length)
+                {
+                    this.sign = 0;
+                    this.magnitude = ZeroMagnitude;
+                }
+                else
+                {
+                    this.sign = signum;
+
+                    if (i == 0)
+                    {
+                        this.magnitude = mag;
+                    }
+                    else
+                    {
+                        // strip leading 0 words
+                        this.magnitude = new int[mag.Length - i];
+                        Array.Copy(mag, i, this.magnitude, 0, this.magnitude.Length);
+                    }
+                }
+            }
+            else
+            {
+                this.sign = signum;
+                this.magnitude = mag;
+            }
+        }
+
+        public BigInteger(
+            string value)
+            : this(value, 10)
+        {
+        }
+
+        public BigInteger(
+            string	str,
+            int		radix)
+        {
+            if (str.Length == 0)
+                throw new FormatException("Zero length BigInteger");
+
+            NumberStyles style;
+            int chunk;
+            BigInteger r;
+            BigInteger rE;
+
+            switch (radix)
+            {
+                case 2:
+                    // Is there anyway to restrict to binary digits?
+                    style = NumberStyles.Integer;
+                    chunk = chunk2;
+                    r = radix2;
+                    rE = radix2E;
+                    break;
                 case 8:
                     // Is there anyway to restrict to octal digits?
                     style = NumberStyles.Integer;
@@ -322,79 +322,79 @@ namespace Org.BouncyCastle.Math
                     rE = radix8E;
                     break;
                 case 10:
-					// This style seems to handle spaces and minus sign already (our processing redundant?)
-					style = NumberStyles.Integer;
-					chunk = chunk10;
-					r = radix10;
-					rE = radix10E;
-					break;
-				case 16:
-					// TODO Should this be HexNumber?
-					style = NumberStyles.AllowHexSpecifier;
-					chunk = chunk16;
-					r = radix16;
-					rE = radix16E;
-					break;
-				default:
-					throw new FormatException("Only bases 2, 8, 10, or 16 allowed");
-			}
-
-
-			int index = 0;
-			sign = 1;
-
-			if (str[0] == '-')
-			{
-				if (str.Length == 1)
-					throw new FormatException("Zero length BigInteger");
-
-				sign = -1;
-				index = 1;
-			}
-
-			// strip leading zeros from the string str
-			while (index < str.Length && Int32.Parse(str[index].ToString(), style) == 0)
-			{
-				index++;
-			}
-
-			if (index >= str.Length)
-			{
-				// zero value - we're done
-				sign = 0;
-				magnitude = ZeroMagnitude;
-				return;
-			}
-
-			//////
-			// could we work out the max number of ints required to store
-			// str.Length digits in the given base, then allocate that
-			// storage in one hit?, then Generate the magnitude in one hit too?
-			//////
-
-			BigInteger b = Zero;
-
-
-			int next = index + chunk;
-
-			if (next <= str.Length)
-			{
-				do
-				{
-					string s = str.Substring(index, chunk);
-					ulong i = ulong.Parse(s, style);
-					BigInteger bi = CreateUValueOf(i);
-
-					switch (radix)
-					{
-						case 2:
-							// TODO Need this because we are parsing in radix 10 above
-							if (i >= 2)
-								throw new FormatException("Bad character in radix 2 string: " + s);
-
-							// TODO Parse 64 bits at a time
-							b = b.ShiftLeft(1);
-							break;
+                    // This style seems to handle spaces and minus sign already (our processing redundant?)
+                    style = NumberStyles.Integer;
+                    chunk = chunk10;
+                    r = radix10;
+                    rE = radix10E;
+                    break;
+                case 16:
+                    // TODO Should this be HexNumber?
+                    style = NumberStyles.AllowHexSpecifier;
+                    chunk = chunk16;
+                    r = radix16;
+                    rE = radix16E;
+                    break;
+                default:
+                    throw new FormatException("Only bases 2, 8, 10, or 16 allowed");
+            }
+
+
+            int index = 0;
+            sign = 1;
+
+            if (str[0] == '-')
+            {
+                if (str.Length == 1)
+                    throw new FormatException("Zero length BigInteger");
+
+                sign = -1;
+                index = 1;
+            }
+
+            // strip leading zeros from the string str
+            while (index < str.Length && Int32.Parse(str[index].ToString(), style) == 0)
+            {
+                index++;
+            }
+
+            if (index >= str.Length)
+            {
+                // zero value - we're done
+                sign = 0;
+                magnitude = ZeroMagnitude;
+                return;
+            }
+
+            //////
+            // could we work out the max number of ints required to store
+            // str.Length digits in the given base, then allocate that
+            // storage in one hit?, then Generate the magnitude in one hit too?
+            //////
+
+            BigInteger b = Zero;
+
+
+            int next = index + chunk;
+
+            if (next <= str.Length)
+            {
+                do
+                {
+                    string s = str.Substring(index, chunk);
+                    ulong i = ulong.Parse(s, style);
+                    BigInteger bi = CreateUValueOf(i);
+
+                    switch (radix)
+                    {
+                        case 2:
+                            // TODO Need this because we are parsing in radix 10 above
+                            if (i >= 2)
+                                throw new FormatException("Bad character in radix 2 string: " + s);
+
+                            // TODO Parse 64 bits at a time
+                            b = b.ShiftLeft(1);
+                            break;
                         case 8:
                             // TODO Need this because we are parsing in radix 10 above
                             if (i >= 8)
@@ -404,37 +404,37 @@ namespace Org.BouncyCastle.Math
                             b = b.ShiftLeft(3);
                             break;
                         case 16:
-							b = b.ShiftLeft(64);
-							break;
-						default:
-							b = b.Multiply(rE);
-							break;
-					}
-
-					b = b.Add(bi);
-
-					index = next;
-					next += chunk;
-				}
-				while (next <= str.Length);
-			}
-
-			if (index < str.Length)
-			{
-				string s = str.Substring(index);
-				ulong i = ulong.Parse(s, style);
-				BigInteger bi = CreateUValueOf(i);
-
-				if (b.sign > 0)
-				{
-					if (radix == 2)
-					{
-						// NB: Can't reach here since we are parsing one char at a time
-						Debug.Assert(false);
-
-						// TODO Parse all bits at once
+                            b = b.ShiftLeft(64);
+                            break;
+                        default:
+                            b = b.Multiply(rE);
+                            break;
+                    }
+
+                    b = b.Add(bi);
+
+                    index = next;
+                    next += chunk;
+                }
+                while (next <= str.Length);
+            }
+
+            if (index < str.Length)
+            {
+                string s = str.Substring(index);
+                ulong i = ulong.Parse(s, style);
+                BigInteger bi = CreateUValueOf(i);
+
+                if (b.sign > 0)
+                {
+                    if (radix == 2)
+                    {
+                        // NB: Can't reach here since we are parsing one char at a time
+                        Debug.Assert(false);
+
+                        // TODO Parse all bits at once
 //						b = b.ShiftLeft(s.Length);
-					}
+                    }
                     else if (radix == 8)
                     {
                         // NB: Can't reach here since we are parsing one char at a time
@@ -444,21 +444,21 @@ namespace Org.BouncyCastle.Math
 //						b = b.ShiftLeft(s.Length * 3);
                     }
                     else if (radix == 16)
-					{
-						b = b.ShiftLeft(s.Length << 2);
-					}
-					else
-					{
-						b = b.Multiply(r.Pow(s.Length));
-					}
-
-					b = b.Add(bi);
-				}
-				else
-				{
-					b = bi;
-				}
-			}
+                    {
+                        b = b.ShiftLeft(s.Length << 2);
+                    }
+                    else
+                    {
+                        b = b.Multiply(r.Pow(s.Length));
+                    }
+
+                    b = b.Add(bi);
+                }
+                else
+                {
+                    b = bi;
+                }
+            }
 
             // Note: This is the previous (slower) algorithm
 //			while (index < value.Length)
@@ -471,429 +471,429 @@ namespace Org.BouncyCastle.Math
 //                index++;
 //            }
 
-			magnitude = b.magnitude;
-		}
-
-		public BigInteger(
-			byte[] bytes)
-			: this(bytes, 0, bytes.Length)
-		{
-		}
-
-		public BigInteger(
-			byte[]	bytes,
-			int		offset,
-			int		length)
-		{
-			if (length == 0)
-				throw new FormatException("Zero length BigInteger");
-
-			// TODO Move this processing into MakeMagnitude (provide sign argument)
-			if ((sbyte)bytes[offset] < 0)
-			{
-				this.sign = -1;
-
-				int end = offset + length;
-
-				int iBval;
-				// strip leading sign bytes
-				for (iBval = offset; iBval < end && ((sbyte)bytes[iBval] == -1); iBval++)
-				{
-				}
-
-				if (iBval >= end)
-				{
-					this.magnitude = One.magnitude;
-				}
-				else
-				{
-					int numBytes = end - iBval;
-					byte[] inverse = new byte[numBytes];
-
-					int index = 0;
-					while (index < numBytes)
-					{
-						inverse[index++] = (byte)~bytes[iBval++];
-					}
-
-					Debug.Assert(iBval == end);
-
-					while (inverse[--index] == byte.MaxValue)
-					{
-						inverse[index] = byte.MinValue;
-					}
-
-					inverse[index]++;
-
-					this.magnitude = MakeMagnitude(inverse, 0, inverse.Length);
-				}
-			}
-			else
-			{
-				// strip leading zero bytes and return magnitude bytes
-				this.magnitude = MakeMagnitude(bytes, offset, length);
-				this.sign = this.magnitude.Length > 0 ? 1 : 0;
-			}
-		}
-
-		private static int[] MakeMagnitude(
-			byte[]	bytes,
-			int		offset,
-			int		length)
-		{
-			int end = offset + length;
-
-			// strip leading zeros
-			int firstSignificant;
-			for (firstSignificant = offset; firstSignificant < end
-				&& bytes[firstSignificant] == 0; firstSignificant++)
-			{
-			}
-
-			if (firstSignificant >= end)
-			{
-				return ZeroMagnitude;
-			}
-
-			int nInts = (end - firstSignificant + 3) / BytesPerInt;
-			int bCount = (end - firstSignificant) % BytesPerInt;
-			if (bCount == 0)
-			{
-				bCount = BytesPerInt;
-			}
-
-			if (nInts < 1)
-			{
-				return ZeroMagnitude;
-			}
-
-			int[] mag = new int[nInts];
-
-			int v = 0;
-			int magnitudeIndex = 0;
-			for (int i = firstSignificant; i < end; ++i)
-			{
-				v <<= 8;
-				v |= bytes[i] & 0xff;
-				bCount--;
-				if (bCount <= 0)
-				{
-					mag[magnitudeIndex] = v;
-					magnitudeIndex++;
-					bCount = BytesPerInt;
-					v = 0;
-				}
-			}
-
-			if (magnitudeIndex < mag.Length)
-			{
-				mag[magnitudeIndex] = v;
-			}
-
-			return mag;
-		}
-
-		public BigInteger(
-			int		sign,
-			byte[]	bytes)
-			: this(sign, bytes, 0, bytes.Length)
-		{
-		}
-
-		public BigInteger(
-			int		sign,
-			byte[]	bytes,
-			int		offset,
-			int		length)
-		{
-			if (sign < -1 || sign > 1)
-				throw new FormatException("Invalid sign value");
-
-			if (sign == 0)
-			{
-				this.sign = 0;
-				this.magnitude = ZeroMagnitude;
-			}
-			else
-			{
-				// copy bytes
-				this.magnitude = MakeMagnitude(bytes, offset, length);
-				this.sign = this.magnitude.Length < 1 ? 0 : sign;
-			}
-		}
-
-		public BigInteger(
-			int		sizeInBits,
-			Random	random)
-		{
-			if (sizeInBits < 0)
-				throw new ArgumentException("sizeInBits must be non-negative");
-
-			this.nBits = -1;
-			this.nBitLength = -1;
-
-			if (sizeInBits == 0)
-			{
-				this.sign = 0;
-				this.magnitude = ZeroMagnitude;
-				return;
-			}
-
-			int nBytes = GetByteLength(sizeInBits);
-			byte[] b = new byte[nBytes];
-			random.NextBytes(b);
-
-			// strip off any excess bits in the MSB
+            magnitude = b.magnitude;
+        }
+
+        public BigInteger(
+            byte[] bytes)
+            : this(bytes, 0, bytes.Length)
+        {
+        }
+
+        public BigInteger(
+            byte[]	bytes,
+            int		offset,
+            int		length)
+        {
+            if (length == 0)
+                throw new FormatException("Zero length BigInteger");
+
+            // TODO Move this processing into MakeMagnitude (provide sign argument)
+            if ((sbyte)bytes[offset] < 0)
+            {
+                this.sign = -1;
+
+                int end = offset + length;
+
+                int iBval;
+                // strip leading sign bytes
+                for (iBval = offset; iBval < end && ((sbyte)bytes[iBval] == -1); iBval++)
+                {
+                }
+
+                if (iBval >= end)
+                {
+                    this.magnitude = One.magnitude;
+                }
+                else
+                {
+                    int numBytes = end - iBval;
+                    byte[] inverse = new byte[numBytes];
+
+                    int index = 0;
+                    while (index < numBytes)
+                    {
+                        inverse[index++] = (byte)~bytes[iBval++];
+                    }
+
+                    Debug.Assert(iBval == end);
+
+                    while (inverse[--index] == byte.MaxValue)
+                    {
+                        inverse[index] = byte.MinValue;
+                    }
+
+                    inverse[index]++;
+
+                    this.magnitude = MakeMagnitude(inverse, 0, inverse.Length);
+                }
+            }
+            else
+            {
+                // strip leading zero bytes and return magnitude bytes
+                this.magnitude = MakeMagnitude(bytes, offset, length);
+                this.sign = this.magnitude.Length > 0 ? 1 : 0;
+            }
+        }
+
+        private static int[] MakeMagnitude(
+            byte[]	bytes,
+            int		offset,
+            int		length)
+        {
+            int end = offset + length;
+
+            // strip leading zeros
+            int firstSignificant;
+            for (firstSignificant = offset; firstSignificant < end
+                && bytes[firstSignificant] == 0; firstSignificant++)
+            {
+            }
+
+            if (firstSignificant >= end)
+            {
+                return ZeroMagnitude;
+            }
+
+            int nInts = (end - firstSignificant + 3) / BytesPerInt;
+            int bCount = (end - firstSignificant) % BytesPerInt;
+            if (bCount == 0)
+            {
+                bCount = BytesPerInt;
+            }
+
+            if (nInts < 1)
+            {
+                return ZeroMagnitude;
+            }
+
+            int[] mag = new int[nInts];
+
+            int v = 0;
+            int magnitudeIndex = 0;
+            for (int i = firstSignificant; i < end; ++i)
+            {
+                v <<= 8;
+                v |= bytes[i] & 0xff;
+                bCount--;
+                if (bCount <= 0)
+                {
+                    mag[magnitudeIndex] = v;
+                    magnitudeIndex++;
+                    bCount = BytesPerInt;
+                    v = 0;
+                }
+            }
+
+            if (magnitudeIndex < mag.Length)
+            {
+                mag[magnitudeIndex] = v;
+            }
+
+            return mag;
+        }
+
+        public BigInteger(
+            int		sign,
+            byte[]	bytes)
+            : this(sign, bytes, 0, bytes.Length)
+        {
+        }
+
+        public BigInteger(
+            int		sign,
+            byte[]	bytes,
+            int		offset,
+            int		length)
+        {
+            if (sign < -1 || sign > 1)
+                throw new FormatException("Invalid sign value");
+
+            if (sign == 0)
+            {
+                this.sign = 0;
+                this.magnitude = ZeroMagnitude;
+            }
+            else
+            {
+                // copy bytes
+                this.magnitude = MakeMagnitude(bytes, offset, length);
+                this.sign = this.magnitude.Length < 1 ? 0 : sign;
+            }
+        }
+
+        public BigInteger(
+            int		sizeInBits,
+            Random	random)
+        {
+            if (sizeInBits < 0)
+                throw new ArgumentException("sizeInBits must be non-negative");
+
+            this.nBits = -1;
+            this.nBitLength = -1;
+
+            if (sizeInBits == 0)
+            {
+                this.sign = 0;
+                this.magnitude = ZeroMagnitude;
+                return;
+            }
+
+            int nBytes = GetByteLength(sizeInBits);
+            byte[] b = new byte[nBytes];
+            random.NextBytes(b);
+
+            // strip off any excess bits in the MSB
             int xBits = BitsPerByte * nBytes - sizeInBits;
             b[0] &= (byte)(255U >> xBits);
 
             this.magnitude = MakeMagnitude(b, 0, b.Length);
-			this.sign = this.magnitude.Length < 1 ? 0 : 1;
-		}
+            this.sign = this.magnitude.Length < 1 ? 0 : 1;
+        }
 
         public BigInteger(
-			int		bitLength,
-			int		certainty,
-			Random	random)
-		{
-			if (bitLength < 2)
-				throw new ArithmeticException("bitLength < 2");
-
-			this.sign = 1;
-			this.nBitLength = bitLength;
-
-			if (bitLength == 2)
-			{
-				this.magnitude = random.Next(2) == 0
-					?	Two.magnitude
-					:	Three.magnitude;
-				return;
-			}
+            int		bitLength,
+            int		certainty,
+            Random	random)
+        {
+            if (bitLength < 2)
+                throw new ArithmeticException("bitLength < 2");
+
+            this.sign = 1;
+            this.nBitLength = bitLength;
+
+            if (bitLength == 2)
+            {
+                this.magnitude = random.Next(2) == 0
+                    ?	Two.magnitude
+                    :	Three.magnitude;
+                return;
+            }
              
-			int nBytes = GetByteLength(bitLength);
-			byte[] b = new byte[nBytes];
+            int nBytes = GetByteLength(bitLength);
+            byte[] b = new byte[nBytes];
 
-			int xBits = BitsPerByte * nBytes - bitLength;
+            int xBits = BitsPerByte * nBytes - bitLength;
             byte mask = (byte)(255U >> xBits);
 
             for (;;)
-			{
-				random.NextBytes(b);
-
-				// strip off any excess bits in the MSB
-				b[0] &= mask;
-
-				// ensure the leading bit is 1 (to meet the strength requirement)
-				b[0] |= (byte)(1 << (7 - xBits));
-
-				// ensure the trailing bit is 1 (i.e. must be odd)
-				b[nBytes - 1] |= 1;
-
-				this.magnitude = MakeMagnitude(b, 0, b.Length);
-				this.nBits = -1;
-				this.mQuote = 0;
-
-				if (certainty < 1)
-					break;
-
-				if (CheckProbablePrime(certainty, random))
-					break;
-
-				if (bitLength > 32)
-				{
-					for (int rep = 0; rep < 10000; ++rep)
-					{
-						int n = 33 + random.Next(bitLength - 2);
-						this.magnitude[this.magnitude.Length - (n >> 5)] ^= (1 << (n & 31));
-						this.magnitude[this.magnitude.Length - 1] ^= ((random.Next() + 1) << 1);
-						this.mQuote = 0;
-
-						if (CheckProbablePrime(certainty, random))
-							return;
-					}
-				}
-			}
-		}
-
-		public BigInteger Abs()
-		{
-			return sign >= 0 ? this : Negate();
-		}
-
-		/**
-		 * return a = a + b - b preserved.
-		 */
-		private static int[] AddMagnitudes(
-			int[] a,
-			int[] b)
-		{
-			int tI = a.Length - 1;
-			int vI = b.Length - 1;
-			long m = 0;
-
-			while (vI >= 0)
-			{
-				m += ((long)(uint)a[tI] + (long)(uint)b[vI--]);
-				a[tI--] = (int)m;
-				m = (long)((ulong)m >> 32);
-			}
-
-			if (m != 0)
-			{
-				while (tI >= 0 && ++a[tI--] == 0)
-				{
-				}
-			}
-
-			return a;
-		}
-
-		public BigInteger Add(
-			BigInteger value)
-		{
-			if (this.sign == 0)
-				return value;
-
-			if (this.sign != value.sign)
-			{
-				if (value.sign == 0)
-					return this;
-
-				if (value.sign < 0)
-					return Subtract(value.Negate());
-
-				return value.Subtract(Negate());
-			}
-
-			return AddToMagnitude(value.magnitude);
-		}
-
-		private BigInteger AddToMagnitude(
-			int[] magToAdd)
-		{
-			int[] big, small;
-			if (this.magnitude.Length < magToAdd.Length)
-			{
-				big = magToAdd;
-				small = this.magnitude;
-			}
-			else
-			{
-				big = this.magnitude;
-				small = magToAdd;
-			}
-
-			// Conservatively avoid over-allocation when no overflow possible
-			uint limit = uint.MaxValue;
-			if (big.Length == small.Length)
-				limit -= (uint) small[0];
-
-			bool possibleOverflow = (uint) big[0] >= limit;
-
-			int[] bigCopy;
-			if (possibleOverflow)
-			{
-				bigCopy = new int[big.Length + 1];
-				big.CopyTo(bigCopy, 1);
-			}
-			else
-			{
-				bigCopy = (int[]) big.Clone();
-			}
-
-			bigCopy = AddMagnitudes(bigCopy, small);
-
-			return new BigInteger(this.sign, bigCopy, possibleOverflow);
-		}
-
-		public BigInteger And(
-			BigInteger value)
-		{
-			if (this.sign == 0 || value.sign == 0)
-			{
-				return Zero;
-			}
-
-			int[] aMag = this.sign > 0
-				? this.magnitude
-				: Add(One).magnitude;
-
-			int[] bMag = value.sign > 0
-				? value.magnitude
-				: value.Add(One).magnitude;
-
-			bool resultNeg = sign < 0 && value.sign < 0;
-			int resultLength = System.Math.Max(aMag.Length, bMag.Length);
-			int[] resultMag = new int[resultLength];
-
-			int aStart = resultMag.Length - aMag.Length;
-			int bStart = resultMag.Length - bMag.Length;
-
-			for (int i = 0; i < resultMag.Length; ++i)
-			{
-				int aWord = i >= aStart ? aMag[i - aStart] : 0;
-				int bWord = i >= bStart ? bMag[i - bStart] : 0;
-
-				if (this.sign < 0)
-				{
-					aWord = ~aWord;
-				}
-
-				if (value.sign < 0)
-				{
-					bWord = ~bWord;
-				}
-
-				resultMag[i] = aWord & bWord;
-
-				if (resultNeg)
-				{
-					resultMag[i] = ~resultMag[i];
-				}
-			}
-
-			BigInteger result = new BigInteger(1, resultMag, true);
-
-			// TODO Optimise this case
-			if (resultNeg)
-			{
-				result = result.Not();
-			}
-
-			return result;
-		}
-
-		public BigInteger AndNot(
-			BigInteger val)
-		{
-			return And(val.Not());
-		}
-
-		public int BitCount
-		{
-			get
-			{
-				if (nBits == -1)
-				{
-					if (sign < 0)
-					{
-						// TODO Optimise this case
-						nBits = Not().BitCount;
-					}
-					else
-					{
-						int sum = 0;
-						for (int i = 0; i < magnitude.Length; ++i)
-						{
+            {
+                random.NextBytes(b);
+
+                // strip off any excess bits in the MSB
+                b[0] &= mask;
+
+                // ensure the leading bit is 1 (to meet the strength requirement)
+                b[0] |= (byte)(1 << (7 - xBits));
+
+                // ensure the trailing bit is 1 (i.e. must be odd)
+                b[nBytes - 1] |= 1;
+
+                this.magnitude = MakeMagnitude(b, 0, b.Length);
+                this.nBits = -1;
+                this.mQuote = 0;
+
+                if (certainty < 1)
+                    break;
+
+                if (CheckProbablePrime(certainty, random))
+                    break;
+
+                if (bitLength > 32)
+                {
+                    for (int rep = 0; rep < 10000; ++rep)
+                    {
+                        int n = 33 + random.Next(bitLength - 2);
+                        this.magnitude[this.magnitude.Length - (n >> 5)] ^= (1 << (n & 31));
+                        this.magnitude[this.magnitude.Length - 1] ^= ((random.Next() + 1) << 1);
+                        this.mQuote = 0;
+
+                        if (CheckProbablePrime(certainty, random))
+                            return;
+                    }
+                }
+            }
+        }
+
+        public BigInteger Abs()
+        {
+            return sign >= 0 ? this : Negate();
+        }
+
+        /**
+         * return a = a + b - b preserved.
+         */
+        private static int[] AddMagnitudes(
+            int[] a,
+            int[] b)
+        {
+            int tI = a.Length - 1;
+            int vI = b.Length - 1;
+            long m = 0;
+
+            while (vI >= 0)
+            {
+                m += ((long)(uint)a[tI] + (long)(uint)b[vI--]);
+                a[tI--] = (int)m;
+                m = (long)((ulong)m >> 32);
+            }
+
+            if (m != 0)
+            {
+                while (tI >= 0 && ++a[tI--] == 0)
+                {
+                }
+            }
+
+            return a;
+        }
+
+        public BigInteger Add(
+            BigInteger value)
+        {
+            if (this.sign == 0)
+                return value;
+
+            if (this.sign != value.sign)
+            {
+                if (value.sign == 0)
+                    return this;
+
+                if (value.sign < 0)
+                    return Subtract(value.Negate());
+
+                return value.Subtract(Negate());
+            }
+
+            return AddToMagnitude(value.magnitude);
+        }
+
+        private BigInteger AddToMagnitude(
+            int[] magToAdd)
+        {
+            int[] big, small;
+            if (this.magnitude.Length < magToAdd.Length)
+            {
+                big = magToAdd;
+                small = this.magnitude;
+            }
+            else
+            {
+                big = this.magnitude;
+                small = magToAdd;
+            }
+
+            // Conservatively avoid over-allocation when no overflow possible
+            uint limit = uint.MaxValue;
+            if (big.Length == small.Length)
+                limit -= (uint) small[0];
+
+            bool possibleOverflow = (uint) big[0] >= limit;
+
+            int[] bigCopy;
+            if (possibleOverflow)
+            {
+                bigCopy = new int[big.Length + 1];
+                big.CopyTo(bigCopy, 1);
+            }
+            else
+            {
+                bigCopy = (int[]) big.Clone();
+            }
+
+            bigCopy = AddMagnitudes(bigCopy, small);
+
+            return new BigInteger(this.sign, bigCopy, possibleOverflow);
+        }
+
+        public BigInteger And(
+            BigInteger value)
+        {
+            if (this.sign == 0 || value.sign == 0)
+            {
+                return Zero;
+            }
+
+            int[] aMag = this.sign > 0
+                ? this.magnitude
+                : Add(One).magnitude;
+
+            int[] bMag = value.sign > 0
+                ? value.magnitude
+                : value.Add(One).magnitude;
+
+            bool resultNeg = sign < 0 && value.sign < 0;
+            int resultLength = System.Math.Max(aMag.Length, bMag.Length);
+            int[] resultMag = new int[resultLength];
+
+            int aStart = resultMag.Length - aMag.Length;
+            int bStart = resultMag.Length - bMag.Length;
+
+            for (int i = 0; i < resultMag.Length; ++i)
+            {
+                int aWord = i >= aStart ? aMag[i - aStart] : 0;
+                int bWord = i >= bStart ? bMag[i - bStart] : 0;
+
+                if (this.sign < 0)
+                {
+                    aWord = ~aWord;
+                }
+
+                if (value.sign < 0)
+                {
+                    bWord = ~bWord;
+                }
+
+                resultMag[i] = aWord & bWord;
+
+                if (resultNeg)
+                {
+                    resultMag[i] = ~resultMag[i];
+                }
+            }
+
+            BigInteger result = new BigInteger(1, resultMag, true);
+
+            // TODO Optimise this case
+            if (resultNeg)
+            {
+                result = result.Not();
+            }
+
+            return result;
+        }
+
+        public BigInteger AndNot(
+            BigInteger val)
+        {
+            return And(val.Not());
+        }
+
+        public int BitCount
+        {
+            get
+            {
+                if (nBits == -1)
+                {
+                    if (sign < 0)
+                    {
+                        // TODO Optimise this case
+                        nBits = Not().BitCount;
+                    }
+                    else
+                    {
+                        int sum = 0;
+                        for (int i = 0; i < magnitude.Length; ++i)
+                        {
                             sum += BitCnt(magnitude[i]);
-						}
-						nBits = sum;
-					}
-				}
+                        }
+                        nBits = sum;
+                    }
+                }
 
-				return nBits;
-			}
-		}
+                return nBits;
+            }
+        }
 
         public static int BitCnt(int i)
         {
@@ -908,62 +908,62 @@ namespace Org.BouncyCastle.Math
         }
 
         private static int CalcBitLength(int sign, int indx, int[]	mag)
-		{
-			for (;;)
-			{
-				if (indx >= mag.Length)
-					return 0;
+        {
+            for (;;)
+            {
+                if (indx >= mag.Length)
+                    return 0;
 
                 if (mag[indx] != 0)
-					break;
-
-				++indx;
-			}
-
-			// bit length for everything after the first int
-			int bitLength = 32 * ((mag.Length - indx) - 1);
-
-			// and determine bitlength of first int
-			int firstMag = mag[indx];
-			bitLength += BitLen(firstMag);
-
-			// Check for negative powers of two
-			if (sign < 0 && ((firstMag & -firstMag) == firstMag))
-			{
-				do
-				{
-					if (++indx >= mag.Length)
-					{
-						--bitLength;
-						break;
-					}
-				}
-				while (mag[indx] == 0);
-			}
-
-			return bitLength;
-		}
-
-		public int BitLength
-		{
-			get
-			{
-				if (nBitLength == -1)
-				{
-					nBitLength = sign == 0
-						? 0
-						: CalcBitLength(sign, 0, magnitude);
-				}
-
-				return nBitLength;
-			}
-		}
-
-		//
-		// BitLen(value) is the number of bits in value.
-		//
-		private static int BitLen(int w)
-		{
+                    break;
+
+                ++indx;
+            }
+
+            // bit length for everything after the first int
+            int bitLength = 32 * ((mag.Length - indx) - 1);
+
+            // and determine bitlength of first int
+            int firstMag = mag[indx];
+            bitLength += BitLen(firstMag);
+
+            // Check for negative powers of two
+            if (sign < 0 && ((firstMag & -firstMag) == firstMag))
+            {
+                do
+                {
+                    if (++indx >= mag.Length)
+                    {
+                        --bitLength;
+                        break;
+                    }
+                }
+                while (mag[indx] == 0);
+            }
+
+            return bitLength;
+        }
+
+        public int BitLength
+        {
+            get
+            {
+                if (nBitLength == -1)
+                {
+                    nBitLength = sign == 0
+                        ? 0
+                        : CalcBitLength(sign, 0, magnitude);
+                }
+
+                return nBitLength;
+            }
+        }
+
+        //
+        // BitLen(value) is the number of bits in value.
+        //
+        private static int BitLen(int w)
+        {
             uint v = (uint)w;
             uint t = v >> 24;
             if (t != 0)
@@ -975,280 +975,280 @@ namespace Org.BouncyCastle.Math
             if (t != 0)
                 return 8 + BitLengthTable[t];
             return BitLengthTable[v];
-		}
+        }
 
         private bool QuickPow2Check()
-		{
-			return sign > 0 && nBits == 1;
-		}
-
-		public int CompareTo(
-			object obj)
-		{
-			return CompareTo((BigInteger)obj);
-		}
-
-		/**
-		 * unsigned comparison on two arrays - note the arrays may
-		 * start with leading zeros.
-		 */
-		private static int CompareTo(
-			int		xIndx,
-			int[]	x,
-			int		yIndx,
-			int[]	y)
-		{
-			while (xIndx != x.Length && x[xIndx] == 0)
-			{
-				xIndx++;
-			}
-
-			while (yIndx != y.Length && y[yIndx] == 0)
-			{
-				yIndx++;
-			}
-
-			return CompareNoLeadingZeroes(xIndx, x, yIndx, y);
-		}
-
-		private static int CompareNoLeadingZeroes(
-			int		xIndx,
-			int[]	x,
-			int		yIndx,
-			int[]	y)
-		{
-			int diff = (x.Length - y.Length) - (xIndx - yIndx);
-
-			if (diff != 0)
-			{
-				return diff < 0 ? -1 : 1;
-			}
-
-			// lengths of magnitudes the same, test the magnitude values
-
-			while (xIndx < x.Length)
-			{
-				uint v1 = (uint)x[xIndx++];
-				uint v2 = (uint)y[yIndx++];
-
-				if (v1 != v2)
-					return v1 < v2 ? -1 : 1;
-			}
-
-			return 0;
-		}
-
-		public int CompareTo(
-			BigInteger value)
-		{
-			return sign < value.sign ? -1
-				: sign > value.sign ? 1
-				: sign == 0 ? 0
-				: sign * CompareNoLeadingZeroes(0, magnitude, 0, value.magnitude);
-		}
-
-		/**
-		 * return z = x / y - done in place (z value preserved, x contains the
-		 * remainder)
-		 */
-		private int[] Divide(
-			int[]	x,
-			int[]	y)
-		{
-			int xStart = 0;
-			while (xStart < x.Length && x[xStart] == 0)
-			{
-				++xStart;
-			}
-
-			int yStart = 0;
-			while (yStart < y.Length && y[yStart] == 0)
-			{
-				++yStart;
-			}
-
-			Debug.Assert(yStart < y.Length);
-
-			int xyCmp = CompareNoLeadingZeroes(xStart, x, yStart, y);
-			int[] count;
-
-			if (xyCmp > 0)
-			{
-				int yBitLength = CalcBitLength(1, yStart, y);
-				int xBitLength = CalcBitLength(1, xStart, x);
-				int shift = xBitLength - yBitLength;
-
-				int[] iCount;
-				int iCountStart = 0;
-
-				int[] c;
-				int cStart = 0;
-				int cBitLength = yBitLength;
-				if (shift > 0)
-				{
+        {
+            return sign > 0 && nBits == 1;
+        }
+
+        public int CompareTo(
+            object obj)
+        {
+            return CompareTo((BigInteger)obj);
+        }
+
+        /**
+         * unsigned comparison on two arrays - note the arrays may
+         * start with leading zeros.
+         */
+        private static int CompareTo(
+            int		xIndx,
+            int[]	x,
+            int		yIndx,
+            int[]	y)
+        {
+            while (xIndx != x.Length && x[xIndx] == 0)
+            {
+                xIndx++;
+            }
+
+            while (yIndx != y.Length && y[yIndx] == 0)
+            {
+                yIndx++;
+            }
+
+            return CompareNoLeadingZeroes(xIndx, x, yIndx, y);
+        }
+
+        private static int CompareNoLeadingZeroes(
+            int		xIndx,
+            int[]	x,
+            int		yIndx,
+            int[]	y)
+        {
+            int diff = (x.Length - y.Length) - (xIndx - yIndx);
+
+            if (diff != 0)
+            {
+                return diff < 0 ? -1 : 1;
+            }
+
+            // lengths of magnitudes the same, test the magnitude values
+
+            while (xIndx < x.Length)
+            {
+                uint v1 = (uint)x[xIndx++];
+                uint v2 = (uint)y[yIndx++];
+
+                if (v1 != v2)
+                    return v1 < v2 ? -1 : 1;
+            }
+
+            return 0;
+        }
+
+        public int CompareTo(
+            BigInteger value)
+        {
+            return sign < value.sign ? -1
+                : sign > value.sign ? 1
+                : sign == 0 ? 0
+                : sign * CompareNoLeadingZeroes(0, magnitude, 0, value.magnitude);
+        }
+
+        /**
+         * return z = x / y - done in place (z value preserved, x contains the
+         * remainder)
+         */
+        private int[] Divide(
+            int[]	x,
+            int[]	y)
+        {
+            int xStart = 0;
+            while (xStart < x.Length && x[xStart] == 0)
+            {
+                ++xStart;
+            }
+
+            int yStart = 0;
+            while (yStart < y.Length && y[yStart] == 0)
+            {
+                ++yStart;
+            }
+
+            Debug.Assert(yStart < y.Length);
+
+            int xyCmp = CompareNoLeadingZeroes(xStart, x, yStart, y);
+            int[] count;
+
+            if (xyCmp > 0)
+            {
+                int yBitLength = CalcBitLength(1, yStart, y);
+                int xBitLength = CalcBitLength(1, xStart, x);
+                int shift = xBitLength - yBitLength;
+
+                int[] iCount;
+                int iCountStart = 0;
+
+                int[] c;
+                int cStart = 0;
+                int cBitLength = yBitLength;
+                if (shift > 0)
+                {
 //					iCount = ShiftLeft(One.magnitude, shift);
-					iCount = new int[(shift >> 5) + 1];
-					iCount[0] = 1 << (shift % 32);
-
-					c = ShiftLeft(y, shift);
-					cBitLength += shift;
-				}
-				else
-				{
-					iCount = new int[] { 1 };
-
-					int len = y.Length - yStart;
-					c = new int[len];
-					Array.Copy(y, yStart, c, 0, len);
-				}
-
-				count = new int[iCount.Length];
-
-				for (;;)
-				{
-					if (cBitLength < xBitLength
-						|| CompareNoLeadingZeroes(xStart, x, cStart, c) >= 0)
-					{
-						Subtract(xStart, x, cStart, c);
-						AddMagnitudes(count, iCount);
-
-						while (x[xStart] == 0)
-						{
-							if (++xStart == x.Length)
-								return count;
-						}
-
-						//xBitLength = CalcBitLength(xStart, x);
-						xBitLength = 32 * (x.Length - xStart - 1) + BitLen(x[xStart]);
-
-						if (xBitLength <= yBitLength)
-						{
-							if (xBitLength < yBitLength)
-								return count;
-
-							xyCmp = CompareNoLeadingZeroes(xStart, x, yStart, y);
-
-							if (xyCmp <= 0)
-								break;
-						}
-					}
-
-					shift = cBitLength - xBitLength;
-
-					// NB: The case where c[cStart] is 1-bit is harmless
-					if (shift == 1)
-					{
-						uint firstC = (uint) c[cStart] >> 1;
-						uint firstX = (uint) x[xStart];
-						if (firstC > firstX)
-							++shift;
-					}
-
-					if (shift < 2)
-					{
-						ShiftRightOneInPlace(cStart, c);
-						--cBitLength;
-						ShiftRightOneInPlace(iCountStart, iCount);
-					}
-					else
-					{
-						ShiftRightInPlace(cStart, c, shift);
-						cBitLength -= shift;
-						ShiftRightInPlace(iCountStart, iCount, shift);
-					}
-
-					//cStart = c.Length - ((cBitLength + 31) / 32);
-					while (c[cStart] == 0)
-					{
-						++cStart;
-					}
-
-					while (iCount[iCountStart] == 0)
-					{
-						++iCountStart;
-					}
-				}
-			}
-			else
-			{
-				count = new int[1];
-			}
-
-			if (xyCmp == 0)
-			{
-				AddMagnitudes(count, One.magnitude);
-				Array.Clear(x, xStart, x.Length - xStart);
-			}
-
-			return count;
-		}
-
-		public BigInteger Divide(
-			BigInteger val)
-		{
-			if (val.sign == 0)
-				throw new ArithmeticException("Division by zero error");
-
-			if (sign == 0)
-				return Zero;
-
-			if (val.QuickPow2Check()) // val is power of two
-			{
-				BigInteger result = this.Abs().ShiftRight(val.Abs().BitLength - 1);
-				return val.sign == this.sign ? result : result.Negate();
-			}
-
-			int[] mag = (int[]) this.magnitude.Clone();
-
-			return new BigInteger(this.sign * val.sign, Divide(mag, val.magnitude), true);
-		}
-
-		public BigInteger[] DivideAndRemainder(
-			BigInteger val)
-		{
-			if (val.sign == 0)
-				throw new ArithmeticException("Division by zero error");
-
-			BigInteger[] biggies = new BigInteger[2];
-
-			if (sign == 0)
-			{
-				biggies[0] = Zero;
-				biggies[1] = Zero;
-			}
-			else if (val.QuickPow2Check()) // val is power of two
-			{
-				int e = val.Abs().BitLength - 1;
-				BigInteger quotient = this.Abs().ShiftRight(e);
-				int[] remainder = this.LastNBits(e);
-
-				biggies[0] = val.sign == this.sign ? quotient : quotient.Negate();
-				biggies[1] = new BigInteger(this.sign, remainder, true);
-			}
-			else
-			{
-				int[] remainder = (int[]) this.magnitude.Clone();
-				int[] quotient = Divide(remainder, val.magnitude);
-
-				biggies[0] = new BigInteger(this.sign * val.sign, quotient, true);
-				biggies[1] = new BigInteger(this.sign, remainder, true);
-			}
-
-			return biggies;
-		}
-
-		public override bool Equals(
-			object obj)
-		{
-			if (obj == this)
-				return true;
-
-			BigInteger biggie = obj as BigInteger;
-			if (biggie == null)
-				return false;
+                    iCount = new int[(shift >> 5) + 1];
+                    iCount[0] = 1 << (shift % 32);
+
+                    c = ShiftLeft(y, shift);
+                    cBitLength += shift;
+                }
+                else
+                {
+                    iCount = new int[] { 1 };
+
+                    int len = y.Length - yStart;
+                    c = new int[len];
+                    Array.Copy(y, yStart, c, 0, len);
+                }
+
+                count = new int[iCount.Length];
+
+                for (;;)
+                {
+                    if (cBitLength < xBitLength
+                        || CompareNoLeadingZeroes(xStart, x, cStart, c) >= 0)
+                    {
+                        Subtract(xStart, x, cStart, c);
+                        AddMagnitudes(count, iCount);
+
+                        while (x[xStart] == 0)
+                        {
+                            if (++xStart == x.Length)
+                                return count;
+                        }
+
+                        //xBitLength = CalcBitLength(xStart, x);
+                        xBitLength = 32 * (x.Length - xStart - 1) + BitLen(x[xStart]);
+
+                        if (xBitLength <= yBitLength)
+                        {
+                            if (xBitLength < yBitLength)
+                                return count;
+
+                            xyCmp = CompareNoLeadingZeroes(xStart, x, yStart, y);
+
+                            if (xyCmp <= 0)
+                                break;
+                        }
+                    }
+
+                    shift = cBitLength - xBitLength;
+
+                    // NB: The case where c[cStart] is 1-bit is harmless
+                    if (shift == 1)
+                    {
+                        uint firstC = (uint) c[cStart] >> 1;
+                        uint firstX = (uint) x[xStart];
+                        if (firstC > firstX)
+                            ++shift;
+                    }
+
+                    if (shift < 2)
+                    {
+                        ShiftRightOneInPlace(cStart, c);
+                        --cBitLength;
+                        ShiftRightOneInPlace(iCountStart, iCount);
+                    }
+                    else
+                    {
+                        ShiftRightInPlace(cStart, c, shift);
+                        cBitLength -= shift;
+                        ShiftRightInPlace(iCountStart, iCount, shift);
+                    }
+
+                    //cStart = c.Length - ((cBitLength + 31) / 32);
+                    while (c[cStart] == 0)
+                    {
+                        ++cStart;
+                    }
+
+                    while (iCount[iCountStart] == 0)
+                    {
+                        ++iCountStart;
+                    }
+                }
+            }
+            else
+            {
+                count = new int[1];
+            }
+
+            if (xyCmp == 0)
+            {
+                AddMagnitudes(count, One.magnitude);
+                Array.Clear(x, xStart, x.Length - xStart);
+            }
+
+            return count;
+        }
+
+        public BigInteger Divide(
+            BigInteger val)
+        {
+            if (val.sign == 0)
+                throw new ArithmeticException("Division by zero error");
+
+            if (sign == 0)
+                return Zero;
+
+            if (val.QuickPow2Check()) // val is power of two
+            {
+                BigInteger result = this.Abs().ShiftRight(val.Abs().BitLength - 1);
+                return val.sign == this.sign ? result : result.Negate();
+            }
+
+            int[] mag = (int[]) this.magnitude.Clone();
+
+            return new BigInteger(this.sign * val.sign, Divide(mag, val.magnitude), true);
+        }
+
+        public BigInteger[] DivideAndRemainder(
+            BigInteger val)
+        {
+            if (val.sign == 0)
+                throw new ArithmeticException("Division by zero error");
+
+            BigInteger[] biggies = new BigInteger[2];
+
+            if (sign == 0)
+            {
+                biggies[0] = Zero;
+                biggies[1] = Zero;
+            }
+            else if (val.QuickPow2Check()) // val is power of two
+            {
+                int e = val.Abs().BitLength - 1;
+                BigInteger quotient = this.Abs().ShiftRight(e);
+                int[] remainder = this.LastNBits(e);
+
+                biggies[0] = val.sign == this.sign ? quotient : quotient.Negate();
+                biggies[1] = new BigInteger(this.sign, remainder, true);
+            }
+            else
+            {
+                int[] remainder = (int[]) this.magnitude.Clone();
+                int[] quotient = Divide(remainder, val.magnitude);
+
+                biggies[0] = new BigInteger(this.sign * val.sign, quotient, true);
+                biggies[1] = new BigInteger(this.sign, remainder, true);
+            }
+
+            return biggies;
+        }
+
+        public override bool Equals(
+            object obj)
+        {
+            if (obj == this)
+                return true;
+
+            BigInteger biggie = obj as BigInteger;
+            if (biggie == null)
+                return false;
 
             return sign == biggie.sign && IsEqualMagnitude(biggie);
-		}
+        }
 
         private bool IsEqualMagnitude(BigInteger x)
         {
@@ -1264,58 +1264,58 @@ namespace Org.BouncyCastle.Math
         }
 
         public BigInteger Gcd(
-			BigInteger value)
-		{
-			if (value.sign == 0)
-				return Abs();
-
-			if (sign == 0)
-				return value.Abs();
-
-			BigInteger r;
-			BigInteger u = this;
-			BigInteger v = value;
-
-			while (v.sign != 0)
-			{
-				r = u.Mod(v);
-				u = v;
-				v = r;
-			}
-
-			return u;
-		}
-
-		public override int GetHashCode()
-		{
-			int hc = magnitude.Length;
-			if (magnitude.Length > 0)
-			{
-				hc ^= magnitude[0];
-
-				if (magnitude.Length > 1)
-				{
-					hc ^= magnitude[magnitude.Length - 1];
-				}
-			}
-
-			return sign < 0 ? ~hc : hc;
-		}
-
-		// TODO Make public?
-		private BigInteger Inc()
-		{
-			if (this.sign == 0)
-				return One;
-
-			if (this.sign < 0)
-				return new BigInteger(-1, doSubBigLil(this.magnitude, One.magnitude), true);
-
-			return AddToMagnitude(One.magnitude);
-		}
-
-		public int IntValue
-		{
+            BigInteger value)
+        {
+            if (value.sign == 0)
+                return Abs();
+
+            if (sign == 0)
+                return value.Abs();
+
+            BigInteger r;
+            BigInteger u = this;
+            BigInteger v = value;
+
+            while (v.sign != 0)
+            {
+                r = u.Mod(v);
+                u = v;
+                v = r;
+            }
+
+            return u;
+        }
+
+        public override int GetHashCode()
+        {
+            int hc = magnitude.Length;
+            if (magnitude.Length > 0)
+            {
+                hc ^= magnitude[0];
+
+                if (magnitude.Length > 1)
+                {
+                    hc ^= magnitude[magnitude.Length - 1];
+                }
+            }
+
+            return sign < 0 ? ~hc : hc;
+        }
+
+        // TODO Make public?
+        private BigInteger Inc()
+        {
+            if (this.sign == 0)
+                return One;
+
+            if (this.sign < 0)
+                return new BigInteger(-1, doSubBigLil(this.magnitude, One.magnitude), true);
+
+            return AddToMagnitude(One.magnitude);
+        }
+
+        public int IntValue
+        {
             get
             {
                 if (sign == 0)
@@ -1327,69 +1327,69 @@ namespace Org.BouncyCastle.Math
 
                 return sign < 0 ? -v : v;
             }
-		}
+        }
 
         /**
-		 * return whether or not a BigInteger is probably prime with a
-		 * probability of 1 - (1/2)**certainty.
-		 * <p>From Knuth Vol 2, pg 395.</p>
-		 */
-		public bool IsProbablePrime(
-			int certainty)
-		{
-			if (certainty <= 0)
-				return true;
-
-			BigInteger n = Abs();
-
-			if (!n.TestBit(0))
-				return n.Equals(Two);
-
-			if (n.Equals(One))
-				return false;
-
-			return n.CheckProbablePrime(certainty, RandomSource);
-		}
-
-		private bool CheckProbablePrime(
-			int		certainty,
-			Random	random)
-		{
-			Debug.Assert(certainty > 0);
-			Debug.Assert(CompareTo(Two) > 0);
-			Debug.Assert(TestBit(0));
-
-
-			// Try to reduce the penalty for really small numbers
-			int numLists = System.Math.Min(BitLength - 1, primeLists.Length);
-
-			for (int i = 0; i < numLists; ++i)
-			{
-				int test = Remainder(primeProducts[i]);
-
-				int[] primeList = primeLists[i];
-				for (int j = 0; j < primeList.Length; ++j)
-				{
-					int prime = primeList[j];
-					int qRem = test % prime;
-					if (qRem == 0)
-					{
-						// We may find small numbers in the list
-						return BitLength < 16 && IntValue == prime;
-					}
-				}
-			}
-
-
-			// TODO Special case for < 10^16 (RabinMiller fixed list)
+         * return whether or not a BigInteger is probably prime with a
+         * probability of 1 - (1/2)**certainty.
+         * <p>From Knuth Vol 2, pg 395.</p>
+         */
+        public bool IsProbablePrime(
+            int certainty)
+        {
+            if (certainty <= 0)
+                return true;
+
+            BigInteger n = Abs();
+
+            if (!n.TestBit(0))
+                return n.Equals(Two);
+
+            if (n.Equals(One))
+                return false;
+
+            return n.CheckProbablePrime(certainty, RandomSource);
+        }
+
+        private bool CheckProbablePrime(
+            int		certainty,
+            Random	random)
+        {
+            Debug.Assert(certainty > 0);
+            Debug.Assert(CompareTo(Two) > 0);
+            Debug.Assert(TestBit(0));
+
+
+            // Try to reduce the penalty for really small numbers
+            int numLists = System.Math.Min(BitLength - 1, primeLists.Length);
+
+            for (int i = 0; i < numLists; ++i)
+            {
+                int test = Remainder(primeProducts[i]);
+
+                int[] primeList = primeLists[i];
+                for (int j = 0; j < primeList.Length; ++j)
+                {
+                    int prime = primeList[j];
+                    int qRem = test % prime;
+                    if (qRem == 0)
+                    {
+                        // We may find small numbers in the list
+                        return BitLength < 16 && IntValue == prime;
+                    }
+                }
+            }
+
+
+            // TODO Special case for < 10^16 (RabinMiller fixed list)
 //			if (BitLength < 30)
 //			{
 //				RabinMiller against 2, 3, 5, 7, 11, 13, 23 is sufficient
 //			}
 
 
-			// TODO Is it worth trying to create a hybrid of these two?
-			return RabinMillerTest(certainty, random);
+            // TODO Is it worth trying to create a hybrid of these two?
+            return RabinMillerTest(certainty, random);
 //			return SolovayStrassenTest(certainty, random);
 
 //			bool rbTest = RabinMillerTest(certainty, random);
@@ -1398,15 +1398,15 @@ namespace Org.BouncyCastle.Math
 //			Debug.Assert(rbTest == ssTest);
 //
 //			return rbTest;
-		}
+        }
 
-		public bool RabinMillerTest(int certainty, Random random)
-		{
-			Debug.Assert(certainty > 0);
-			Debug.Assert(BitLength > 2);
-			Debug.Assert(TestBit(0));
+        public bool RabinMillerTest(int certainty, Random random)
+        {
+            Debug.Assert(certainty > 0);
+            Debug.Assert(BitLength > 2);
+            Debug.Assert(TestBit(0));
 
-			// let n = 1 + d . 2^s
+            // let n = 1 + d . 2^s
             BigInteger n = this;
             int s = n.GetLowestSetBitMaskFirst(-1 << 1);
             Debug.Assert(s >= 1);
@@ -1418,8 +1418,8 @@ namespace Org.BouncyCastle.Math
             BigInteger minusMontRadix = n.Subtract(montRadix);
 
             do
-			{
-				BigInteger a;
+            {
+                BigInteger a;
                 do
                 {
                     a = new BigInteger(n.BitLength, random);
@@ -1427,29 +1427,29 @@ namespace Org.BouncyCastle.Math
                 while (a.sign == 0 || a.CompareTo(n) >= 0
                     || a.IsEqualMagnitude(montRadix) || a.IsEqualMagnitude(minusMontRadix));
 
-				BigInteger y = ModPowMonty(a, r, n, false);
+                BigInteger y = ModPowMonty(a, r, n, false);
 
                 if (!y.Equals(montRadix))
                 {
                     int j = 0;
                     while (!y.Equals(minusMontRadix))
-					{
-						if (++j == s)
-							return false;
+                    {
+                        if (++j == s)
+                            return false;
 
-						y = ModPowMonty(y, Two, n, false);
+                        y = ModPowMonty(y, Two, n, false);
 
                         if (y.Equals(montRadix))
-							return false;
-					}
-				}
+                            return false;
+                    }
+                }
 
-				certainty -= 2; // composites pass for only 1/4 possible 'a'
-			}
-			while (certainty > 0);
+                certainty -= 2; // composites pass for only 1/4 possible 'a'
+            }
+            while (certainty > 0);
 
-			return true;
-		}
+            return true;
+        }
 
 //		private bool SolovayStrassenTest(
 //			int		certainty,
@@ -1540,8 +1540,8 @@ namespace Org.BouncyCastle.Math
 //			return totalS;
 //		}
 
-		public long LongValue
-		{
+        public long LongValue
+        {
             get
             {
                 if (sign == 0)
@@ -1560,35 +1560,35 @@ namespace Org.BouncyCastle.Math
         }
 
         public BigInteger Max(
-			BigInteger value)
-		{
-			return CompareTo(value) > 0 ? this : value;
-		}
-
-		public BigInteger Min(
-			BigInteger value)
-		{
-			return CompareTo(value) < 0 ? this : value;
-		}
-
-		public BigInteger Mod(
-			BigInteger m)
-		{
-			if (m.sign < 1)
-				throw new ArithmeticException("Modulus must be positive");
-
-			BigInteger biggie = Remainder(m);
-
-			return (biggie.sign >= 0 ? biggie : biggie.Add(m));
-		}
-
-		public BigInteger ModInverse(
-			BigInteger m)
-		{
-			if (m.sign < 1)
-				throw new ArithmeticException("Modulus must be positive");
-
-			// TODO Too slow at the moment
+            BigInteger value)
+        {
+            return CompareTo(value) > 0 ? this : value;
+        }
+
+        public BigInteger Min(
+            BigInteger value)
+        {
+            return CompareTo(value) < 0 ? this : value;
+        }
+
+        public BigInteger Mod(
+            BigInteger m)
+        {
+            if (m.sign < 1)
+                throw new ArithmeticException("Modulus must be positive");
+
+            BigInteger biggie = Remainder(m);
+
+            return (biggie.sign >= 0 ? biggie : biggie.Add(m));
+        }
+
+        public BigInteger ModInverse(
+            BigInteger m)
+        {
+            if (m.sign < 1)
+                throw new ArithmeticException("Modulus must be positive");
+
+            // TODO Too slow at the moment
 //			// "Fast Key Exchange with Elliptic Curve Systems" R.Schoeppel
 //			if (m.TestBit(0))
 //			{
@@ -1635,16 +1635,16 @@ namespace Org.BouncyCastle.Math
             BigInteger x;
             BigInteger gcd = ExtEuclid(d, m, out x);
 
-			if (!gcd.Equals(One))
-				throw new ArithmeticException("Numbers not relatively prime.");
+            if (!gcd.Equals(One))
+                throw new ArithmeticException("Numbers not relatively prime.");
 
-			if (x.sign < 0)
-			{
+            if (x.sign < 0)
+            {
                 x = x.Add(m);
-			}
+            }
 
-			return x;
-		}
+            return x;
+        }
 
         private BigInteger ModInversePow2(BigInteger m)
         {
@@ -1715,46 +1715,46 @@ namespace Org.BouncyCastle.Math
             return x;
         }
 
-		/**
-		 * Calculate the numbers u1, u2, and u3 such that:
-		 *
-		 * u1 * a + u2 * b = u3
-		 *
-		 * where u3 is the greatest common divider of a and b.
-		 * a and b using the extended Euclid algorithm (refer p. 323
-		 * of The Art of Computer Programming vol 2, 2nd ed).
-		 * This also seems to have the side effect of calculating
-		 * some form of multiplicative inverse.
-		 *
-		 * @param a    First number to calculate gcd for
-		 * @param b    Second number to calculate gcd for
-		 * @param u1Out      the return object for the u1 value
-		 * @param u2Out      the return object for the u2 value
-		 * @return     The greatest common divisor of a and b
-		 */
-		private static BigInteger ExtEuclid(
-			BigInteger	    a,
-			BigInteger	    b,
-			out BigInteger  u1Out)
+        /**
+         * Calculate the numbers u1, u2, and u3 such that:
+         *
+         * u1 * a + u2 * b = u3
+         *
+         * where u3 is the greatest common divider of a and b.
+         * a and b using the extended Euclid algorithm (refer p. 323
+         * of The Art of Computer Programming vol 2, 2nd ed).
+         * This also seems to have the side effect of calculating
+         * some form of multiplicative inverse.
+         *
+         * @param a    First number to calculate gcd for
+         * @param b    Second number to calculate gcd for
+         * @param u1Out      the return object for the u1 value
+         * @param u2Out      the return object for the u2 value
+         * @return     The greatest common divisor of a and b
+         */
+        private static BigInteger ExtEuclid(
+            BigInteger	    a,
+            BigInteger	    b,
+            out BigInteger  u1Out)
             //BigInteger	    u2Out)
-		{
-			BigInteger u1 = One;
-			BigInteger u3 = a;
-			BigInteger v1 = Zero;
-			BigInteger v3 = b;
+        {
+            BigInteger u1 = One;
+            BigInteger u3 = a;
+            BigInteger v1 = Zero;
+            BigInteger v3 = b;
 
-			while (v3.sign > 0)
-			{
-				BigInteger[] q = u3.DivideAndRemainder(v3);
+            while (v3.sign > 0)
+            {
+                BigInteger[] q = u3.DivideAndRemainder(v3);
 
-				BigInteger tmp = v1.Multiply(q[0]);
-				BigInteger tn = u1.Subtract(tmp);
-				u1 = v1;
-				v1 = tn;
+                BigInteger tmp = v1.Multiply(q[0]);
+                BigInteger tn = u1.Subtract(tmp);
+                u1 = v1;
+                v1 = tn;
 
-				u3 = v3;
-				v3 = q[1];
-			}
+                u3 = v3;
+                v3 = q[1];
+            }
 
             //if (u1Out != null)
             //{
@@ -1772,14 +1772,14 @@ namespace Org.BouncyCastle.Math
             //    u2Out.magnitude = res.magnitude;
             //}
 
-			return u3;
-		}
+            return u3;
+        }
 
-		private static void ZeroOut(
-			int[] x)
-		{
-			Array.Clear(x, 0, x.Length);
-		}
+        private static void ZeroOut(
+            int[] x)
+        {
+            Array.Clear(x, 0, x.Length);
+        }
 
         public BigInteger ModPow(BigInteger e, BigInteger m)
         {
@@ -2084,12 +2084,12 @@ namespace Org.BouncyCastle.Math
         }
 
         /**
-		 * return w with w = x * x - w is assumed to have enough space.
-		 */
-		private static int[] Square(
-			int[]	w,
-			int[]	x)
-		{
+         * return w with w = x * x - w is assumed to have enough space.
+         */
+        private static int[] Square(
+            int[]	w,
+            int[]	x)
+        {
             // Note: this method allows w to be only (2 * x.Length - 1) words if result will fit
 //			if (w.Length != 2 * x.Length)
 //				throw new ArgumentException("no I don't think so...");
@@ -2145,62 +2145,62 @@ namespace Org.BouncyCastle.Math
             }
 
             return w;
-		}
+        }
 
         /**
-		 * return x with x = y * z - x is assumed to have enough space.
-		 */
-		private static int[] Multiply(int[]	x, int[] y, int[] z)
-		{
-			int i = z.Length;
-
-			if (i < 1)
-				return x;
-
-			int xBase = x.Length - y.Length;
-
-			do
-			{
-				long a = z[--i] & IMASK;
-				long val = 0;
-
-				if (a != 0)
-				{
-					for (int j = y.Length - 1; j >= 0; j--)
-					{
-						val += a * (y[j] & IMASK) + (x[xBase + j] & IMASK);
-	
-						x[xBase + j] = (int)val;
-	
-						val = (long)((ulong)val >> 32);
-					}
-				}
-
-				--xBase;
-
-				if (xBase >= 0)
-				{
-					x[xBase] = (int)val;
-				}
-				else
-				{
-					Debug.Assert(val == 0);
-				}
-			}
-			while (i > 0);
-
-			return x;
-		}
+         * return x with x = y * z - x is assumed to have enough space.
+         */
+        private static int[] Multiply(int[]	x, int[] y, int[] z)
+        {
+            int i = z.Length;
+
+            if (i < 1)
+                return x;
+
+            int xBase = x.Length - y.Length;
+
+            do
+            {
+                long a = z[--i] & IMASK;
+                long val = 0;
+
+                if (a != 0)
+                {
+                    for (int j = y.Length - 1; j >= 0; j--)
+                    {
+                        val += a * (y[j] & IMASK) + (x[xBase + j] & IMASK);
+    
+                        x[xBase + j] = (int)val;
+    
+                        val = (long)((ulong)val >> 32);
+                    }
+                }
+
+                --xBase;
+
+                if (xBase >= 0)
+                {
+                    x[xBase] = (int)val;
+                }
+                else
+                {
+                    Debug.Assert(val == 0);
+                }
+            }
+            while (i > 0);
+
+            return x;
+        }
 
         /**
-		 * Calculate mQuote = -m^(-1) mod b with b = 2^32 (32 = word size)
-		 */
+         * Calculate mQuote = -m^(-1) mod b with b = 2^32 (32 = word size)
+         */
         private int GetMQuote()
-		{
-			if (mQuote != 0)
-			{
-				return mQuote; // already calculated
-			}
+        {
+            if (mQuote != 0)
+            {
+                return mQuote; // already calculated
+            }
 
             Debug.Assert(this.sign > 0);
 
@@ -2209,7 +2209,7 @@ namespace Org.BouncyCastle.Math
             Debug.Assert((d & 1) != 0);
 
             return mQuote = ModInverse32(d);
-		}
+        }
 
         private static void MontgomeryReduce(int[] x, int[] m, uint mDash) // mDash = -m^(-1) mod b
         {
@@ -2245,21 +2245,21 @@ namespace Org.BouncyCastle.Math
         }
 
         /**
-		 * Montgomery multiplication: a = x * y * R^(-1) mod m
-		 * <br/>
-		 * Based algorithm 14.36 of Handbook of Applied Cryptography.
-		 * <br/>
-		 * <li> m, x, y should have length n </li>
-		 * <li> a should have length (n + 1) </li>
-		 * <li> b = 2^32, R = b^n </li>
-		 * <br/>
-		 * The result is put in x
-		 * <br/>
-		 * NOTE: the indices of x, y, m, a different in HAC and in Java
-		 */
-		private static void MultiplyMonty(int[]	a, int[] x, int[] y, int[] m, uint mDash, bool smallMontyModulus)
-			// mDash = -m^(-1) mod b
-		{
+         * Montgomery multiplication: a = x * y * R^(-1) mod m
+         * <br/>
+         * Based algorithm 14.36 of Handbook of Applied Cryptography.
+         * <br/>
+         * <li> m, x, y should have length n </li>
+         * <li> a should have length (n + 1) </li>
+         * <li> b = 2^32, R = b^n </li>
+         * <br/>
+         * The result is put in x
+         * <br/>
+         * NOTE: the indices of x, y, m, a different in HAC and in Java
+         */
+        private static void MultiplyMonty(int[]	a, int[] x, int[] y, int[] m, uint mDash, bool smallMontyModulus)
+            // mDash = -m^(-1) mod b
+        {
             int n = m.Length;
 
             if (n == 1)
@@ -2420,7 +2420,7 @@ namespace Org.BouncyCastle.Math
         }
 
         private static uint MultiplyMontyNIsOne(uint x, uint y, uint m, uint mDash)
-		{
+        {
             ulong carry = (ulong)x * y;
             uint t = (uint)carry * mDash;
             ulong um = m;
@@ -2434,28 +2434,28 @@ namespace Org.BouncyCastle.Math
             }
             Debug.Assert(carry < um);
             return (uint)carry;
-		}
+        }
 
         public BigInteger Multiply(
-			BigInteger val)
-		{
+            BigInteger val)
+        {
             if (val == this)
                 return Square();
 
             if ((sign & val.sign) == 0)
-				return Zero;
+                return Zero;
 
             if (val.QuickPow2Check()) // val is power of two
-			{
-				BigInteger result = this.ShiftLeft(val.Abs().BitLength - 1);
-				return val.sign > 0 ? result : result.Negate();
-			}
+            {
+                BigInteger result = this.ShiftLeft(val.Abs().BitLength - 1);
+                return val.sign > 0 ? result : result.Negate();
+            }
 
-			if (this.QuickPow2Check()) // this is power of two
-			{
-				BigInteger result = val.ShiftLeft(this.Abs().BitLength - 1);
-				return this.sign > 0 ? result : result.Negate();
-			}
+            if (this.QuickPow2Check()) // this is power of two
+            {
+                BigInteger result = val.ShiftLeft(this.Abs().BitLength - 1);
+                return this.sign > 0 ? result : result.Negate();
+            }
 
             int resLength = magnitude.Length + val.magnitude.Length;
             int[] res = new int[resLength];
@@ -2464,7 +2464,7 @@ namespace Org.BouncyCastle.Math
 
             int resSign = sign ^ val.sign ^ 1;
             return new BigInteger(resSign, res, true);
-		}
+        }
 
         public BigInteger Square()
         {
@@ -2481,50 +2481,50 @@ namespace Org.BouncyCastle.Math
         }
 
         public BigInteger Negate()
-		{
-			if (sign == 0)
-				return this;
+        {
+            if (sign == 0)
+                return this;
 
-			return new BigInteger(-sign, magnitude, false);
-		}
+            return new BigInteger(-sign, magnitude, false);
+        }
 
-		public BigInteger NextProbablePrime()
-		{
-			if (sign < 0)
-				throw new ArithmeticException("Cannot be called on value < 0");
+        public BigInteger NextProbablePrime()
+        {
+            if (sign < 0)
+                throw new ArithmeticException("Cannot be called on value < 0");
 
-			if (CompareTo(Two) < 0)
-				return Two;
+            if (CompareTo(Two) < 0)
+                return Two;
 
-			BigInteger n = Inc().SetBit(0);
+            BigInteger n = Inc().SetBit(0);
 
-			while (!n.CheckProbablePrime(100, RandomSource))
-			{
-				n = n.Add(Two);
-			}
+            while (!n.CheckProbablePrime(100, RandomSource))
+            {
+                n = n.Add(Two);
+            }
 
-			return n;
-		}
+            return n;
+        }
 
-		public BigInteger Not()
-		{
-			return Inc().Negate();
-		}
+        public BigInteger Not()
+        {
+            return Inc().Negate();
+        }
 
-		public BigInteger Pow(int exp)
-		{
-			if (exp <= 0)
-			{
+        public BigInteger Pow(int exp)
+        {
+            if (exp <= 0)
+            {
                 if (exp < 0)
-    				throw new ArithmeticException("Negative exponent");
+                    throw new ArithmeticException("Negative exponent");
 
                 return One;
-			}
+            }
 
             if (sign == 0)
-			{
-				return this;
-			}
+            {
+                return this;
+            }
 
             if (QuickPow2Check())
             {
@@ -2537,212 +2537,212 @@ namespace Org.BouncyCastle.Math
             }
 
             BigInteger y = One;
-			BigInteger z = this;
-
-			for (;;)
-			{
-				if ((exp & 0x1) == 1)
-				{
-					y = y.Multiply(z);
-				}
-				exp >>= 1;
-				if (exp == 0) break;
-				z = z.Multiply(z);
-			}
-
-			return y;
-		}
-
-		public static BigInteger ProbablePrime(
-			int bitLength,
-			Random random)
-		{
-			return new BigInteger(bitLength, 100, random);
-		}
-
-		private int Remainder(
-			int m)
-		{
-			Debug.Assert(m > 0);
-
-			long acc = 0;
-			for (int pos = 0; pos < magnitude.Length; ++pos)
-			{
-				long posVal = (uint) magnitude[pos];
-				acc = (acc << 32 | posVal) % m;
-			}
-
-			return (int) acc;
-		}
-
-		/**
-		 * return x = x % y - done in place (y value preserved)
-		 */
-		private static int[] Remainder(
-			int[] x,
-			int[] y)
-		{
-			int xStart = 0;
-			while (xStart < x.Length && x[xStart] == 0)
-			{
-				++xStart;
-			}
-
-			int yStart = 0;
-			while (yStart < y.Length && y[yStart] == 0)
-			{
-				++yStart;
-			}
-
-			Debug.Assert(yStart < y.Length);
-
-			int xyCmp = CompareNoLeadingZeroes(xStart, x, yStart, y);
-
-			if (xyCmp > 0)
-			{
-				int yBitLength = CalcBitLength(1, yStart, y);
-				int xBitLength = CalcBitLength(1, xStart, x);
-				int shift = xBitLength - yBitLength;
-
-				int[] c;
-				int cStart = 0;
-				int cBitLength = yBitLength;
-				if (shift > 0)
-				{
-					c = ShiftLeft(y, shift);
-					cBitLength += shift;
-					Debug.Assert(c[0] != 0);
-				}
-				else
-				{
-					int len = y.Length - yStart;
-					c = new int[len];
-					Array.Copy(y, yStart, c, 0, len);
-				}
-
-				for (;;)
-				{
-					if (cBitLength < xBitLength
-						|| CompareNoLeadingZeroes(xStart, x, cStart, c) >= 0)
-					{
-						Subtract(xStart, x, cStart, c);
-
-						while (x[xStart] == 0)
-						{
-							if (++xStart == x.Length)
-								return x;
-						}
-
-						//xBitLength = CalcBitLength(xStart, x);
-						xBitLength = 32 * (x.Length - xStart - 1) + BitLen(x[xStart]);
-
-						if (xBitLength <= yBitLength)
-						{
-							if (xBitLength < yBitLength)
-								return x;
-
-							xyCmp = CompareNoLeadingZeroes(xStart, x, yStart, y);
-
-							if (xyCmp <= 0)
-								break;
-						}
-					}
-
-					shift = cBitLength - xBitLength;
-
-					// NB: The case where c[cStart] is 1-bit is harmless
-					if (shift == 1)
-					{
-						uint firstC = (uint) c[cStart] >> 1;
-						uint firstX = (uint) x[xStart];
-						if (firstC > firstX)
-							++shift;
-					}
-
-					if (shift < 2)
-					{
-						ShiftRightOneInPlace(cStart, c);
-						--cBitLength;
-					}
-					else
-					{
-						ShiftRightInPlace(cStart, c, shift);
-						cBitLength -= shift;
-					}
-
-					//cStart = c.Length - ((cBitLength + 31) / 32);
-					while (c[cStart] == 0)
-					{
-						++cStart;
-					}
-				}
-			}
-
-			if (xyCmp == 0)
-			{
-				Array.Clear(x, xStart, x.Length - xStart);
-			}
-
-			return x;
-		}
-
-		public BigInteger Remainder(
-			BigInteger n)
-		{
-			if (n.sign == 0)
-				throw new ArithmeticException("Division by zero error");
-
-			if (this.sign == 0)
-				return Zero;
-
-			// For small values, use fast remainder method
-			if (n.magnitude.Length == 1)
-			{
-				int val = n.magnitude[0];
-
-				if (val > 0)
-				{
-					if (val == 1)
-						return Zero;
-
-					// TODO Make this func work on uint, and handle val == 1?
-					int rem = Remainder(val);
-
-					return rem == 0
-						?	Zero
-						:	new BigInteger(sign, new int[]{ rem }, false);
-				}
-			}
-
-			if (CompareNoLeadingZeroes(0, magnitude, 0, n.magnitude) < 0)
-				return this;
-
-			int[] result;
-			if (n.QuickPow2Check())  // n is power of two
-			{
-				// TODO Move before small values branch above?
-				result = LastNBits(n.Abs().BitLength - 1);
-			}
-			else
-			{
-				result = (int[]) this.magnitude.Clone();
-				result = Remainder(result, n.magnitude);
-			}
-
-			return new BigInteger(sign, result, true);
-		}
-
-		private int[] LastNBits(
-			int n)
-		{
-			if (n < 1)
-				return ZeroMagnitude;
-
-			int numWords = (n + BitsPerInt - 1) / BitsPerInt;
-			numWords = System.Math.Min(numWords, this.magnitude.Length);
-			int[] result = new int[numWords];
-
-			Array.Copy(this.magnitude, this.magnitude.Length - numWords, result, 0, numWords);
+            BigInteger z = this;
+
+            for (;;)
+            {
+                if ((exp & 0x1) == 1)
+                {
+                    y = y.Multiply(z);
+                }
+                exp >>= 1;
+                if (exp == 0) break;
+                z = z.Multiply(z);
+            }
+
+            return y;
+        }
+
+        public static BigInteger ProbablePrime(
+            int bitLength,
+            Random random)
+        {
+            return new BigInteger(bitLength, 100, random);
+        }
+
+        private int Remainder(
+            int m)
+        {
+            Debug.Assert(m > 0);
+
+            long acc = 0;
+            for (int pos = 0; pos < magnitude.Length; ++pos)
+            {
+                long posVal = (uint) magnitude[pos];
+                acc = (acc << 32 | posVal) % m;
+            }
+
+            return (int) acc;
+        }
+
+        /**
+         * return x = x % y - done in place (y value preserved)
+         */
+        private static int[] Remainder(
+            int[] x,
+            int[] y)
+        {
+            int xStart = 0;
+            while (xStart < x.Length && x[xStart] == 0)
+            {
+                ++xStart;
+            }
+
+            int yStart = 0;
+            while (yStart < y.Length && y[yStart] == 0)
+            {
+                ++yStart;
+            }
+
+            Debug.Assert(yStart < y.Length);
+
+            int xyCmp = CompareNoLeadingZeroes(xStart, x, yStart, y);
+
+            if (xyCmp > 0)
+            {
+                int yBitLength = CalcBitLength(1, yStart, y);
+                int xBitLength = CalcBitLength(1, xStart, x);
+                int shift = xBitLength - yBitLength;
+
+                int[] c;
+                int cStart = 0;
+                int cBitLength = yBitLength;
+                if (shift > 0)
+                {
+                    c = ShiftLeft(y, shift);
+                    cBitLength += shift;
+                    Debug.Assert(c[0] != 0);
+                }
+                else
+                {
+                    int len = y.Length - yStart;
+                    c = new int[len];
+                    Array.Copy(y, yStart, c, 0, len);
+                }
+
+                for (;;)
+                {
+                    if (cBitLength < xBitLength
+                        || CompareNoLeadingZeroes(xStart, x, cStart, c) >= 0)
+                    {
+                        Subtract(xStart, x, cStart, c);
+
+                        while (x[xStart] == 0)
+                        {
+                            if (++xStart == x.Length)
+                                return x;
+                        }
+
+                        //xBitLength = CalcBitLength(xStart, x);
+                        xBitLength = 32 * (x.Length - xStart - 1) + BitLen(x[xStart]);
+
+                        if (xBitLength <= yBitLength)
+                        {
+                            if (xBitLength < yBitLength)
+                                return x;
+
+                            xyCmp = CompareNoLeadingZeroes(xStart, x, yStart, y);
+
+                            if (xyCmp <= 0)
+                                break;
+                        }
+                    }
+
+                    shift = cBitLength - xBitLength;
+
+                    // NB: The case where c[cStart] is 1-bit is harmless
+                    if (shift == 1)
+                    {
+                        uint firstC = (uint) c[cStart] >> 1;
+                        uint firstX = (uint) x[xStart];
+                        if (firstC > firstX)
+                            ++shift;
+                    }
+
+                    if (shift < 2)
+                    {
+                        ShiftRightOneInPlace(cStart, c);
+                        --cBitLength;
+                    }
+                    else
+                    {
+                        ShiftRightInPlace(cStart, c, shift);
+                        cBitLength -= shift;
+                    }
+
+                    //cStart = c.Length - ((cBitLength + 31) / 32);
+                    while (c[cStart] == 0)
+                    {
+                        ++cStart;
+                    }
+                }
+            }
+
+            if (xyCmp == 0)
+            {
+                Array.Clear(x, xStart, x.Length - xStart);
+            }
+
+            return x;
+        }
+
+        public BigInteger Remainder(
+            BigInteger n)
+        {
+            if (n.sign == 0)
+                throw new ArithmeticException("Division by zero error");
+
+            if (this.sign == 0)
+                return Zero;
+
+            // For small values, use fast remainder method
+            if (n.magnitude.Length == 1)
+            {
+                int val = n.magnitude[0];
+
+                if (val > 0)
+                {
+                    if (val == 1)
+                        return Zero;
+
+                    // TODO Make this func work on uint, and handle val == 1?
+                    int rem = Remainder(val);
+
+                    return rem == 0
+                        ?	Zero
+                        :	new BigInteger(sign, new int[]{ rem }, false);
+                }
+            }
+
+            if (CompareNoLeadingZeroes(0, magnitude, 0, n.magnitude) < 0)
+                return this;
+
+            int[] result;
+            if (n.QuickPow2Check())  // n is power of two
+            {
+                // TODO Move before small values branch above?
+                result = LastNBits(n.Abs().BitLength - 1);
+            }
+            else
+            {
+                result = (int[]) this.magnitude.Clone();
+                result = Remainder(result, n.magnitude);
+            }
+
+            return new BigInteger(sign, result, true);
+        }
+
+        private int[] LastNBits(
+            int n)
+        {
+            if (n < 1)
+                return ZeroMagnitude;
+
+            int numWords = (n + BitsPerInt - 1) / BitsPerInt;
+            numWords = System.Math.Min(numWords, this.magnitude.Length);
+            int[] result = new int[numWords];
+
+            Array.Copy(this.magnitude, this.magnitude.Length - numWords, result, 0, numWords);
 
             int excessBits = (numWords << 5) - n;
             if (excessBits > 0)
@@ -2751,7 +2751,7 @@ namespace Org.BouncyCastle.Math
             }
 
             return result;
-		}
+        }
 
         private BigInteger DivideWords(int w)
         {
@@ -2776,52 +2776,52 @@ namespace Org.BouncyCastle.Math
         }
 
         /**
-		 * do a left shift - this returns a new array.
-		 */
-		private static int[] ShiftLeft(
-			int[]	mag,
-			int		n)
-		{
-			int nInts = (int)((uint)n >> 5);
-			int nBits = n & 0x1f;
-			int magLen = mag.Length;
-			int[] newMag;
-
-			if (nBits == 0)
-			{
-				newMag = new int[magLen + nInts];
-				mag.CopyTo(newMag, 0);
-			}
-			else
-			{
-				int i = 0;
-				int nBits2 = 32 - nBits;
-				int highBits = (int)((uint)mag[0] >> nBits2);
-
-				if (highBits != 0)
-				{
-					newMag = new int[magLen + nInts + 1];
-					newMag[i++] = highBits;
-				}
-				else
-				{
-					newMag = new int[magLen + nInts];
-				}
-
-				int m = mag[0];
-				for (int j = 0; j < magLen - 1; j++)
-				{
-					int next = mag[j + 1];
-
-					newMag[i++] = (m << nBits) | (int)((uint)next >> nBits2);
-					m = next;
-				}
-
-				newMag[i] = mag[magLen - 1] << nBits;
-			}
-
-			return newMag;
-		}
+         * do a left shift - this returns a new array.
+         */
+        private static int[] ShiftLeft(
+            int[]	mag,
+            int		n)
+        {
+            int nInts = (int)((uint)n >> 5);
+            int nBits = n & 0x1f;
+            int magLen = mag.Length;
+            int[] newMag;
+
+            if (nBits == 0)
+            {
+                newMag = new int[magLen + nInts];
+                mag.CopyTo(newMag, 0);
+            }
+            else
+            {
+                int i = 0;
+                int nBits2 = 32 - nBits;
+                int highBits = (int)((uint)mag[0] >> nBits2);
+
+                if (highBits != 0)
+                {
+                    newMag = new int[magLen + nInts + 1];
+                    newMag[i++] = highBits;
+                }
+                else
+                {
+                    newMag = new int[magLen + nInts];
+                }
+
+                int m = mag[0];
+                for (int j = 0; j < magLen - 1; j++)
+                {
+                    int next = mag[j + 1];
+
+                    newMag[i++] = (m << nBits) | (int)((uint)next >> nBits2);
+                    m = next;
+                }
+
+                newMag[i] = mag[magLen - 1] << nBits;
+            }
+
+            return newMag;
+        }
 
         private static int ShiftLeftOneInPlace(int[] x, int carry)
         {
@@ -2836,109 +2836,109 @@ namespace Org.BouncyCastle.Math
             return carry;
         }
 
-		public BigInteger ShiftLeft(
-			int n)
-		{
-			if (sign == 0 || magnitude.Length == 0)
-				return Zero;
-
-			if (n == 0)
-				return this;
-
-			if (n < 0)
-				return ShiftRight(-n);
-
-			BigInteger result = new BigInteger(sign, ShiftLeft(magnitude, n), true);
-
-			if (this.nBits != -1)
-			{
-				result.nBits = sign > 0
-					?	this.nBits
-					:	this.nBits + n;
-			}
-
-			if (this.nBitLength != -1)
-			{
-				result.nBitLength = this.nBitLength + n;
-			}
-
-			return result;
-		}
-
-		/**
-		 * do a right shift - this does it in place.
-		 */
-		private static void ShiftRightInPlace(
-			int		start,
-			int[]	mag,
-			int		n)
-		{
-			int nInts = (int)((uint)n >> 5) + start;
-			int nBits = n & 0x1f;
-			int magEnd = mag.Length - 1;
-
-			if (nInts != start)
-			{
-				int delta = (nInts - start);
-
-				for (int i = magEnd; i >= nInts; i--)
-				{
-					mag[i] = mag[i - delta];
-				}
-				for (int i = nInts - 1; i >= start; i--)
-				{
-					mag[i] = 0;
-				}
-			}
-
-			if (nBits != 0)
-			{
-				int nBits2 = 32 - nBits;
-				int m = mag[magEnd];
-
-				for (int i = magEnd; i > nInts; --i)
-				{
-					int next = mag[i - 1];
-
-					mag[i] = (int)((uint)m >> nBits) | (next << nBits2);
-					m = next;
-				}
-
-				mag[nInts] = (int)((uint)mag[nInts] >> nBits);
-			}
-		}
-
-		/**
-		 * do a right shift by one - this does it in place.
-		 */
-		private static void ShiftRightOneInPlace(
-			int		start,
-			int[]	mag)
-		{
-			int i = mag.Length;
-			int m = mag[i - 1];
-
-			while (--i > start)
-			{
-				int next = mag[i - 1];
-				mag[i] = ((int)((uint)m >> 1)) | (next << 31);
-				m = next;
-			}
-
-			mag[start] = (int)((uint)mag[start] >> 1);
-		}
+        public BigInteger ShiftLeft(
+            int n)
+        {
+            if (sign == 0 || magnitude.Length == 0)
+                return Zero;
+
+            if (n == 0)
+                return this;
+
+            if (n < 0)
+                return ShiftRight(-n);
+
+            BigInteger result = new BigInteger(sign, ShiftLeft(magnitude, n), true);
+
+            if (this.nBits != -1)
+            {
+                result.nBits = sign > 0
+                    ?	this.nBits
+                    :	this.nBits + n;
+            }
+
+            if (this.nBitLength != -1)
+            {
+                result.nBitLength = this.nBitLength + n;
+            }
+
+            return result;
+        }
+
+        /**
+         * do a right shift - this does it in place.
+         */
+        private static void ShiftRightInPlace(
+            int		start,
+            int[]	mag,
+            int		n)
+        {
+            int nInts = (int)((uint)n >> 5) + start;
+            int nBits = n & 0x1f;
+            int magEnd = mag.Length - 1;
+
+            if (nInts != start)
+            {
+                int delta = (nInts - start);
+
+                for (int i = magEnd; i >= nInts; i--)
+                {
+                    mag[i] = mag[i - delta];
+                }
+                for (int i = nInts - 1; i >= start; i--)
+                {
+                    mag[i] = 0;
+                }
+            }
+
+            if (nBits != 0)
+            {
+                int nBits2 = 32 - nBits;
+                int m = mag[magEnd];
+
+                for (int i = magEnd; i > nInts; --i)
+                {
+                    int next = mag[i - 1];
+
+                    mag[i] = (int)((uint)m >> nBits) | (next << nBits2);
+                    m = next;
+                }
+
+                mag[nInts] = (int)((uint)mag[nInts] >> nBits);
+            }
+        }
+
+        /**
+         * do a right shift by one - this does it in place.
+         */
+        private static void ShiftRightOneInPlace(
+            int		start,
+            int[]	mag)
+        {
+            int i = mag.Length;
+            int m = mag[i - 1];
+
+            while (--i > start)
+            {
+                int next = mag[i - 1];
+                mag[i] = ((int)((uint)m >> 1)) | (next << 31);
+                m = next;
+            }
+
+            mag[start] = (int)((uint)mag[start] >> 1);
+        }
 
         public BigInteger ShiftRight(
-			int n)
-		{
-			if (n == 0)
-				return this;
+            int n)
+        {
+            if (n == 0)
+                return this;
 
-			if (n < 0)
-				return ShiftLeft(-n);
+            if (n < 0)
+                return ShiftLeft(-n);
 
-			if (n >= BitLength)
-				return (this.sign < 0 ? One.Negate() : Zero);
+            if (n >= BitLength)
+                return (this.sign < 0 ? One.Negate() : Zero);
 
 //			int[] res = (int[]) this.magnitude.Clone();
 //
@@ -2946,213 +2946,213 @@ namespace Org.BouncyCastle.Math
 //
 //			return new BigInteger(this.sign, res, true);
 
-			int resultLength = (BitLength - n + 31) >> 5;
-			int[] res = new int[resultLength];
+            int resultLength = (BitLength - n + 31) >> 5;
+            int[] res = new int[resultLength];
 
-			int numInts = n >> 5;
-			int numBits = n & 31;
+            int numInts = n >> 5;
+            int numBits = n & 31;
 
-			if (numBits == 0)
-			{
-				Array.Copy(this.magnitude, 0, res, 0, res.Length);
-			}
-			else
-			{
-				int numBits2 = 32 - numBits;
+            if (numBits == 0)
+            {
+                Array.Copy(this.magnitude, 0, res, 0, res.Length);
+            }
+            else
+            {
+                int numBits2 = 32 - numBits;
 
-				int magPos = this.magnitude.Length - 1 - numInts;
-				for (int i = resultLength - 1; i >= 0; --i)
-				{
-					res[i] = (int)((uint) this.magnitude[magPos--] >> numBits);
+                int magPos = this.magnitude.Length - 1 - numInts;
+                for (int i = resultLength - 1; i >= 0; --i)
+                {
+                    res[i] = (int)((uint) this.magnitude[magPos--] >> numBits);
 
-					if (magPos >= 0)
-					{
-						res[i] |= this.magnitude[magPos] << numBits2;
-					}
-				}
-			}
+                    if (magPos >= 0)
+                    {
+                        res[i] |= this.magnitude[magPos] << numBits2;
+                    }
+                }
+            }
 
-			Debug.Assert(res[0] != 0);
+            Debug.Assert(res[0] != 0);
 
-			return new BigInteger(this.sign, res, false);
-		}
+            return new BigInteger(this.sign, res, false);
+        }
 
         public int SignValue
-		{
-			get { return sign; }
-		}
-
-		/**
-		 * returns x = x - y - we assume x is >= y
-		 */
-		private static int[] Subtract(
-			int		xStart,
-			int[]	x,
-			int		yStart,
-			int[]	y)
-		{
-			Debug.Assert(yStart < y.Length);
-			Debug.Assert(x.Length - xStart >= y.Length - yStart);
-
-			int iT = x.Length;
-			int iV = y.Length;
-			long m;
-			int borrow = 0;
-
-			do
-			{
-				m = (x[--iT] & IMASK) - (y[--iV] & IMASK) + borrow;
-				x[iT] = (int) m;
+        {
+            get { return sign; }
+        }
+
+        /**
+         * returns x = x - y - we assume x is >= y
+         */
+        private static int[] Subtract(
+            int		xStart,
+            int[]	x,
+            int		yStart,
+            int[]	y)
+        {
+            Debug.Assert(yStart < y.Length);
+            Debug.Assert(x.Length - xStart >= y.Length - yStart);
+
+            int iT = x.Length;
+            int iV = y.Length;
+            long m;
+            int borrow = 0;
+
+            do
+            {
+                m = (x[--iT] & IMASK) - (y[--iV] & IMASK) + borrow;
+                x[iT] = (int) m;
 
 //				borrow = (m < 0) ? -1 : 0;
-				borrow = (int)(m >> 63);
-			}
-			while (iV > yStart);
-
-			if (borrow != 0)
-			{
-				while (--x[--iT] == -1)
-				{
-				}
-			}
-
-			return x;
-		}
-
-		public BigInteger Subtract(
-			BigInteger n)
-		{
-			if (n.sign == 0)
-				return this;
-
-			if (this.sign == 0)
-				return n.Negate();
-
-			if (this.sign != n.sign)
-				return Add(n.Negate());
-
-			int compare = CompareNoLeadingZeroes(0, magnitude, 0, n.magnitude);
-			if (compare == 0)
-				return Zero;
-
-			BigInteger bigun, lilun;
-			if (compare < 0)
-			{
-				bigun = n;
-				lilun = this;
-			}
-			else
-			{
-				bigun = this;
-				lilun = n;
-			}
-
-			return new BigInteger(this.sign * compare, doSubBigLil(bigun.magnitude, lilun.magnitude), true);
-		}
-
-		private static int[] doSubBigLil(
-			int[]	bigMag,
-			int[]	lilMag)
-		{
-			int[] res = (int[]) bigMag.Clone();
-
-			return Subtract(0, res, 0, lilMag);
-		}
-
-		public byte[] ToByteArray()
-		{
-			return ToByteArray(false);
-		}
-
-		public byte[] ToByteArrayUnsigned()
-		{
-			return ToByteArray(true);
-		}
-
-		private byte[] ToByteArray(
-			bool unsigned)
-		{
-			if (sign == 0)
-				return unsigned ? ZeroEncoding : new byte[1];
-
-			int nBits = (unsigned && sign > 0)
-				?	BitLength
-				:	BitLength + 1;
-
-			int nBytes = GetByteLength(nBits);
-			byte[] bytes = new byte[nBytes];
-
-			int magIndex = magnitude.Length;
-			int bytesIndex = bytes.Length;
-
-			if (sign > 0)
-			{
-				while (magIndex > 1)
-				{
-					uint mag = (uint) magnitude[--magIndex];
-					bytes[--bytesIndex] = (byte) mag;
-					bytes[--bytesIndex] = (byte)(mag >> 8);
-					bytes[--bytesIndex] = (byte)(mag >> 16);
-					bytes[--bytesIndex] = (byte)(mag >> 24);
-				}
-
-				uint lastMag = (uint) magnitude[0];
-				while (lastMag > byte.MaxValue)
-				{
-					bytes[--bytesIndex] = (byte) lastMag;
-					lastMag >>= 8;
-				}
-
-				bytes[--bytesIndex] = (byte) lastMag;
-			}
-			else // sign < 0
-			{
-				bool carry = true;
-
-				while (magIndex > 1)
-				{
-					uint mag = ~((uint) magnitude[--magIndex]);
-
-					if (carry)
-					{
-						carry = (++mag == uint.MinValue);
-					}
-
-					bytes[--bytesIndex] = (byte) mag;
-					bytes[--bytesIndex] = (byte)(mag >> 8);
-					bytes[--bytesIndex] = (byte)(mag >> 16);
-					bytes[--bytesIndex] = (byte)(mag >> 24);
-				}
-
-				uint lastMag = (uint) magnitude[0];
-
-				if (carry)
-				{
-					// Never wraps because magnitude[0] != 0
-					--lastMag;
-				}
-
-				while (lastMag > byte.MaxValue)
-				{
-					bytes[--bytesIndex] = (byte) ~lastMag;
-					lastMag >>= 8;
-				}
-
-				bytes[--bytesIndex] = (byte) ~lastMag;
-
-				if (bytesIndex > 0)
-				{
-					bytes[--bytesIndex] = byte.MaxValue;
-				}
-			}
-
-			return bytes;
-		}
-
-		public override string ToString()
-		{
-			return ToString(10);
-		}
+                borrow = (int)(m >> 63);
+            }
+            while (iV > yStart);
+
+            if (borrow != 0)
+            {
+                while (--x[--iT] == -1)
+                {
+                }
+            }
+
+            return x;
+        }
+
+        public BigInteger Subtract(
+            BigInteger n)
+        {
+            if (n.sign == 0)
+                return this;
+
+            if (this.sign == 0)
+                return n.Negate();
+
+            if (this.sign != n.sign)
+                return Add(n.Negate());
+
+            int compare = CompareNoLeadingZeroes(0, magnitude, 0, n.magnitude);
+            if (compare == 0)
+                return Zero;
+
+            BigInteger bigun, lilun;
+            if (compare < 0)
+            {
+                bigun = n;
+                lilun = this;
+            }
+            else
+            {
+                bigun = this;
+                lilun = n;
+            }
+
+            return new BigInteger(this.sign * compare, doSubBigLil(bigun.magnitude, lilun.magnitude), true);
+        }
+
+        private static int[] doSubBigLil(
+            int[]	bigMag,
+            int[]	lilMag)
+        {
+            int[] res = (int[]) bigMag.Clone();
+
+            return Subtract(0, res, 0, lilMag);
+        }
+
+        public byte[] ToByteArray()
+        {
+            return ToByteArray(false);
+        }
+
+        public byte[] ToByteArrayUnsigned()
+        {
+            return ToByteArray(true);
+        }
+
+        private byte[] ToByteArray(
+            bool unsigned)
+        {
+            if (sign == 0)
+                return unsigned ? ZeroEncoding : new byte[1];
+
+            int nBits = (unsigned && sign > 0)
+                ?	BitLength
+                :	BitLength + 1;
+
+            int nBytes = GetByteLength(nBits);
+            byte[] bytes = new byte[nBytes];
+
+            int magIndex = magnitude.Length;
+            int bytesIndex = bytes.Length;
+
+            if (sign > 0)
+            {
+                while (magIndex > 1)
+                {
+                    uint mag = (uint) magnitude[--magIndex];
+                    bytes[--bytesIndex] = (byte) mag;
+                    bytes[--bytesIndex] = (byte)(mag >> 8);
+                    bytes[--bytesIndex] = (byte)(mag >> 16);
+                    bytes[--bytesIndex] = (byte)(mag >> 24);
+                }
+
+                uint lastMag = (uint) magnitude[0];
+                while (lastMag > byte.MaxValue)
+                {
+                    bytes[--bytesIndex] = (byte) lastMag;
+                    lastMag >>= 8;
+                }
+
+                bytes[--bytesIndex] = (byte) lastMag;
+            }
+            else // sign < 0
+            {
+                bool carry = true;
+
+                while (magIndex > 1)
+                {
+                    uint mag = ~((uint) magnitude[--magIndex]);
+
+                    if (carry)
+                    {
+                        carry = (++mag == uint.MinValue);
+                    }
+
+                    bytes[--bytesIndex] = (byte) mag;
+                    bytes[--bytesIndex] = (byte)(mag >> 8);
+                    bytes[--bytesIndex] = (byte)(mag >> 16);
+                    bytes[--bytesIndex] = (byte)(mag >> 24);
+                }
+
+                uint lastMag = (uint) magnitude[0];
+
+                if (carry)
+                {
+                    // Never wraps because magnitude[0] != 0
+                    --lastMag;
+                }
+
+                while (lastMag > byte.MaxValue)
+                {
+                    bytes[--bytesIndex] = (byte) ~lastMag;
+                    lastMag >>= 8;
+                }
+
+                bytes[--bytesIndex] = (byte) ~lastMag;
+
+                if (bytesIndex > 0)
+                {
+                    bytes[--bytesIndex] = byte.MaxValue;
+                }
+            }
+
+            return bytes;
+        }
+
+        public override string ToString()
+        {
+            return ToString(10);
+        }
 
         public string ToString(int radix)
         {
@@ -3297,60 +3297,60 @@ namespace Org.BouncyCastle.Math
         }
 
         private static BigInteger CreateUValueOf(
-			ulong value)
-		{
-			int msw = (int)(value >> 32);
-			int lsw = (int)value;
-
-			if (msw != 0)
-				return new BigInteger(1, new int[] { msw, lsw }, false);
-
-			if (lsw != 0)
-			{
-				BigInteger n = new BigInteger(1, new int[] { lsw }, false);
-				// Check for a power of two
-				if ((lsw & -lsw) == lsw)
-				{
-					n.nBits = 1;
-				}
-				return n;
-			}
-
-			return Zero;
-		}
-
-		private static BigInteger CreateValueOf(
-			long value)
-		{
-			if (value < 0)
-			{
-				if (value == long.MinValue)
-					return CreateValueOf(~value).Not();
-
-				return CreateValueOf(-value).Negate();
-			}
-
-			return CreateUValueOf((ulong)value);
-		}
+            ulong value)
+        {
+            int msw = (int)(value >> 32);
+            int lsw = (int)value;
+
+            if (msw != 0)
+                return new BigInteger(1, new int[] { msw, lsw }, false);
+
+            if (lsw != 0)
+            {
+                BigInteger n = new BigInteger(1, new int[] { lsw }, false);
+                // Check for a power of two
+                if ((lsw & -lsw) == lsw)
+                {
+                    n.nBits = 1;
+                }
+                return n;
+            }
+
+            return Zero;
+        }
+
+        private static BigInteger CreateValueOf(
+            long value)
+        {
+            if (value < 0)
+            {
+                if (value == long.MinValue)
+                    return CreateValueOf(~value).Not();
+
+                return CreateValueOf(-value).Negate();
+            }
+
+            return CreateUValueOf((ulong)value);
+        }
 
         public static BigInteger ValueOf(
-			long value)
-		{
+            long value)
+        {
             if (value >= 0 && value < SMALL_CONSTANTS.Length)
             {
                 return SMALL_CONSTANTS[value];
             }
 
             return CreateValueOf(value);
-		}
+        }
 
         public int GetLowestSetBit()
-		{
-			if (this.sign == 0)
-				return -1;
+        {
+            if (this.sign == 0)
+                return -1;
 
             return GetLowestSetBitMaskFirst(-1);
-		}
+        }
 
         private int GetLowestSetBitMaskFirst(int firstWordMask)
         {
@@ -3381,195 +3381,195 @@ namespace Org.BouncyCastle.Math
         }
 
         public bool TestBit(
-			int n)
-		{
-			if (n < 0)
-				throw new ArithmeticException("Bit position must not be negative");
-
-			if (sign < 0)
-				return !Not().TestBit(n);
-
-			int wordNum = n / 32;
-			if (wordNum >= magnitude.Length)
-				return false;
-
-			int word = magnitude[magnitude.Length - 1 - wordNum];
-			return ((word >> (n % 32)) & 1) > 0;
-		}
-
-		public BigInteger Or(
-			BigInteger value)
-		{
-			if (this.sign == 0)
-				return value;
-
-			if (value.sign == 0)
-				return this;
-
-			int[] aMag = this.sign > 0
-				? this.magnitude
-				: Add(One).magnitude;
-
-			int[] bMag = value.sign > 0
-				? value.magnitude
-				: value.Add(One).magnitude;
-
-			bool resultNeg = sign < 0 || value.sign < 0;
-			int resultLength = System.Math.Max(aMag.Length, bMag.Length);
-			int[] resultMag = new int[resultLength];
-
-			int aStart = resultMag.Length - aMag.Length;
-			int bStart = resultMag.Length - bMag.Length;
-
-			for (int i = 0; i < resultMag.Length; ++i)
-			{
-				int aWord = i >= aStart ? aMag[i - aStart] : 0;
-				int bWord = i >= bStart ? bMag[i - bStart] : 0;
-
-				if (this.sign < 0)
-				{
-					aWord = ~aWord;
-				}
-
-				if (value.sign < 0)
-				{
-					bWord = ~bWord;
-				}
-
-				resultMag[i] = aWord | bWord;
-
-				if (resultNeg)
-				{
-					resultMag[i] = ~resultMag[i];
-				}
-			}
-
-			BigInteger result = new BigInteger(1, resultMag, true);
-
-			// TODO Optimise this case
-			if (resultNeg)
-			{
-				result = result.Not();
-			}
-
-			return result;
-		}
-
-		public BigInteger Xor(
-			BigInteger value)
-		{
-			if (this.sign == 0)
-				return value;
-
-			if (value.sign == 0)
-				return this;
-
-			int[] aMag = this.sign > 0
-				? this.magnitude
-				: Add(One).magnitude;
-
-			int[] bMag = value.sign > 0
-				? value.magnitude
-				: value.Add(One).magnitude;
-
-			// TODO Can just replace with sign != value.sign?
-			bool resultNeg = (sign < 0 && value.sign >= 0) || (sign >= 0 && value.sign < 0);
-			int resultLength = System.Math.Max(aMag.Length, bMag.Length);
-			int[] resultMag = new int[resultLength];
-
-			int aStart = resultMag.Length - aMag.Length;
-			int bStart = resultMag.Length - bMag.Length;
-
-			for (int i = 0; i < resultMag.Length; ++i)
-			{
-				int aWord = i >= aStart ? aMag[i - aStart] : 0;
-				int bWord = i >= bStart ? bMag[i - bStart] : 0;
-
-				if (this.sign < 0)
-				{
-					aWord = ~aWord;
-				}
-
-				if (value.sign < 0)
-				{
-					bWord = ~bWord;
-				}
-
-				resultMag[i] = aWord ^ bWord;
-
-				if (resultNeg)
-				{
-					resultMag[i] = ~resultMag[i];
-				}
-			}
-
-			BigInteger result = new BigInteger(1, resultMag, true);
-
-			// TODO Optimise this case
-			if (resultNeg)
-			{
-				result = result.Not();
-			}
-
-			return result;
-		}
-
-		public BigInteger SetBit(
-			int n)
-		{
-			if (n < 0)
-				throw new ArithmeticException("Bit address less than zero");
-
-			if (TestBit(n))
-				return this;
-
-			// TODO Handle negative values and zero
-			if (sign > 0 && n < (BitLength - 1))
-				return FlipExistingBit(n);
-
-			return Or(One.ShiftLeft(n));
-		}
-
-		public BigInteger ClearBit(
-			int n)
-		{
-			if (n < 0)
-				throw new ArithmeticException("Bit address less than zero");
-
-			if (!TestBit(n))
-				return this;
-
-			// TODO Handle negative values
-			if (sign > 0 && n < (BitLength - 1))
-				return FlipExistingBit(n);
-
-			return AndNot(One.ShiftLeft(n));
-		}
-
-		public BigInteger FlipBit(
-			int n)
-		{
-			if (n < 0)
-				throw new ArithmeticException("Bit address less than zero");
-
-			// TODO Handle negative values and zero
-			if (sign > 0 && n < (BitLength - 1))
-				return FlipExistingBit(n);
-
-			return Xor(One.ShiftLeft(n));
-		}
-
-		private BigInteger FlipExistingBit(
-			int n)
-		{
-			Debug.Assert(sign > 0);
-			Debug.Assert(n >= 0);
-			Debug.Assert(n < BitLength - 1);
-
-			int[] mag = (int[]) this.magnitude.Clone();
-			mag[mag.Length - 1 - (n >> 5)] ^= (1 << (n & 31)); // Flip bit
-			//mag[mag.Length - 1 - (n / 32)] ^= (1 << (n % 32));
-			return new BigInteger(this.sign, mag, false);
-		}
-	}
+            int n)
+        {
+            if (n < 0)
+                throw new ArithmeticException("Bit position must not be negative");
+
+            if (sign < 0)
+                return !Not().TestBit(n);
+
+            int wordNum = n / 32;
+            if (wordNum >= magnitude.Length)
+                return false;
+
+            int word = magnitude[magnitude.Length - 1 - wordNum];
+            return ((word >> (n % 32)) & 1) > 0;
+        }
+
+        public BigInteger Or(
+            BigInteger value)
+        {
+            if (this.sign == 0)
+                return value;
+
+            if (value.sign == 0)
+                return this;
+
+            int[] aMag = this.sign > 0
+                ? this.magnitude
+                : Add(One).magnitude;
+
+            int[] bMag = value.sign > 0
+                ? value.magnitude
+                : value.Add(One).magnitude;
+
+            bool resultNeg = sign < 0 || value.sign < 0;
+            int resultLength = System.Math.Max(aMag.Length, bMag.Length);
+            int[] resultMag = new int[resultLength];
+
+            int aStart = resultMag.Length - aMag.Length;
+            int bStart = resultMag.Length - bMag.Length;
+
+            for (int i = 0; i < resultMag.Length; ++i)
+            {
+                int aWord = i >= aStart ? aMag[i - aStart] : 0;
+                int bWord = i >= bStart ? bMag[i - bStart] : 0;
+
+                if (this.sign < 0)
+                {
+                    aWord = ~aWord;
+                }
+
+                if (value.sign < 0)
+                {
+                    bWord = ~bWord;
+                }
+
+                resultMag[i] = aWord | bWord;
+
+                if (resultNeg)
+                {
+                    resultMag[i] = ~resultMag[i];
+                }
+            }
+
+            BigInteger result = new BigInteger(1, resultMag, true);
+
+            // TODO Optimise this case
+            if (resultNeg)
+            {
+                result = result.Not();
+            }
+
+            return result;
+        }
+
+        public BigInteger Xor(
+            BigInteger value)
+        {
+            if (this.sign == 0)
+                return value;
+
+            if (value.sign == 0)
+                return this;
+
+            int[] aMag = this.sign > 0
+                ? this.magnitude
+                : Add(One).magnitude;
+
+            int[] bMag = value.sign > 0
+                ? value.magnitude
+                : value.Add(One).magnitude;
+
+            // TODO Can just replace with sign != value.sign?
+            bool resultNeg = (sign < 0 && value.sign >= 0) || (sign >= 0 && value.sign < 0);
+            int resultLength = System.Math.Max(aMag.Length, bMag.Length);
+            int[] resultMag = new int[resultLength];
+
+            int aStart = resultMag.Length - aMag.Length;
+            int bStart = resultMag.Length - bMag.Length;
+
+            for (int i = 0; i < resultMag.Length; ++i)
+            {
+                int aWord = i >= aStart ? aMag[i - aStart] : 0;
+                int bWord = i >= bStart ? bMag[i - bStart] : 0;
+
+                if (this.sign < 0)
+                {
+                    aWord = ~aWord;
+                }
+
+                if (value.sign < 0)
+                {
+                    bWord = ~bWord;
+                }
+
+                resultMag[i] = aWord ^ bWord;
+
+                if (resultNeg)
+                {
+                    resultMag[i] = ~resultMag[i];
+                }
+            }
+
+            BigInteger result = new BigInteger(1, resultMag, true);
+
+            // TODO Optimise this case
+            if (resultNeg)
+            {
+                result = result.Not();
+            }
+
+            return result;
+        }
+
+        public BigInteger SetBit(
+            int n)
+        {
+            if (n < 0)
+                throw new ArithmeticException("Bit address less than zero");
+
+            if (TestBit(n))
+                return this;
+
+            // TODO Handle negative values and zero
+            if (sign > 0 && n < (BitLength - 1))
+                return FlipExistingBit(n);
+
+            return Or(One.ShiftLeft(n));
+        }
+
+        public BigInteger ClearBit(
+            int n)
+        {
+            if (n < 0)
+                throw new ArithmeticException("Bit address less than zero");
+
+            if (!TestBit(n))
+                return this;
+
+            // TODO Handle negative values
+            if (sign > 0 && n < (BitLength - 1))
+                return FlipExistingBit(n);
+
+            return AndNot(One.ShiftLeft(n));
+        }
+
+        public BigInteger FlipBit(
+            int n)
+        {
+            if (n < 0)
+                throw new ArithmeticException("Bit address less than zero");
+
+            // TODO Handle negative values and zero
+            if (sign > 0 && n < (BitLength - 1))
+                return FlipExistingBit(n);
+
+            return Xor(One.ShiftLeft(n));
+        }
+
+        private BigInteger FlipExistingBit(
+            int n)
+        {
+            Debug.Assert(sign > 0);
+            Debug.Assert(n >= 0);
+            Debug.Assert(n < BitLength - 1);
+
+            int[] mag = (int[]) this.magnitude.Clone();
+            mag[mag.Length - 1 - (n >> 5)] ^= (1 << (n & 31)); // Flip bit
+            //mag[mag.Length - 1 - (n / 32)] ^= (1 << (n % 32));
+            return new BigInteger(this.sign, mag, false);
+        }
+    }
 }