summary refs log tree commit diff
diff options
context:
space:
mode:
-rw-r--r--crypto/src/pqc/crypto/bike/BikeEngine.cs47
-rw-r--r--crypto/src/pqc/crypto/bike/BikeParameters.cs12
-rw-r--r--crypto/src/pqc/crypto/bike/BikePolynomial.cs469
-rw-r--r--crypto/src/pqc/crypto/bike/BikeRandomGenerator.cs41
-rw-r--r--crypto/src/pqc/crypto/bike/Utils.cs21
-rw-r--r--crypto/src/pqc/math/linearalgebra/GF2mField.cs370
-rw-r--r--crypto/src/pqc/math/linearalgebra/GF2mVector.cs221
-rw-r--r--crypto/src/pqc/math/linearalgebra/IntUtils.cs159
-rw-r--r--crypto/src/pqc/math/linearalgebra/LittleEndianConversions.cs195
-rw-r--r--crypto/src/pqc/math/linearalgebra/Permutation.cs192
-rw-r--r--crypto/src/pqc/math/linearalgebra/PolynomialGF2mSmallM.cs1266
-rw-r--r--crypto/src/pqc/math/linearalgebra/PolynomialRingGF2.cs286
-rw-r--r--crypto/src/pqc/math/linearalgebra/RandUtils.cs27
-rw-r--r--crypto/src/pqc/math/linearalgebra/Utils.cs20
-rw-r--r--crypto/src/pqc/math/linearalgebra/Vector.cs62
15 files changed, 505 insertions, 2883 deletions
diff --git a/crypto/src/pqc/crypto/bike/BikeEngine.cs b/crypto/src/pqc/crypto/bike/BikeEngine.cs
index 7df2703c9..ecd7d7efe 100644
--- a/crypto/src/pqc/crypto/bike/BikeEngine.cs
+++ b/crypto/src/pqc/crypto/bike/BikeEngine.cs
@@ -1,11 +1,9 @@
-using Org.BouncyCastle.Crypto;
+using System;
+
+using Org.BouncyCastle.Crypto;
 using Org.BouncyCastle.Crypto.Digests;
-using Org.BouncyCastle.Pqc.Math.LinearAlgebra;
 using Org.BouncyCastle.Security;
 using Org.BouncyCastle.Utilities;
-using System;
-using System.Collections.Generic;
-using System.Text;
 
 namespace Org.BouncyCastle.Pqc.Crypto.Bike
 {
@@ -32,8 +30,7 @@ namespace Org.BouncyCastle.Pqc.Crypto.Bike
         // tau
         private int tau;
 
-        private GF2mField field;
-        private PolynomialGF2mSmallM reductionPoly;
+        private BikePolynomial reductionPoly;
         private int L_BYTE;
         private int R_BYTE;
 
@@ -49,13 +46,8 @@ namespace Org.BouncyCastle.Pqc.Crypto.Bike
             this.L_BYTE = l / 8;
             this.R_BYTE = (r + 7) / 8;
 
-            // finite field GF(2)
-            GF2mField field = new GF2mField(1);
-            this.field = field;
-
             // generate reductionPoly (X^r + 1)
-            PolynomialGF2mSmallM poly = new PolynomialGF2mSmallM(field, r);
-            this.reductionPoly = poly.AddMonomial(0);
+            this.reductionPoly = new BikePolynomial(r);
         }
 
         public int GetSessionKeySize()
@@ -143,11 +135,11 @@ namespace Org.BouncyCastle.Pqc.Crypto.Bike
             byte[] h1Cut = Utils.RemoveLast0Bits(h1Bits);
 
             // 2. Compute h
-            PolynomialGF2mSmallM h0Poly = new PolynomialGF2mSmallM(this.field, h0Cut);
-            PolynomialGF2mSmallM h1Poly = new PolynomialGF2mSmallM(this.field, h1Cut);
+            BikePolynomial h0Poly = new BikePolynomial(h0Cut);
+            BikePolynomial h1Poly = new BikePolynomial(h1Cut);
 
-            PolynomialGF2mSmallM h0Inv = h0Poly.ModInverseBigDeg(reductionPoly);
-            PolynomialGF2mSmallM hPoly = h1Poly.ModKaratsubaMultiplyBigDeg(h0Inv, reductionPoly);
+            BikePolynomial h0Inv = h0Poly.ModInverseBigDeg(reductionPoly);
+            BikePolynomial hPoly = h1Poly.ModKaratsubaMultiplyBigDeg(h0Inv, reductionPoly);
 
             // Get coefficients of hPoly
             byte[] hTmp = hPoly.GetEncoded();
@@ -191,15 +183,15 @@ namespace Org.BouncyCastle.Pqc.Crypto.Bike
             byte[] e0Cut = Utils.RemoveLast0Bits(e0Bits);
             byte[] e1Cut = Utils.RemoveLast0Bits(e1Bits);
 
-            PolynomialGF2mSmallM e0 = new PolynomialGF2mSmallM(field, e0Cut);
-            PolynomialGF2mSmallM e1 = new PolynomialGF2mSmallM(field, e1Cut);
+            BikePolynomial e0 = new BikePolynomial(e0Cut);
+            BikePolynomial e1 = new BikePolynomial(e1Cut);
 
             // 3. Calculate c
             // calculate c0
             byte[] h0Bits = new byte[r];
             Utils.FromByteArrayToBitArray(h0Bits, h);
-            PolynomialGF2mSmallM hPoly = new PolynomialGF2mSmallM(field, Utils.RemoveLast0Bits(h0Bits));
-            PolynomialGF2mSmallM c0Poly = e0.add(e1.ModKaratsubaMultiplyBigDeg(hPoly, reductionPoly));
+            BikePolynomial hPoly = new BikePolynomial(Utils.RemoveLast0Bits(h0Bits));
+            BikePolynomial c0Poly = e0.Add(e1.ModKaratsubaMultiplyBigDeg(hPoly, reductionPoly));
 
             byte[] c0Bits = c0Poly.GetEncoded();
             byte[] c0Bytes = new byte[R_BYTE];
@@ -287,10 +279,10 @@ namespace Org.BouncyCastle.Pqc.Crypto.Bike
 
         private byte[] ComputeSyndrome(byte[] h0, byte[] c0)
         {
-            PolynomialGF2mSmallM coPoly = new PolynomialGF2mSmallM(field, c0);
-            PolynomialGF2mSmallM h0Poly = new PolynomialGF2mSmallM(field, h0);
+            BikePolynomial coPoly = new BikePolynomial(c0);
+            BikePolynomial h0Poly = new BikePolynomial(h0);
 
-            PolynomialGF2mSmallM s = coPoly.ModKaratsubaMultiplyBigDeg(h0Poly, reductionPoly);
+            BikePolynomial s = coPoly.ModKaratsubaMultiplyBigDeg(h0Poly, reductionPoly);
             byte[] transposedS = Transpose(s.GetEncoded());
             return transposedS;
         }
@@ -318,11 +310,11 @@ namespace Org.BouncyCastle.Pqc.Crypto.Bike
                     BFMaskedIter(s, e, gray, (hw + 1) / 2 + 1, h0Compact, h1Compact, h0CompactCol, h1CompactCol);
                 }
             }
+
             if (Utils.GetHammingWeight(s) == 0)
-            {
                 return e;
-            }
-            else return null;
+
+            return null;
         }
 
         private byte[] Transpose(byte[] input)
@@ -336,6 +328,7 @@ namespace Org.BouncyCastle.Pqc.Crypto.Bike
             }
             return output;
         }
+
         private void BFIter(byte[] s, byte[] e, int T, int[] h0Compact, int[] h1Compact, int[] h0CompactCol, int[] h1CompactCol, byte[] black, byte[] gray)
         {
             int[] updatedIndices = new int[2 * r];
diff --git a/crypto/src/pqc/crypto/bike/BikeParameters.cs b/crypto/src/pqc/crypto/bike/BikeParameters.cs
index e5695c48f..e4d06b861 100644
--- a/crypto/src/pqc/crypto/bike/BikeParameters.cs
+++ b/crypto/src/pqc/crypto/bike/BikeParameters.cs
@@ -1,11 +1,11 @@
-using Org.BouncyCastle.Crypto;
-using System;
-using System.Collections.Generic;
-using System.Text;
+using System;
+
+using Org.BouncyCastle.Crypto;
 
 namespace Org.BouncyCastle.Pqc.Crypto.Bike
 {
-    public class BikeParameters : ICipherParameters
+    public class BikeParameters
+        : ICipherParameters
     {
         // 128 bits security
         public static BikeParameters bike128 = new BikeParameters("bike128", 12323, 142, 134, 256, 5, 3, 128);
@@ -26,7 +26,7 @@ namespace Org.BouncyCastle.Pqc.Crypto.Bike
         private int defaultKeySize;
 
         private BikeEngine bikeEngine;
-        internal BikeParameters(String name, int r, int w, int t, int l, int nbIter, int tau, int defaultKeySize)
+        internal BikeParameters(string name, int r, int w, int t, int l, int nbIter, int tau, int defaultKeySize)
         {
             this.name = name;
             this.r = r;
diff --git a/crypto/src/pqc/crypto/bike/BikePolynomial.cs b/crypto/src/pqc/crypto/bike/BikePolynomial.cs
new file mode 100644
index 000000000..0d66fe433
--- /dev/null
+++ b/crypto/src/pqc/crypto/bike/BikePolynomial.cs
@@ -0,0 +1,469 @@
+using System;
+
+using Org.BouncyCastle.Utilities;
+
+namespace Org.BouncyCastle.Pqc.Crypto.Bike
+{
+    internal class BikePolynomial
+    {
+        /**
+         * For the polynomial representation the map f: R->Z*,
+         * <tt>poly(X) -> [coef_0, coef_1, ...]</tt> is used, where
+         * <tt>coef_i</tt> is the <tt>i</tt>th coefficient of the polynomial
+         * represented as int (see {@link GF2mField}). The polynomials are stored
+         * as int arrays.
+         */
+        private readonly int[] m_coefficients;
+
+        /**
+         * Construct a monomial of the given degree over the finite field GF(2^m).
+         *
+         * @param field  the finite field GF(2^m)
+         * @param degree the degree of the monomial
+         */
+        internal BikePolynomial(int degree)
+        {
+            // Initial value (X^r + 1)
+            this.m_coefficients = new int[degree + 1];
+            this.m_coefficients[degree] = 1;
+            this.m_coefficients[0] ^= 1;
+        }
+
+        /**
+         * Construct the polynomial over the given finite field GF(2^m) from the
+         * given coefficient vector.
+         *
+         * @param field  finite field GF2m
+         * @param coeffs the coefficient vector
+         */
+        private BikePolynomial(int[] coeffs)
+        {
+            this.m_coefficients = NormalForm(coeffs);
+        }
+
+        /**
+         * Create a polynomial over the finite field GF(2^m).
+         *
+         * @param field the finite field GF(2^m)
+         * @param enc   byte[] polynomial in byte array form
+         */
+        internal BikePolynomial(byte[] enc)
+        {
+            // decodes polynomial
+            this.m_coefficients = new int[enc.Length];
+            for (int i = 0; i < m_coefficients.Length; i++)
+            {
+                m_coefficients[i] = enc[i];
+                if ((m_coefficients[i] >> 1) != 0)
+                    throw new ArgumentException(
+                        "Error: byte array is not encoded polynomial over given finite field GF2m");
+            }
+            // if HC = 0 for non-zero polynomial, returns error
+            if ((m_coefficients.Length != 1) && (m_coefficients[m_coefficients.Length - 1] == 0))
+                throw new ArgumentException("Error: byte array is not encoded polynomial over given finite field GF2m");
+        }
+
+        /**
+         * Returns encoded polynomial, i.e., this polynomial in byte array form
+         *
+         * @return the encoded polynomial
+         */
+        internal byte[] GetEncoded()
+        {
+            byte[] res = new byte[m_coefficients.Length];
+            for (int i = 0; i < m_coefficients.Length; i++)
+            {
+                res[i] = (byte)m_coefficients[i];
+            }
+            return res;
+        }
+
+        /**
+         * Compute the sum of this polynomial and the given polynomial.
+         *
+         * @param addend the addend
+         * @return <tt>this + a</tt> (newly created)
+         */
+        internal BikePolynomial Add(BikePolynomial addend)
+        {
+            int[] resultCoeff = Add(m_coefficients, addend.m_coefficients);
+            return new BikePolynomial(resultCoeff);
+        }
+
+        /**
+         * Compute the sum of two polynomials a and b over the finite field
+         * <tt>GF(2^m)</tt>.
+         *
+         * @param a the first polynomial
+         * @param b the second polynomial
+         * @return a + b
+         */
+        private int[] Add(int[] a, int[] b)
+        {
+            int[] result, addend;
+            if (a.Length < b.Length)
+            {
+                result = new int[b.Length];
+                Array.Copy(b, 0, result, 0, b.Length);
+                addend = a;
+            }
+            else
+            {
+                result = new int[a.Length];
+                Array.Copy(a, 0, result, 0, a.Length);
+                addend = b;
+            }
+
+            for (int i = addend.Length - 1; i >= 0; i--)
+            {
+                result[i] ^= addend[i];
+            }
+
+            return result;
+        }
+
+        /**
+         * Compute the product of a polynomial a with an element from the finite
+         * field <tt>GF(2^m)</tt>.
+         *
+         * @param a       the polynomial
+         * @param element an element of the finite field GF(2^m)
+         * @return <tt>a * element</tt>
+         */
+        private int[] MultWithElement(int[] a, int element)
+        {
+            return element == 0 ? new int[1] : Arrays.Clone(a);
+        }
+
+        /**
+         * Compute the product of a polynomial with a monomial X^k.
+         *
+         * @param a the polynomial
+         * @param k the degree of the monomial
+         * @return <tt>a * X^k</tt>
+         */
+        private static int[] MultWithMonomial(int[] a, int k)
+        {
+            int d = ComputeDegree(a);
+            if (d == -1)
+                return new int[1];
+
+            int[] result = new int[k + d + 1];
+            Array.Copy(a, 0, result, k, d + 1);
+            return result;
+        }
+
+        /**
+         * Compute the result of the division of two polynomials over the field
+         * <tt>GF(2^m)</tt>.
+         *
+         * @param a the first polynomial
+         * @param f the second polynomial
+         * @return int[][] {q,r}, where a = q*f+r and deg(r) &lt; deg(f);
+         */
+        private int[][] Div(int[] a, int[] f)
+        {
+            int df = ComputeDegree(f);
+            if (df == -1)
+                throw new ArithmeticException("Division by zero.");
+
+            int degreeR1 = ComputeDegree(a);
+            int[][] result = new int[2][];
+            result[0] = new int[1]{ 0 };
+            result[1] = Arrays.CopyOf(a, degreeR1 + 1);
+
+            while (df <= degreeR1)
+            {
+                int[] q;
+                int[] coeff = new int[1];
+                coeff[0] = degreeR1 == -1 ? 0 : result[1][degreeR1];
+                q = MultWithElement(f, coeff[0]);
+                int n = degreeR1 - df;
+                q = MultWithMonomial(q, n);
+                coeff = MultWithMonomial(coeff, n);
+                result[0] = Add(coeff, result[0]);
+                result[1] = Add(q, result[1]);
+                degreeR1 = ComputeDegree(result[1]);
+            }
+            return result;
+        }
+
+        /**
+         * Compute the product of two polynomials over the field <tt>GF(2^m)</tt>
+         * using a Karatzuba like multiplication.
+         *
+         * @param a the first polynomial
+         * @param b the second polynomial
+         * @return a * b
+         */
+        private int[] Multiply(int[] a, int[] b)
+        {
+            int[] mult1, mult2;
+            if (ComputeDegree(a) < ComputeDegree(b))
+            {
+                mult1 = b;
+                mult2 = a;
+            }
+            else
+            {
+                mult1 = a;
+                mult2 = b;
+            }
+
+            mult1 = NormalForm(mult1);
+            mult2 = NormalForm(mult2);
+
+            if (mult2.Length == 1)
+                return MultWithElement(mult1, mult2[0]);
+
+            int d1 = mult1.Length;
+            int d2 = mult2.Length;
+            int[] result;
+
+            if (d2 != d1)
+            {
+                int[] res1 = new int[d2];
+                int[] res2 = new int[d1 - d2];
+                Array.Copy(mult1, 0, res1, 0, res1.Length);
+                Array.Copy(mult1, d2, res2, 0, res2.Length);
+                res1 = Multiply(res1, mult2);
+                res2 = Multiply(res2, mult2);
+                res2 = MultWithMonomial(res2, d2);
+                result = Add(res1, res2);
+            }
+            else
+            {
+                d2 = (int)((uint)(d1 + 1) >> 1);
+                int d = d1 - d2;
+                int[] firstPartMult1 = new int[d2];
+                int[] firstPartMult2 = new int[d2];
+                int[] secondPartMult1 = new int[d];
+                int[] secondPartMult2 = new int[d];
+                Array.Copy(mult1, 0, firstPartMult1, 0, firstPartMult1.Length);
+                Array.Copy(mult1, d2, secondPartMult1, 0, secondPartMult1.Length);
+                Array.Copy(mult2, 0, firstPartMult2, 0, firstPartMult2.Length);
+                Array.Copy(mult2, d2, secondPartMult2, 0, secondPartMult2.Length);
+                int[] helpPoly1 = Add(firstPartMult1, secondPartMult1);
+                int[] helpPoly2 = Add(firstPartMult2, secondPartMult2);
+                int[] res1 = Multiply(firstPartMult1, firstPartMult2);
+                int[] res2 = Multiply(helpPoly1, helpPoly2);
+                int[] res3 = Multiply(secondPartMult1, secondPartMult2);
+                res2 = Add(res2, res1);
+                res2 = Add(res2, res3);
+                res3 = MultWithMonomial(res3, d2);
+                result = Add(res2, res3);
+                result = MultWithMonomial(result, d2);
+                result = Add(result, res1);
+            }
+
+            return result;
+        }
+
+        /**
+         * Reduce a polynomial modulo another polynomial.
+         *
+         * @param a the polynomial
+         * @param f the reduction polynomial
+         * @return <tt>a mod f</tt>
+         */
+        private int[] Mod(int[] a, int[] f)
+        {
+            int df = ComputeDegree(f);
+            if (df == -1)
+                throw new ArithmeticException("Division by zero");
+
+            int degreeR = ComputeDegree(a);
+            int[] result = Arrays.CopyOf(a, degreeR + 1);
+
+            while (df <= degreeR)
+            {
+                int coeff = degreeR == -1 ? 0 : result[degreeR];
+                int[] q = MultWithMonomial(f, degreeR - df);
+                q = MultWithElement(q, coeff);
+                result = Add(q, result);
+                degreeR = ComputeDegree(result);
+            }
+            return result;
+        }
+
+        /**
+         * Compute the degree of a polynomial.
+         *
+         * @param a the polynomial
+         * @return the degree of the polynomial <tt>a</tt>. If <tt>a</tt> is
+         *         the zero polynomial, return -1.
+         */
+        private static int ComputeDegree(int[] a)
+        {
+            int degree;
+            for (degree = a.Length - 1; degree >= 0 && a[degree] == 0; degree--)
+            {
+            }
+            return degree;
+        }
+
+        /**
+         * Strip leading zero coefficients from the given polynomial.
+         *
+         * @param a the polynomial
+         * @return the reduced polynomial
+         */
+        private static int[] NormalForm(int[] a)
+        {
+            int d = ComputeDegree(a);
+
+            // if a is the zero polynomial
+            if (d == -1)
+            {
+                // return new zero polynomial
+                return new int[1];
+            }
+
+            // if a already is in normal form
+            if (a.Length == d + 1)
+            {
+                // return a clone of a
+                return Arrays.Clone(a);
+            }
+
+            // else, reduce a
+            int[] result = new int[d + 1];
+            Array.Copy(a, 0, result, 0, d + 1);
+            return result;
+        }
+
+        /**
+         * Compute the product of this polynomial and another polynomial modulo a
+         * third polynomial.
+         *
+         * @param a another polynomial
+         * @param b the reduction polynomial
+         * @return <tt>this * a mod b</tt>
+         */
+        internal BikePolynomial ModKaratsubaMultiplyBigDeg(BikePolynomial a, BikePolynomial b)
+        {
+            int[] resultCoeff = ModKaratsubaMultiplyBigDeg(m_coefficients, a.m_coefficients, b.m_coefficients);
+            return new BikePolynomial(resultCoeff);
+        }
+
+        /**
+         * Compute the inverse of this polynomial modulo the given polynomial.
+         *
+         * @param a the reduction polynomial
+         * @return <tt>this^(-1) mod a</tt>
+         */
+        internal BikePolynomial ModInverseBigDeg(BikePolynomial a)
+        {
+            int[] resultCoeff = ModInvBigDeg(m_coefficients, a.m_coefficients);
+            return new BikePolynomial(resultCoeff);
+        }
+
+        private int[] ModInvBigDeg(int[] b, int[] g)
+        {
+            int[] r0 = NormalForm(g);
+            int[] r1 = Mod(b, g);
+            int[] s0 = { 0 };
+            int[] s1 = { 1 };
+            int[] s2;
+            int[][] q;
+            while (ComputeDegree(r1) != -1)
+            {
+                q = Div(r0, r1);
+                r0 = NormalForm(r1);
+                r1 = NormalForm(q[1]);
+                s2 = Add(s0, ModKaratsubaMultiplyBigDeg(q[0], s1, g));
+                s0 = NormalForm(s1);
+                s1 = NormalForm(s2);
+            }
+            return s0;
+        }
+
+        /**
+         * Compute the product of two polynomials modulo a third polynomial over the
+         * finite field <tt>GF(2^m)</tt>.
+         *
+         * @param aa the first polynomial
+         * @param bb the second polynomial
+         * @param g the reduction polynomial
+         * @return <tt>a * b mod g</tt>
+         */
+        private int[] ModKaratsubaMultiplyBigDeg(int[] aa, int[] bb, int[] g)
+        {
+            int[] a, b;
+            if (aa.Length >= bb.Length)
+            {
+                a = aa;
+                b = bb;
+            }
+            else
+            {
+                a = bb;
+                b = aa;
+            }
+
+            int n = a.Length;
+            int m = b.Length;
+
+            int[] D = new int[(n + m) / 2];
+            int[] S = new int[n + m - 1];
+            int[] T = new int[n + m - 1];
+            int[] C = new int[n + m - 1];
+
+            for (int i = 0; i < m; i++)
+            {
+                D[i] = a[i] * b[i];
+            }
+
+            for (int i = 1; i < n + m - 2; i++)
+            {
+                int pLimit = System.Math.Min(m, (i + 1) >> 1);
+                for (int p = 0; p < pLimit; p++)
+                {
+                    int q = i - p;
+
+                    int ap = a[p];
+                    int aq = q < a.Length ? a[q] : 0;
+
+                    int bp = b[p];
+                    int dp = D[p];
+
+                    if (q < m)
+                    {
+                        int bq = b[q];
+                        int dq = D[q];
+
+                        S[i] = S[i] + (ap + aq) * (bp + bq);
+                        T[i] = T[i] + dp + dq;
+                    }
+                    else if (q < n)
+                    {
+                        S[i] = S[i] + ((ap + aq) * bp);
+                        T[i] = T[i] + dp;
+                    }
+                }
+            }
+
+            for (int i = 0; i < n + m - 1; i++)
+            {
+                if (i == 0)
+                {
+                    C[i] = D[i] % 2;
+                }
+                else if (i == n + m - 2)
+                {
+                    C[i] = (a[a.Length - 1] * b[b.Length - 1]) % 2;
+                }
+                else if (i % 2 == 1)
+                {
+                    C[i] = (S[i] - T[i]) % 2;
+                }
+                else
+                {
+                    C[i] = (S[i] - T[i] + D[i / 2]) % 2;
+                }
+            }
+
+            return Mod(C, g);
+        }
+    }
+}
diff --git a/crypto/src/pqc/crypto/bike/BikeRandomGenerator.cs b/crypto/src/pqc/crypto/bike/BikeRandomGenerator.cs
index 4d9a90252..7117c1d9d 100644
--- a/crypto/src/pqc/crypto/bike/BikeRandomGenerator.cs
+++ b/crypto/src/pqc/crypto/bike/BikeRandomGenerator.cs
@@ -1,40 +1,21 @@
 using Org.BouncyCastle.Crypto;
 using Org.BouncyCastle.Crypto.Utilities;
-using System;
-using System.Collections.Generic;
-using System.Text;
+using Org.BouncyCastle.Utilities;
 
 namespace Org.BouncyCastle.Pqc.Crypto.Bike
 {
-    class BikeRandomGenerator
+    internal class BikeRandomGenerator
     {
-        private static int BitScanReverse(int t)
-        {
-            int res = 0;
-            while (t != 0)
-            {
-                t >>= 1;
-                res++;
-            }
-
-            return res;
-        }
-
         private static int GetRandomInMod(int mod, IXof digest)
         {
-            int mask = MaskNumber(BitScanReverse(mod));
-            int res = -1;
+            int highest = Integers.HighestOneBit(mod);
+            int mask = highest | (highest - 1);
             while (true)
             {
-                res = GetRandomNumber(digest);
-                res &= mask;
-
+                int res = GetRandomNumber(digest) & mask;
                 if (res < mod)
-                {
-                    break;
-                }
+                    return res;
             }
-            return res;
         }
 
         private static void GenerateRandomArray(byte[] res, int mod, int weight, IXof digest)
@@ -59,8 +40,6 @@ namespace Org.BouncyCastle.Pqc.Crypto.Bike
             return ((a[index] >> (pos)) & 0x01);
         }
 
-
-
         private static void SetBit(byte[] a, int position)
         {
             int index = position / 8;
@@ -75,17 +54,11 @@ namespace Org.BouncyCastle.Pqc.Crypto.Bike
             return res;
         }
 
-        private static int MaskNumber(int n)
-        {
-            return ((1 << n) - 1);
-        }
-
         private static int GetRandomNumber(IXof digest)
         {
             byte[] output = new byte[4];
             digest.Output(output, 0, output.Length);
-            int tmp = (int)Pack.LE_To_UInt32(output, 0);
-            return tmp;
+            return (int)Pack.LE_To_UInt32(output, 0);
         }
     }
 }
diff --git a/crypto/src/pqc/crypto/bike/Utils.cs b/crypto/src/pqc/crypto/bike/Utils.cs
index 8a1a05e37..5d151f522 100644
--- a/crypto/src/pqc/crypto/bike/Utils.cs
+++ b/crypto/src/pqc/crypto/bike/Utils.cs
@@ -1,10 +1,8 @@
 using System;
-using System.Collections.Generic;
-using System.Text;
 
 namespace Org.BouncyCastle.Pqc.Crypto.Bike
 {
-    class Utils
+    internal class Utils
     {
         internal static byte[] XorBytes(byte[] a, byte[] b, int size)
         {
@@ -34,7 +32,7 @@ namespace Org.BouncyCastle.Pqc.Crypto.Bike
             {
                 for (int j = 0; j != 8; j++)
                 {
-                    output[i * 8 + j] = (byte)UnsignedRightBitShiftInt(input[i] & (1 << j), j);
+                    output[i * 8 + j] = (byte)((input[i] >> j) & 1);
                 }
             }
             if (output.Length % 8 != 0)
@@ -43,7 +41,7 @@ namespace Org.BouncyCastle.Pqc.Crypto.Bike
                 int count = 0;
                 while (off < output.Length)
                 {
-                    output[off++] = (byte)(UnsignedRightBitShiftInt(input[max] & (1 << count), count));
+                    output[off++] = (byte)((input[max] >> count) & 1);
                     count++;
                 }
             }
@@ -102,18 +100,5 @@ namespace Org.BouncyCastle.Pqc.Crypto.Bike
             Array.Copy(input, 0, output, 0, input.Length);
             return output;
         }
-        internal static int UnsignedRightBitShiftInt(int a, int b)
-        {
-            uint tmp = (uint)a;
-            tmp >>= b;
-            return (int)tmp;
-        }
-
-        internal static long UnsignedRightBitShiftLong(long a, int b)
-        {
-            ulong tmp = (ulong)a;
-            tmp >>= b;
-            return (long)tmp;
-        }
     }
 }
diff --git a/crypto/src/pqc/math/linearalgebra/GF2mField.cs b/crypto/src/pqc/math/linearalgebra/GF2mField.cs
deleted file mode 100644
index e8182bf6f..000000000
--- a/crypto/src/pqc/math/linearalgebra/GF2mField.cs
+++ /dev/null
@@ -1,370 +0,0 @@
-using Org.BouncyCastle.Security;
-using System;
-
-namespace Org.BouncyCastle.Pqc.Math.LinearAlgebra
-{
-    public class GF2mField
-    {
-
-        /*
-          * degree - degree of the field polynomial - the field polynomial ring -
-          * polynomial ring over the finite field GF(2)
-          */
-
-        private int degree = 0;
-
-        private int polynomial;
-
-        /**
-         * create a finite field GF(2^m)
-         *
-         * @param degree the degree of the field
-         */
-        public GF2mField(int degree)
-        {
-            if (degree >= 32)
-            {
-                throw new ArgumentException(
-                    " Error: the degree of field is too large ");
-            }
-            if (degree < 1)
-            {
-                throw new ArgumentException(
-                    " Error: the degree of field is non-positive ");
-            }
-            this.degree = degree;
-            polynomial = PolynomialRingGF2.GetIrreduciblePolynomial(degree);
-        }
-
-        /**
-         * create a finite field GF(2^m) with the fixed field polynomial
-         *
-         * @param degree the degree of the field
-         * @param poly   the field polynomial
-         */
-        public GF2mField(int degree, int poly)
-        {
-            if (degree != PolynomialRingGF2.Degree(poly))
-            {
-                throw new ArgumentException(
-                    " Error: the degree is not correct");
-            }
-            if (!PolynomialRingGF2.IsIrreducible(poly))
-            {
-                throw new ArgumentException(
-                    " Error: given polynomial is reducible");
-            }
-            this.degree = degree;
-            polynomial = poly;
-
-        }
-
-        public GF2mField(byte[] enc)
-        {
-            if (enc.Length != 4)
-            {
-                throw new ArgumentException(
-                    "byte array is not an encoded finite field");
-            }
-            polynomial = LittleEndianConversions.OS2IP(enc);
-            if (!PolynomialRingGF2.IsIrreducible(polynomial))
-            {
-                throw new ArgumentException(
-                    "byte array is not an encoded finite field");
-            }
-
-            degree = PolynomialRingGF2.Degree(polynomial);
-        }
-
-        public GF2mField(GF2mField field)
-        {
-            degree = field.degree;
-            polynomial = field.polynomial;
-        }
-
-        /**
-         * return degree of the field
-         *
-         * @return degree of the field
-         */
-        public int GetDegree()
-        {
-            return degree;
-        }
-
-        /**
-         * return the field polynomial
-         *
-         * @return the field polynomial
-         */
-        public int GetPolynomial()
-        {
-            return polynomial;
-        }
-
-        /**
-         * return the encoded form of this field
-         *
-         * @return the field in byte array form
-         */
-        public byte[] GetEncoded()
-        {
-            return LittleEndianConversions.I2OSP(polynomial);
-        }
-
-        /**
-         * Return sum of two elements
-         *
-         * @param a
-         * @param b
-         * @return a+b
-         */
-        public int add(int a, int b)
-        {
-            return a ^ b;
-        }
-
-        /**
-         * Return product of two elements
-         *
-         * @param a
-         * @param b
-         * @return a*b
-         */
-        public int Mult(int a, int b)
-        {
-            return PolynomialRingGF2.modMultiply(a, b, polynomial);
-        }
-
-        /**
-         * compute exponentiation a^k
-         *
-         * @param a a field element a
-         * @param k k degree
-         * @return a^k
-         */
-        public int Exp(int a, int k)
-        {
-            if (k == 0)
-            {
-                return 1;
-            }
-            if (a == 0)
-            {
-                return 0;
-            }
-            if (a == 1)
-            {
-                return 1;
-            }
-            int result = 1;
-            if (k < 0)
-            {
-                a = Inverse(a);
-                k = -k;
-            }
-            while (k != 0)
-            {
-                if ((k & 1) == 1)
-                {
-                    result = Mult(result, a);
-                }
-                a = Mult(a, a);
-                //k >>>= 1;
-                uint kTmp = (uint)k;
-                kTmp >>= 1;
-                k = (int) kTmp;
-            }
-            return result;
-        }
-
-        /**
-         * compute the multiplicative inverse of a
-         *
-         * @param a a field element a
-         * @return a<sup>-1</sup>
-         */
-        public int Inverse(int a)
-        {
-            int d = (1 << degree) - 2;
-
-            return Exp(a, d);
-        }
-
-        /**
-         * compute the square root of an integer
-         *
-         * @param a a field element a
-         * @return a<sup>1/2</sup>
-         */
-        public int SqRoot(int a)
-        {
-            for (int i = 1; i < degree; i++)
-            {
-                a = Mult(a, a);
-            }
-            return a;
-        }
-
-        /**
-         * create a random field element using PRNG sr
-         *
-         * @param sr SecureRandom
-         * @return a random element
-         */
-        public int GetRandomElement(SecureRandom sr)
-        {
-            int result = RandUtils.NextInt(sr, 1 << degree);
-            return result;
-        }
-
-        /**
-         * create a random non-zero field element
-         *
-         * @return a random element
-         */
-        //public int getRandomNonZeroElement()
-        //{
-        //    return getRandomNonZeroElement(CryptoServicesRegistrar.getSecureRandom());
-        //}
-
-        /**
-         * create a random non-zero field element using PRNG sr
-         *
-         * @param sr SecureRandom
-         * @return a random non-zero element
-         */
-        public int GetRandomNonZeroElement(SecureRandom sr)
-        {
-            int controltime = 1 << 20;
-            int count = 0;
-            int result = RandUtils.NextInt(sr, 1 << degree);
-            while ((result == 0) && (count < controltime))
-            {
-                result = RandUtils.NextInt(sr, 1 << degree);
-                count++;
-            }
-            if (count == controltime)
-            {
-                result = 1;
-            }
-            return result;
-        }
-
-        /**
-         * @return true if e is encoded element of this field and false otherwise
-         */
-        public bool IsElementOfThisField(int e)
-        {
-            // e is encoded element of this field iff 0<= e < |2^m|
-            if (degree == 31)
-            {
-                return e >= 0;
-            }
-            return e >= 0 && e < (1 << degree);
-        }
-
-        /*
-          * help method for visual control
-          */
-        public String ElementToStr(int a)
-        {
-            String s = "";
-            for (int i = 0; i < degree; i++)
-            {
-                if (((byte)a & 0x01) == 0)
-                {
-                    s = "0" + s;
-                }
-                else
-                {
-                    s = "1" + s;
-                }
-                //a >>>= 1;
-                uint aTmp = (uint)a;
-                aTmp >>= 1;
-                a = (int)aTmp;
-            }
-            return s;
-        }
-
-        /**
-         * checks if given object is equal to this field.
-         * <p>
-         * The method returns false whenever the given object is not GF2m.
-         *
-         * @param other object
-         * @return true or false
-         */
-        public bool Equals(Object other)
-        {
-            if ((other == null) || !(other is GF2mField))
-        {
-                return false;
-            }
-
-            GF2mField otherField = (GF2mField)other;
-
-            if ((degree == otherField.degree)
-                && (polynomial == otherField.polynomial))
-            {
-                return true;
-            }
-
-            return false;
-        }
-
-        public int HashCode()
-        {
-            return polynomial;
-        }
-
-        /**
-         * Returns a human readable form of this field.
-         *
-         * @return a human readable form of this field.
-         */
-        public String ToString()
-        {
-            String str = "Finite Field GF(2^" + degree + ") = " + "GF(2)[X]/<"
-                + PolyToString(polynomial) + "> ";
-            return str;
-        }
-
-        private static String PolyToString(int p)
-        {
-            String str = "";
-            if (p == 0)
-            {
-                str = "0";
-            }
-            else
-            {
-                byte b = (byte)(p & 0x01);
-                if (b == 1)
-                {
-                    str = "1";
-                }
-                //p >>>= 1;
-                uint pTmp = (uint)p;
-                pTmp >>= 1;
-                p = (int)pTmp;
-                int i = 1;
-                while (p != 0)
-                {
-                    b = (byte)(p & 0x01);
-                    if (b == 1)
-                    {
-                        str = str + "+x^" + i;
-                    }
-                    //p >>>= 1;
-                    pTmp = (uint) p;
-                    pTmp >>= 1;
-                    p = (int)pTmp;
-                    i++;
-                }
-            }
-            return str;
-        }
-    }
-}
\ No newline at end of file
diff --git a/crypto/src/pqc/math/linearalgebra/GF2mVector.cs b/crypto/src/pqc/math/linearalgebra/GF2mVector.cs
deleted file mode 100644
index f0e44ebe6..000000000
--- a/crypto/src/pqc/math/linearalgebra/GF2mVector.cs
+++ /dev/null
@@ -1,221 +0,0 @@
-using System;
-
-namespace Org.BouncyCastle.Pqc.Math.LinearAlgebra
-{
-    /**
- * This class implements vectors over the finite field
- * <tt>GF(2<sup>m</sup>)</tt> for small <tt>m</tt> (i.e.,
- * <tt>1&lt;m&lt;32</tt>). It extends the abstract class {@link Vector}.
- */
-public class GF2mVector : Vector
-{
-
-    /**
-     * the finite field this vector is defined over
-     */
-    private GF2mField field;
-
-    /**
-     * the element array
-     */
-    private int[] vector;
-
-    /**
-     * creates the vector over GF(2^m) of given length and with elements from
-     * array v (beginning at the first bit)
-     *
-     * @param field finite field
-     * @param v     array with elements of vector
-     */
-    public GF2mVector(GF2mField field, byte[] v)
-    {
-        this.field = new GF2mField(field);
-
-        // decode vector
-        int d = 8;
-        int count = 1;
-        while (field.GetDegree() > d)
-        {
-            count++;
-            d += 8;
-        }
-
-        if ((v.Length % count) != 0)
-        {
-            throw new ArgumentException(
-                "Byte array is not an encoded vector over the given finite field.");
-        }
-
-        length = v.Length / count;
-        vector = new int[length];
-        count = 0;
-        for (int i = 0; i < vector.Length; i++)
-        {
-            for (int j = 0; j < d; j += 8)
-            {
-                vector[i] |= (v[count++] & 0xff) << j;
-            }
-            if (!field.IsElementOfThisField(vector[i]))
-            {
-                throw new ArgumentException(
-                    "Byte array is not an encoded vector over the given finite field.");
-            }
-        }
-    }
-
-    /**
-     * Create a new vector over <tt>GF(2<sup>m</sup>)</tt> of the given
-     * length and element array.
-     *
-     * @param field  the finite field <tt>GF(2<sup>m</sup>)</tt>
-     * @param vector the element array
-     */
-    public GF2mVector(GF2mField field, int[] vector)
-    {
-        this.field = field;
-        length = vector.Length;
-        for (int i = vector.Length - 1; i >= 0; i--)
-        {
-            if (!field.IsElementOfThisField(vector[i]))
-            {
-                throw new ArithmeticException(
-                    "Element array is not specified over the given finite field.");
-            }
-        }
-        this.vector = IntUtils.Clone(vector);
-    }
-
-    /**
-     * Copy constructor.
-     *
-     * @param other another {@link GF2mVector}
-     */
-    public GF2mVector(GF2mVector other)
-    {
-        field = new GF2mField(other.field);
-        length = other.length;
-        vector = IntUtils.Clone(other.vector);
-    }
-
-    /**
-     * @return the finite field this vector is defined over
-     */
-    public GF2mField GetField()
-    {
-        return field;
-    }
-
-    /**
-     * @return int[] form of this vector
-     */
-    public int[] GetIntArrayForm()
-    {
-        return IntUtils.Clone(vector);
-    }
-
-        /**
-         * @return a byte array encoding of this vector
-         */
-        public override byte[] GetEncoded()
-    {
-        int d = 8;
-        int count = 1;
-        while (field.GetDegree() > d)
-        {
-            count++;
-            d += 8;
-        }
-
-        byte[] res = new byte[vector.Length * count];
-        count = 0;
-        for (int i = 0; i < vector.Length; i++)
-        {
-            for (int j = 0; j < d; j += 8)
-            {
-                res[count++] = (byte)(Utils.UnsignedRightBitShiftInt(vector[i], j));
-            }
-        }
-
-        return res;
-    }
-
-    /**
-     * @return whether this is the zero vector (i.e., all elements are zero)
-     */
-    public override bool IsZero()
-    {
-        for (int i = vector.Length - 1; i >= 0; i--)
-        {
-            if (vector[i] != 0)
-            {
-                return false;
-            }
-        }
-        return true;
-    }
-
-    /**
-     * Add another vector to this vector. Method is not yet implemented.
-     *
-     * @param addend the other vector
-     * @return <tt>this + addend</tt>
-     * @throws ArithmeticException if the other vector is not defined over the same field as
-     * this vector.
-     * <p>
-     * TODO: implement this method
-     */
-    public override Vector Add(Vector addend)
-    {
-        throw new SystemException("not implemented");
-    }
-
-    /**
-     * Multiply this vector with a permutation.
-     *
-     * @param p the permutation
-     * @return <tt>this*p = p*this</tt>
-     */
-    public override Vector Multiply(Permutation p)
-    {
-        int[] pVec = p.GetVector();
-        if (length != pVec.Length)
-        {
-            throw new ArithmeticException(
-                "permutation size and vector size mismatch");
-        }
-
-        int[] result = new int[length];
-        for (int i = 0; i < pVec.Length; i++)
-        {
-            result[i] = vector[pVec[i]];
-        }
-
-        return new GF2mVector(field, result);
-    }
-
-    /**
-     * Compare this vector with another object.
-     *
-     * @param other the other object
-     * @return the result of the comparison
-     */
-    public override bool Equals(Object other)
-    {
-
-        if (!(other is GF2mVector))
-        {
-            return false;
-        }
-        GF2mVector otherVec = (GF2mVector)other;
-
-        if (!field.Equals(otherVec.field))
-        {
-            return false;
-        }
-
-        return IntUtils.Equals(vector, otherVec.vector);
-    }
-
-      
-    }
-}
diff --git a/crypto/src/pqc/math/linearalgebra/IntUtils.cs b/crypto/src/pqc/math/linearalgebra/IntUtils.cs
deleted file mode 100644
index 0a7671df6..000000000
--- a/crypto/src/pqc/math/linearalgebra/IntUtils.cs
+++ /dev/null
@@ -1,159 +0,0 @@
-using Org.BouncyCastle.Utilities;
-using System;
-
-namespace Org.BouncyCastle.Pqc.Math.LinearAlgebra
-{
-    public class IntUtils
-    {
-
-        /**
-         * Default constructor (private).
-         */
-        private IntUtils()
-        {
-            // empty
-        }
-
-        /**
-         * Compare two int arrays. No null checks are performed.
-         *
-         * @param left  the first int array
-         * @param right the second int array
-         * @return the result of the comparison
-         */
-        public static bool Equals(int[] left, int[] right)
-        {
-            return Arrays.AreEqual(left, right);
-        }
-
-        /**
-         * Return a clone of the given int array. No null checks are performed.
-         *
-         * @param array the array to clone
-         * @return the clone of the given array
-         */
-        public static int[] Clone(int[] array)
-        {
-            return Arrays.Clone(array);
-        }
-
-        /**
-         * Fill the given int array with the given value.
-         *
-         * @param array the array
-         * @param value the value
-         */
-        public static void Fill(int[] array, int value)
-        {
-            Arrays.Fill(array, value);
-        }
-
-        /**
-         * Sorts this array of integers according to the Quicksort algorithm. After
-         * calling this method this array is sorted in ascending order with the
-         * smallest integer taking position 0 in the array.
-         * <p>
-         * This implementation is based on the quicksort algorithm as described in
-         * <code>Data Structures In Java</code> by Thomas A. Standish, Chapter 10,
-         * ISBN 0-201-30564-X.
-         *
-         * @param source the array of integers that needs to be sorted.
-         */
-        public static void Quicksort(int[] source)
-        {
-            Quicksort(source, 0, source.Length - 1);
-        }
-
-        /**
-         * Sort a subarray of a source array. The subarray is specified by its start
-         * and end index.
-         *
-         * @param source the int array to be sorted
-         * @param left   the start index of the subarray
-         * @param right  the end index of the subarray
-         */
-        public static void Quicksort(int[] source, int left, int right)
-        {
-            if (right > left)
-            {
-                int index = Partition(source, left, right, right);
-                Quicksort(source, left, index - 1);
-                Quicksort(source, index + 1, right);
-            }
-        }
-
-        /**
-         * Split a subarray of a source array into two partitions. The left
-         * partition contains elements that have value less than or equal to the
-         * pivot element, the right partition contains the elements that have larger
-         * value.
-         *
-         * @param source     the int array whose subarray will be splitted
-         * @param left       the start position of the subarray
-         * @param right      the end position of the subarray
-         * @param pivotIndex the index of the pivot element inside the array
-         * @return the new index of the pivot element inside the array
-         */
-        private static int Partition(int[] source, int left, int right,
-                                     int pivotIndex)
-        {
-
-            int pivot = source[pivotIndex];
-            source[pivotIndex] = source[right];
-            source[right] = pivot;
-
-            int index = left;
-            int tmp = 0;
-            for (int i = left; i < right; i++)
-            {
-                if (source[i] <= pivot)
-                {
-                    tmp = source[index];
-                    source[index] = source[i];
-                    source[i] = tmp;
-                    index++;
-                }
-            }
-
-            tmp = source[index];
-            source[index] = source[right];
-            source[right] = tmp;
-
-            return index;
-        }
-
-        /**
-         * Generates a subarray of a given int array.
-         *
-         * @param input -
-         *              the input int array
-         * @param start -
-         *              the start index
-         * @param end   -
-         *              the end index
-         * @return a subarray of <tt>input</tt>, ranging from <tt>start</tt> to
-         *         <tt>end</tt>
-         */
-        public static int[] SubArray( int[] input,  int start,
-                                      int end)
-        {
-            int[] result = new int[end - start];
-            Array.Copy(input, start, result, 0, end - start);
-            return result;
-        }
-
-        /**
-         * @param input an int array
-         * @return a human readable form of the given int array
-         */
-        public static String ToString(int[] input)
-        {
-            String result = "";
-            for (int i = 0; i < input.Length; i++)
-            {
-                result += input[i] + " ";
-            }
-            return result;
-        }
-    }
-}
diff --git a/crypto/src/pqc/math/linearalgebra/LittleEndianConversions.cs b/crypto/src/pqc/math/linearalgebra/LittleEndianConversions.cs
deleted file mode 100644
index 5b3215070..000000000
--- a/crypto/src/pqc/math/linearalgebra/LittleEndianConversions.cs
+++ /dev/null
@@ -1,195 +0,0 @@
-
-using Org.BouncyCastle.Crypto.Utilities;
-
-namespace Org.BouncyCastle.Pqc.Math.LinearAlgebra
-{
-    /**
- * This is a utility class containing data type conversions using little-endian
- * byte order.
- *
- */
-    class LittleEndianConversions
-    {
-        /**
-     * Default constructor (private).
-     */
-        private LittleEndianConversions()
-        {
-            // empty
-        }
-
-        /**
-         * Convert an octet string of length 4 to an integer. No length checking is
-         * performed.
-         *
-         * @param input the byte array holding the octet string
-         * @return an integer representing the octet string <tt>input</tt>
-         * @throws ArithmeticException if the length of the given octet string is larger than 4.
-         */
-        public static int OS2IP(byte[] input)
-        {
-            return (int)Pack.LE_To_UInt32(input);
-        }
-
-        /**
-         * Convert an byte array of length 4 beginning at <tt>offset</tt> into an
-         * integer.
-         *
-         * @param input the byte array
-         * @param inOff the offset into the byte array
-         * @return the resulting integer
-         */
-        public static int OS2IP(byte[] input, int inOff)
-        {
-            return (int)Pack.LE_To_UInt32(input, inOff);
-        }
-
-        /**
-         * Convert a byte array of the given length beginning at <tt>offset</tt>
-         * into an integer.
-         *
-         * @param input the byte array
-         * @param inOff the offset into the byte array
-         * @param inLen the length of the encoding
-         * @return the resulting integer
-         */
-        public static int OS2IP(byte[] input, int inOff, int inLen)
-        {
-            int result = 0;
-            for (int i = inLen - 1; i >= 0; i--)
-            {
-                result |= (input[inOff + i] & 0xff) << (8 * i);
-            }
-            return result;
-        }
-
-        /**
-         * Convert a byte array of length 8 beginning at <tt>inOff</tt> into a
-         * long integer.
-         *
-         * @param input the byte array
-         * @param inOff the offset into the byte array
-         * @return the resulting long integer
-         */
-        public static long OS2LIP(byte[] input, int inOff)
-        {
-            return (long)Pack.LE_To_UInt64(input, inOff);
-        }
-
-        /**
-         * Convert an integer to an octet string of length 4.
-         *
-         * @param x the integer to convert
-         * @return the converted integer
-         */
-        public static byte[] I2OSP(int x)
-        {
-            return Pack.UInt32_To_LE((uint)x);
-        }
-
-        /**
-         * Convert an integer into a byte array beginning at the specified offset.
-         *
-         * @param value  the integer to convert
-         * @param output the byte array to hold the result
-         * @param outOff the integer offset into the byte array
-         */
-        public static void I2OSP(int value, byte[] output, int outOff)
-        {
-            Pack.UInt32_To_LE((uint)value, output, outOff);
-        }
-
-        /**
-         * Convert an integer to a byte array beginning at the specified offset. No
-         * length checking is performed (i.e., if the integer cannot be encoded with
-         * <tt>length</tt> octets, it is truncated).
-         *
-         * @param value  the integer to convert
-         * @param output the byte array to hold the result
-         * @param outOff the integer offset into the byte array
-         * @param outLen the length of the encoding
-         */
-        public static void I2OSP(int value, byte[] output, int outOff, int outLen)
-        {
-            uint valueTmp = (uint)value;
-            for (int i = outLen - 1; i >= 0; i--)
-            {
-                output[outOff + i] = (byte)(valueTmp >> (8 * i));
-            }
-        }
-
-        /**
-         * Convert an integer to a byte array of length 8.
-         *
-         * @param input the integer to convert
-         * @return the converted integer
-         */
-        public static byte[] I2OSP(long input)
-        {
-            return Pack.UInt64_To_LE((ulong)input);
-        }
-
-        /**
-         * Convert an integer to a byte array of length 8.
-         *
-         * @param input  the integer to convert
-         * @param output byte array holding the output
-         * @param outOff offset in output array where the result is stored
-         */
-        public static void I2OSP(long input, byte[] output, int outOff)
-        {
-            Pack.UInt64_To_LE((ulong)input, output, outOff);
-        }
-
-        /**
-         * Convert an int array to a byte array of the specified length. No length
-         * checking is performed (i.e., if the last integer cannot be encoded with
-         * <tt>length % 4</tt> octets, it is truncated).
-         *
-         * @param input  the int array
-         * @param outLen the length of the converted array
-         * @return the converted array
-         */
-        public static byte[] ToByteArray(int[] input, int outLen)
-        {
-            int intLen = input.Length;
-            byte[] result = new byte[outLen];
-            int index = 0;
-            for (int i = 0; i <= intLen - 2; i++, index += 4)
-            {
-                I2OSP(input[i], result, index);
-            }
-            I2OSP(input[intLen - 1], result, index, outLen - index);
-            return result;
-        }
-
-        /**
-         * Convert a byte array to an int array.
-         *
-         * @param input the byte array
-         * @return the converted array
-         */
-        public static int[] ToIntArray(byte[] input)
-        {
-            int intLen = (input.Length + 3) / 4;
-            int lastLen = input.Length & 0x03;
-            int[] result = new int[intLen];
-
-            int index = 0;
-            for (int i = 0; i <= intLen - 2; i++, index += 4)
-            {
-                result[i] = OS2IP(input, index);
-            }
-            if (lastLen != 0)
-            {
-                result[intLen - 1] = OS2IP(input, index, lastLen);
-            }
-            else
-            {
-                result[intLen - 1] = OS2IP(input, index);
-            }
-
-            return result;
-        }
-    }
-}
diff --git a/crypto/src/pqc/math/linearalgebra/Permutation.cs b/crypto/src/pqc/math/linearalgebra/Permutation.cs
deleted file mode 100644
index 0d36958c9..000000000
--- a/crypto/src/pqc/math/linearalgebra/Permutation.cs
+++ /dev/null
@@ -1,192 +0,0 @@
-using Org.BouncyCastle.Security;
-using System;
-
-namespace Org.BouncyCastle.Pqc.Math.LinearAlgebra
-{
-    /**
-  * This class implements permutations of the set {0,1,...,n-1} for some given n
-  * &gt; 0, i.e., ordered sequences containing each number <tt>m</tt> (<tt>0 &lt;=
-  * m &lt; n</tt>)
-  * once and only once.
-  */
-    public class Permutation
-    {
-
-        /**
-         * perm holds the elements of the permutation vector, i.e. <tt>[perm(0),
-         * perm(1), ..., perm(n-1)]</tt>
-         */
-        private int[] perm;
-
-        /**
-         * Create the identity permutation of the given size.
-         *
-         * @param n the size of the permutation
-         */
-        public Permutation(int n)
-        {
-            if (n <= 0)
-            {
-                throw new ArgumentException("invalid length");
-            }
-
-            perm = new int[n];
-            for (int i = n - 1; i >= 0; i--)
-            {
-                perm[i] = i;
-            }
-        }
-
-        /**
-         * Create a permutation using the given permutation vector.
-         *
-         * @param perm the permutation vector
-         */
-        public Permutation(int[] perm)
-        {
-            if (!IsPermutation(perm))
-            {
-                throw new ArgumentException(
-                    "array is not a permutation vector");
-            }
-
-            this.perm = IntUtils.Clone(perm);
-        }
-
-        /**
-         * Create a random permutation of the given size.
-         *
-         * @param n  the size of the permutation
-         * @param sr the source of randomness
-         */
-        public Permutation(int n, SecureRandom sr)
-        {
-            if (n <= 0)
-            {
-                throw new ArgumentException("invalid length");
-            }
-
-            perm = new int[n];
-
-            int[] help = new int[n];
-            for (int i = 0; i < n; i++)
-            {
-                help[i] = i;
-            }
-
-            int k = n;
-            for (int j = 0; j < n; j++)
-            {
-                int i = RandUtils.NextInt(sr, k);
-                k--;
-                perm[j] = help[i];
-                help[i] = help[k];
-            }
-        }
-
-
-        /**
-         * @return the permutation vector <tt>(perm(0),perm(1),...,perm(n-1))</tt>
-         */
-        public int[] GetVector()
-        {
-            return IntUtils.Clone(perm);
-        }
-
-        /**
-         * Compute the inverse permutation <tt>P<sup>-1</sup></tt>.
-         *
-         * @return <tt>this<sup>-1</sup></tt>
-         */
-        public Permutation ComputeInverse()
-        {
-            Permutation result = new Permutation(perm.Length);
-            for (int i = perm.Length - 1; i >= 0; i--)
-            {
-                result.perm[perm[i]] = i;
-            }
-            return result;
-        }
-
-        /**
-         * Compute the product of this permutation and another permutation.
-         *
-         * @param p the other permutation
-         * @return <tt>this * p</tt>
-         */
-        public Permutation RightMultiply(Permutation p)
-        {
-            if (p.perm.Length != perm.Length)
-            {
-                throw new ArgumentException("length mismatch");
-            }
-            Permutation result = new Permutation(perm.Length);
-            for (int i = perm.Length - 1; i >= 0; i--)
-            {
-                result.perm[i] = perm[p.perm[i]];
-            }
-            return result;
-        }
-
-        /**
-         * checks if given object is equal to this permutation.
-         * <p>
-         * The method returns false whenever the given object is not permutation.
-         *
-         * @param other -
-         *              permutation
-         * @return true or false
-         */
-        public bool equals(Object other)
-        {
-
-            if (!(other is Permutation))
-        {
-                return false;
-            }
-            Permutation otherPerm = (Permutation)other;
-
-            return IntUtils.Equals(perm, otherPerm.perm);
-        }
-
-        /**
-         * @return a human readable form of the permutation
-         */
-        public String ToString()
-        {
-            String result = "[" + perm[0];
-            for (int i = 1; i < perm.Length; i++)
-            {
-                result += ", " + perm[i];
-            }
-            result += "]";
-            return result;
-        }
-
-        /**
-         * Check that the given array corresponds to a permutation of the set
-         * <tt>{0, 1, ..., n-1}</tt>.
-         *
-         * @param perm permutation vector
-         * @return true if perm represents an n-permutation and false otherwise
-         */
-        private bool IsPermutation(int[] perm)
-        {
-            int n = perm.Length;
-            bool[] onlyOnce = new bool[n];
-
-            for (int i = 0; i < n; i++)
-            {
-                if ((perm[i] < 0) || (perm[i] >= n) || onlyOnce[perm[i]])
-                {
-                    return false;
-                }
-                onlyOnce[perm[i]] = true;
-            }
-
-            return true;
-        }
-
-    }
-
-}
diff --git a/crypto/src/pqc/math/linearalgebra/PolynomialGF2mSmallM.cs b/crypto/src/pqc/math/linearalgebra/PolynomialGF2mSmallM.cs
deleted file mode 100644
index 9dca71bee..000000000
--- a/crypto/src/pqc/math/linearalgebra/PolynomialGF2mSmallM.cs
+++ /dev/null
@@ -1,1266 +0,0 @@
-using Org.BouncyCastle.Security;
-using Org.BouncyCastle.Utilities;
-using System;
-
-namespace Org.BouncyCastle.Pqc.Math.LinearAlgebra
-{
-    public class PolynomialGF2mSmallM
-    {
-
-        /**
-         * the finite field GF(2^m)
-         */
-        private GF2mField field;
-
-        /**
-         * the degree of this polynomial
-         */
-        private int degree;
-
-        /**
-         * For the polynomial representation the map f: R->Z*,
-         * <tt>poly(X) -> [coef_0, coef_1, ...]</tt> is used, where
-         * <tt>coef_i</tt> is the <tt>i</tt>th coefficient of the polynomial
-         * represented as int (see {@link GF2mField}). The polynomials are stored
-         * as int arrays.
-         */
-        private int[] coefficients;
-
-        /*
-          * some types of polynomials
-          */
-
-        /**
-         * Constant used for polynomial construction (see constructor
-         * {@link #PolynomialGF2mSmallM(GF2mField, int, char, SecureRandom)}).
-         */
-        public const char RANDOM_IRREDUCIBLE_POLYNOMIAL = 'I';
-
-        /**
-         * Construct the zero polynomial over the finite field GF(2^m).
-         *
-         * @param field the finite field GF(2^m)
-         */
-        public PolynomialGF2mSmallM(GF2mField field)
-        {
-            this.field = field;
-            degree = -1;
-            coefficients = new int[1];
-        }
-
-        /**
-         * Construct a polynomial over the finite field GF(2^m).
-         *
-         * @param field            the finite field GF(2^m)
-         * @param deg              degree of polynomial
-         * @param typeOfPolynomial type of polynomial
-         * @param sr               PRNG
-         */
-        public PolynomialGF2mSmallM(GF2mField field, int deg,
-                                    char typeOfPolynomial, SecureRandom sr)
-        {
-            this.field = field;
-
-            switch (typeOfPolynomial)
-            {
-                case PolynomialGF2mSmallM.RANDOM_IRREDUCIBLE_POLYNOMIAL:
-                    coefficients = CreateRandomIrreduciblePolynomial(deg, sr);
-                    break;
-                default:
-                    throw new ArgumentException(" Error: type "
-                        + typeOfPolynomial
-                        + " is not defined for GF2smallmPolynomial");
-            }
-            ComputeDegree();
-        }
-
-        /**
-         * Create an irreducible polynomial with the given degree over the field
-         * <tt>GF(2^m)</tt>.
-         *
-         * @param deg polynomial degree
-         * @param sr  source of randomness
-         * @return the generated irreducible polynomial
-         */
-        private int[] CreateRandomIrreduciblePolynomial(int deg, SecureRandom sr)
-        {
-            int[] resCoeff = new int[deg + 1];
-            resCoeff[deg] = 1;
-            resCoeff[0] = field.GetRandomNonZeroElement(sr);
-            for (int i = 1; i < deg; i++)
-            {
-                resCoeff[i] = field.GetRandomElement(sr);
-            }
-            while (!IsIrreducible(resCoeff))
-            {
-                int n = RandUtils.NextInt(sr, deg);
-                if (n == 0)
-                {
-                    resCoeff[0] = field.GetRandomNonZeroElement(sr);
-                }
-                else
-                {
-                    resCoeff[n] = field.GetRandomElement(sr);
-                }
-            }
-            return resCoeff;
-        }
-
-        /**
-         * Construct a monomial of the given degree over the finite field GF(2^m).
-         *
-         * @param field  the finite field GF(2^m)
-         * @param degree the degree of the monomial
-         */
-        public PolynomialGF2mSmallM(GF2mField field, int degree)
-        {
-            this.field = field;
-            this.degree = degree;
-            coefficients = new int[degree + 1];
-            coefficients[degree] = 1;
-        }
-
-        /**
-         * Construct the polynomial over the given finite field GF(2^m) from the
-         * given coefficient vector.
-         *
-         * @param field  finite field GF2m
-         * @param coeffs the coefficient vector
-         */
-        public PolynomialGF2mSmallM(GF2mField field, int[] coeffs)
-        {
-            this.field = field;
-            coefficients = NormalForm(coeffs);
-            ComputeDegree();
-        }
-
-        /**
-         * Create a polynomial over the finite field GF(2^m).
-         *
-         * @param field the finite field GF(2^m)
-         * @param enc   byte[] polynomial in byte array form
-         */
-        public PolynomialGF2mSmallM(GF2mField field, byte[] enc)
-        {
-            this.field = field;
-
-            // decodes polynomial
-            int d = 8;
-            int count = 1;
-            while (field.GetDegree() > d)
-            {
-                count++;
-                d += 8;
-            }
-
-            if ((enc.Length % count) != 0)
-            {
-                throw new ArgumentException(
-                    " Error: byte array is not encoded polynomial over given finite field GF2m");
-            }
-
-            coefficients = new int[enc.Length / count];
-            count = 0;
-            for (int i = 0; i < coefficients.Length; i++)
-            {
-                for (int j = 0; j < d; j += 8)
-                {
-                    coefficients[i] ^= (enc[count++] & 0x000000ff) << j;
-                }
-                if (!this.field.IsElementOfThisField(coefficients[i]))
-                {
-                    throw new ArgumentException(
-                        " Error: byte array is not encoded polynomial over given finite field GF2m");
-                }
-            }
-            // if HC = 0 for non-zero polynomial, returns error
-            if ((coefficients.Length != 1)
-                && (coefficients[coefficients.Length - 1] == 0))
-            {
-                throw new ArgumentException(
-                    " Error: byte array is not encoded polynomial over given finite field GF2m");
-            }
-            ComputeDegree();
-        }
-
-        /**
-         * Copy constructor.
-         *
-         * @param other another {@link PolynomialGF2mSmallM}
-         */
-        public PolynomialGF2mSmallM(PolynomialGF2mSmallM other)
-        {
-            // field needs not to be cloned since it is immutable
-            field = other.field;
-            degree = other.degree;
-            coefficients = IntUtils.Clone(other.coefficients);
-        }
-
-        /**
-         * Create a polynomial over the finite field GF(2^m) out of the given
-         * coefficient vector. The finite field is also obtained from the
-         * {@link GF2mVector}.
-         *
-         * @param vect the coefficient vector
-         */
-        public PolynomialGF2mSmallM(GF2mVector vect)
-        {
-            new PolynomialGF2mSmallM(vect.GetField(), vect.GetIntArrayForm());
-        }
-
-        /*
-          * ------------------------
-          */
-
-        /**
-         * Return the degree of this polynomial
-         *
-         * @return int degree of this polynomial if this is zero polynomial return
-         *         -1
-         */
-        public int GetDegree()
-        {
-            int d = coefficients.Length - 1;
-            if (coefficients[d] == 0)
-            {
-                return -1;
-            }
-            return d;
-        }
-
-        /**
-         * @return the head coefficient of this polynomial
-         */
-        public int GetHeadCoefficient()
-        {
-            if (degree == -1)
-            {
-                return 0;
-            }
-            return coefficients[degree];
-        }
-
-        /**
-         * Return the head coefficient of a polynomial.
-         *
-         * @param a the polynomial
-         * @return the head coefficient of <tt>a</tt>
-         */
-        private static int HeadCoefficient(int[] a)
-        {
-            int degree = ComputeDegree(a);
-            if (degree == -1)
-            {
-                return 0;
-            }
-            return a[degree];
-        }
-
-        /**
-         * Return the coefficient with the given index.
-         *
-         * @param index the index
-         * @return the coefficient with the given index
-         */
-        public int GetCoefficient(int index)
-        {
-            if ((index < 0) || (index > degree))
-            {
-                return 0;
-            }
-            return coefficients[index];
-        }
-
-        /**
-         * Returns encoded polynomial, i.e., this polynomial in byte array form
-         *
-         * @return the encoded polynomial
-         */
-        public byte[] GetEncoded()
-        {
-            int d = 8;
-            int count = 1;
-            while (field.GetDegree() > d)
-            {
-                count++;
-                d += 8;
-            }
-
-            byte[] res = new byte[coefficients.Length * count];
-            count = 0;
-            for (int i = 0; i < coefficients.Length; i++)
-            {
-                for (int j = 0; j < d; j += 8)
-                {
-                    res[count++] = (byte)(Utils.UnsignedRightBitShiftInt(coefficients[i], j));
-                }
-            }
-
-            return res;
-        }
-
-        /**
-         * Evaluate this polynomial <tt>p</tt> at a value <tt>e</tt> (in
-         * <tt>GF(2^m)</tt>) with the Horner scheme.
-         *
-         * @param e the element of the finite field GF(2^m)
-         * @return <tt>this(e)</tt>
-         */
-        public int evaluateAt(int e)
-        {
-            int result = coefficients[degree];
-            for (int i = degree - 1; i >= 0; i--)
-            {
-                result = field.Mult(result, e) ^ coefficients[i];
-            }
-            return result;
-        }
-
-        /**
-         * Compute the sum of this polynomial and the given polynomial.
-         *
-         * @param addend the addend
-         * @return <tt>this + a</tt> (newly created)
-         */
-        public PolynomialGF2mSmallM add(PolynomialGF2mSmallM addend)
-        {
-            int[] resultCoeff = Add(coefficients, addend.coefficients);
-            return new PolynomialGF2mSmallM(field, resultCoeff);
-        }
-
-        /**
-         * Add the given polynomial to this polynomial (overwrite this).
-         *
-         * @param addend the addend
-         */
-        public void AddToThis(PolynomialGF2mSmallM addend)
-        {
-            coefficients = Add(coefficients, addend.coefficients);
-            ComputeDegree();
-        }
-
-        /**
-         * Compute the sum of two polynomials a and b over the finite field
-         * <tt>GF(2^m)</tt>.
-         *
-         * @param a the first polynomial
-         * @param b the second polynomial
-         * @return a + b
-         */
-        private int[] Add(int[] a, int[] b)
-        {
-            int[] result, addend;
-            if (a.Length < b.Length)
-            {
-                result = new int[b.Length];
-                Array.Copy(b, 0, result, 0, b.Length);
-                addend = a;
-            }
-            else
-            {
-                result = new int[a.Length];
-                Array.Copy(a, 0, result, 0, a.Length);
-                addend = b;
-            }
-
-            for (int i = addend.Length - 1; i >= 0; i--)
-            {
-                result[i] = field.add(result[i], addend[i]);
-            }
-
-            return result;
-        }
-
-        /**
-         * Compute the sum of this polynomial and the monomial of the given degree.
-         *
-         * @param degree the degree of the monomial
-         * @return <tt>this + X^k</tt>
-         */
-        public PolynomialGF2mSmallM AddMonomial(int degree)
-        {
-            int[] monomial = new int[degree + 1];
-            monomial[degree] = 1;
-            int[] resultCoeff = Add(coefficients, monomial);
-            return new PolynomialGF2mSmallM(field, resultCoeff);
-        }
-
-        /**
-         * Compute the product of this polynomial with an element from GF(2^m).
-         *
-         * @param element an element of the finite field GF(2^m)
-         * @return <tt>this * element</tt> (newly created)
-         * @throws ArithmeticException if <tt>element</tt> is not an element of the finite
-         * field this polynomial is defined over.
-         */
-        public PolynomialGF2mSmallM MultWithElement(int element)
-        {
-            if (!field.IsElementOfThisField(element))
-            {
-                throw new ArithmeticException(
-                    "Not an element of the finite field this polynomial is defined over.");
-            }
-            int[] resultCoeff = MultWithElement(coefficients, element);
-            return new PolynomialGF2mSmallM(field, resultCoeff);
-        }
-
-        /**
-         * Multiply this polynomial with an element from GF(2^m).
-         *
-         * @param element an element of the finite field GF(2^m)
-         * @throws ArithmeticException if <tt>element</tt> is not an element of the finite
-         * field this polynomial is defined over.
-         */
-        public void MultThisWithElement(int element)
-        {
-            if (!field.IsElementOfThisField(element))
-            {
-                throw new ArithmeticException(
-                    "Not an element of the finite field this polynomial is defined over.");
-            }
-            coefficients = MultWithElement(coefficients, element);
-            ComputeDegree();
-        }
-
-        /**
-         * Compute the product of a polynomial a with an element from the finite
-         * field <tt>GF(2^m)</tt>.
-         *
-         * @param a       the polynomial
-         * @param element an element of the finite field GF(2^m)
-         * @return <tt>a * element</tt>
-         */
-        private int[] MultWithElement(int[] a, int element)
-        {
-            int degree = ComputeDegree(a);
-            if (degree == -1 || element == 0)
-            {
-                return new int[1];
-            }
-
-            if (element == 1)
-            {
-                return IntUtils.Clone(a);
-            }
-
-            int[] result = new int[degree + 1];
-            for (int i = degree; i >= 0; i--)
-            {
-                result[i] = field.Mult(a[i], element);
-            }
-
-            return result;
-        }
-
-        /**
-         * Compute the product of this polynomial with a monomial X^k.
-         *
-         * @param k the degree of the monomial
-         * @return <tt>this * X^k</tt>
-         */
-        public PolynomialGF2mSmallM MultWithMonomial(int k)
-        {
-            int[] resultCoeff = MultWithMonomial(coefficients, k);
-            return new PolynomialGF2mSmallM(field, resultCoeff);
-        }
-
-        /**
-         * Compute the product of a polynomial with a monomial X^k.
-         *
-         * @param a the polynomial
-         * @param k the degree of the monomial
-         * @return <tt>a * X^k</tt>
-         */
-        private static int[] MultWithMonomial(int[] a, int k)
-        {
-            int d = ComputeDegree(a);
-            if (d == -1)
-            {
-                return new int[1];
-            }
-            int[] result = new int[d + k + 1];
-            Array.Copy(a, 0, result, k, d + 1);
-            return result;
-        }
-
-        /**
-         * Divide this polynomial by the given polynomial.
-         *
-         * @param f a polynomial
-         * @return polynomial pair = {q,r} where this = q*f+r and deg(r) &lt;
-         *         deg(f);
-         */
-        public PolynomialGF2mSmallM[] Div(PolynomialGF2mSmallM f)
-        {
-            int[][] resultCoeffs = Div(coefficients, f.coefficients);
-            return new PolynomialGF2mSmallM[]{
-            new PolynomialGF2mSmallM(field, resultCoeffs[0]),
-            new PolynomialGF2mSmallM(field, resultCoeffs[1])};
-        }
-
-        /**
-         * Compute the result of the division of two polynomials over the field
-         * <tt>GF(2^m)</tt>.
-         *
-         * @param a the first polynomial
-         * @param f the second polynomial
-         * @return int[][] {q,r}, where a = q*f+r and deg(r) &lt; deg(f);
-         */
-        private int[][] Div(int[] a, int[] f)
-        {
-            int df = ComputeDegree(f);
-            int da = ComputeDegree(a) + 1;
-            if (df == -1)
-            {
-                throw new ArithmeticException("Division by zero.");
-            }
-            int[][] result = new int[2][];
-            result[0] = new int[1];
-            result[1] = new int[da];
-            int hc = HeadCoefficient(f);
-            hc = field.Inverse(hc);
-            result[0][0] = 0;
-            Array.Copy(a, 0, result[1], 0, result[1].Length);
-            while (df <= ComputeDegree(result[1]))
-            {
-                int[] q;
-                int[] coeff = new int[1];
-                coeff[0] = field.Mult(HeadCoefficient(result[1]), hc);
-                q = MultWithElement(f, coeff[0]);
-                int n = ComputeDegree(result[1]) - df;
-                q = MultWithMonomial(q, n);
-                coeff = MultWithMonomial(coeff, n);
-                result[0] = Add(coeff, result[0]);
-                result[1] = Add(q, result[1]);
-            }
-            return result;
-        }
-
-        /**
-         * Return the greatest common divisor of this and a polynomial <i>f</i>
-         *
-         * @param f polynomial
-         * @return GCD(this, f)
-         */
-        public PolynomialGF2mSmallM Gcd(PolynomialGF2mSmallM f)
-        {
-            int[] resultCoeff = Gcd(coefficients, f.coefficients);
-            return new PolynomialGF2mSmallM(field, resultCoeff);
-        }
-
-        /**
-         * Return the greatest common divisor of two polynomials over the field
-         * <tt>GF(2^m)</tt>.
-         *
-         * @param f the first polynomial
-         * @param g the second polynomial
-         * @return <tt>gcd(f, g)</tt>
-         */
-        private int[] Gcd(int[] f, int[] g)
-        {
-            int[] a = f;
-            int[] b = g;
-            if (ComputeDegree(a) == -1)
-            {
-                return b;
-            }
-            while (ComputeDegree(b) != -1)
-            {
-                int[] c = Mod(a, b);
-                a = new int[b.Length];
-                Array.Copy(b, 0, a, 0, a.Length);
-                b = new int[c.Length];
-                Array.Copy(c, 0, b, 0, b.Length);
-            }
-            int coeff = field.Inverse(HeadCoefficient(a));
-            return MultWithElement(a, coeff);
-        }
-
-        /**
-         * Compute the product of this polynomial and the given factor using a
-         * Karatzuba like scheme.
-         *
-         * @param factor the polynomial
-         * @return <tt>this * factor</tt>
-         */
-        public PolynomialGF2mSmallM Multiply(PolynomialGF2mSmallM factor)
-        {
-            int[] resultCoeff = Multiply(coefficients, factor.coefficients);
-            return new PolynomialGF2mSmallM(field, resultCoeff);
-        }
-
-        /**
-         * Compute the product of two polynomials over the field <tt>GF(2^m)</tt>
-         * using a Karatzuba like multiplication.
-         *
-         * @param a the first polynomial
-         * @param b the second polynomial
-         * @return a * b
-         */
-        private int[] Multiply(int[] a, int[] b)
-        {
-            int[] mult1, mult2;
-            if (ComputeDegree(a) < ComputeDegree(b))
-            {
-                mult1 = b;
-                mult2 = a;
-            }
-            else
-            {
-                mult1 = a;
-                mult2 = b;
-            }
-
-            mult1 = NormalForm(mult1);
-            mult2 = NormalForm(mult2);
-
-            if (mult2.Length == 1)
-            {
-                return MultWithElement(mult1, mult2[0]);
-            }
-
-            int d1 = mult1.Length;
-            int d2 = mult2.Length;
-            int[] result = new int[d1 + d2 - 1];
-
-            if (d2 != d1)
-            {
-                int[] res1 = new int[d2];
-                int[] res2 = new int[d1 - d2];
-                Array.Copy(mult1, 0, res1, 0, res1.Length);
-                Array.Copy(mult1, d2, res2, 0, res2.Length);
-                res1 = Multiply(res1, mult2);
-                res2 = Multiply(res2, mult2);
-                res2 = MultWithMonomial(res2, d2);
-                result = Add(res1, res2);
-            }
-            else
-            {
-                d2 = Utils.UnsignedRightBitShiftInt(d1 + 1, 1);
-                int d = d1 - d2;
-                int[] firstPartMult1 = new int[d2];
-                int[] firstPartMult2 = new int[d2];
-                int[] secondPartMult1 = new int[d];
-                int[] secondPartMult2 = new int[d];
-                Array.Copy(mult1, 0, firstPartMult1, 0,
-                        firstPartMult1.Length);
-                Array.Copy(mult1, d2, secondPartMult1, 0,
-                    secondPartMult1.Length);
-                Array.Copy(mult2, 0, firstPartMult2, 0,
-                        firstPartMult2.Length);
-                Array.Copy(mult2, d2, secondPartMult2, 0,
-                    secondPartMult2.Length);
-                int[] helpPoly1 = Add(firstPartMult1, secondPartMult1);
-                int[] helpPoly2 = Add(firstPartMult2, secondPartMult2);
-                int[] res1 = Multiply(firstPartMult1, firstPartMult2);
-                int[] res2 = Multiply(helpPoly1, helpPoly2);
-                int[] res3 = Multiply(secondPartMult1, secondPartMult2);
-                res2 = Add(res2, res1);
-                res2 = Add(res2, res3);
-                res3 = MultWithMonomial(res3, d2);
-                result = Add(res2, res3);
-                result = MultWithMonomial(result, d2);
-                result = Add(result, res1);
-            }
-
-            return result;
-        }
-
-        /*
-          * ---------------- PART II ----------------
-          *
-          */
-
-        /**
-         * Check a polynomial for irreducibility over the field <tt>GF(2^m)</tt>.
-         *
-         * @param a the polynomial to check
-         * @return true if a is irreducible, false otherwise
-         */
-        private bool IsIrreducible(int[] a)
-        {
-            if (a[0] == 0)
-            {
-                return false;
-            }
-            int d = ComputeDegree(a) >> 1;
-            int[] u = { 0, 1 };
-            int[] Y = { 0, 1 };
-            int fieldDegree = field.GetDegree();
-            for (int i = 0; i < d; i++)
-            {
-                for (int j = fieldDegree - 1; j >= 0; j--)
-                {
-                    u = ModMultiply(u, u, a);
-                }
-                u = NormalForm(u);
-                int[] g = Gcd(Add(u, Y), a);
-                if (ComputeDegree(g) != 0)
-                {
-                    return false;
-                }
-            }
-            return true;
-        }
-
-        /**
-         * Reduce this polynomial modulo another polynomial.
-         *
-         * @param f the reduction polynomial
-         * @return <tt>this mod f</tt>
-         */
-        public PolynomialGF2mSmallM Mod(PolynomialGF2mSmallM f)
-        {
-            int[] resultCoeff = Mod(coefficients, f.coefficients);
-            return new PolynomialGF2mSmallM(field, resultCoeff);
-        }
-
-        /**
-         * Reduce a polynomial modulo another polynomial.
-         *
-         * @param a the polynomial
-         * @param f the reduction polynomial
-         * @return <tt>a mod f</tt>
-         */
-        private int[] Mod(int[] a, int[] f)
-        {
-            int df = ComputeDegree(f);
-            if (df == -1)
-            {
-                throw new ArithmeticException("Division by zero");
-            }
-            int[] result = new int[a.Length];
-            int hc = HeadCoefficient(f);
-            hc = field.Inverse(hc);
-            Array.Copy(a, 0, result, 0, result.Length);
-            while (df <= ComputeDegree(result))
-            {
-                int[] q;
-                int coeff = field.Mult(HeadCoefficient(result), hc);
-                q = MultWithMonomial(f, ComputeDegree(result) - df);
-                q = MultWithElement(q, coeff);
-                result = Add(q, result);
-            }
-            return result;
-        }
-
-        /**
-         * Compute the product of this polynomial and another polynomial modulo a
-         * third polynomial.
-         *
-         * @param a another polynomial
-         * @param b the reduction polynomial
-         * @return <tt>this * a mod b</tt>
-         */
-        public PolynomialGF2mSmallM ModMultiply(PolynomialGF2mSmallM a,
-                                                PolynomialGF2mSmallM b)
-        {
-            int[] resultCoeff = ModMultiply(coefficients, a.coefficients,
-                b.coefficients);
-            return new PolynomialGF2mSmallM(field, resultCoeff);
-        }
-
-
-
-        /**
-         * Square this polynomial using a squaring matrix.
-         *
-         * @param matrix the squaring matrix
-         * @return <tt>this^2</tt> modulo the reduction polynomial implicitly
-         *         given via the squaring matrix
-         */
-        public PolynomialGF2mSmallM ModSquareMatrix(PolynomialGF2mSmallM[] matrix)
-        {
-
-            int length = matrix.Length;
-
-            int[] resultCoeff = new int[length];
-            int[] thisSquare = new int[length];
-
-            // square each entry of this polynomial
-            for (int i = 0; i < coefficients.Length; i++)
-            {
-                thisSquare[i] = field.Mult(coefficients[i], coefficients[i]);
-            }
-
-            // do matrix-vector multiplication
-            for (int i = 0; i < length; i++)
-            {
-                // compute scalar product of i-th row and coefficient vector
-                for (int j = 0; j < length; j++)
-                {
-                    if (i >= matrix[j].coefficients.Length)
-                    {
-                        continue;
-                    }
-                    int scalarTerm = field.Mult(matrix[j].coefficients[i],
-                        thisSquare[j]);
-                    resultCoeff[i] = field.add(resultCoeff[i], scalarTerm);
-                }
-            }
-
-            return new PolynomialGF2mSmallM(field, resultCoeff);
-        }
-
-        /**
-         * Compute the product of two polynomials modulo a third polynomial over the
-         * finite field <tt>GF(2^m)</tt>.
-         *
-         * @param a the first polynomial
-         * @param b the second polynomial
-         * @param g the reduction polynomial
-         * @return <tt>a * b mod g</tt>
-         */
-        private int[] ModMultiply(int[] a, int[] b, int[] g)
-        {
-            return Mod(Multiply(a, b), g);
-        }
-
-        /**
-         * Compute the square root of this polynomial modulo the given polynomial.
-         *
-         * @param a the reduction polynomial
-         * @return <tt>this^(1/2) mod a</tt>
-         */
-        public PolynomialGF2mSmallM ModSquareRoot(PolynomialGF2mSmallM a)
-        {
-            int[] resultCoeff = IntUtils.Clone(coefficients);
-            int[] help = ModMultiply(resultCoeff, resultCoeff, a.coefficients);
-            while (!IsEqual(help, coefficients))
-            {
-                resultCoeff = NormalForm(help);
-                help = ModMultiply(resultCoeff, resultCoeff, a.coefficients);
-            }
-
-            return new PolynomialGF2mSmallM(field, resultCoeff);
-        }
-
-        /**
-         * Compute the square root of this polynomial using a square root matrix.
-         *
-         * @param matrix the matrix for computing square roots in
-         *               <tt>(GF(2^m))^t</tt> the polynomial ring defining the
-         *               square root matrix
-         * @return <tt>this^(1/2)</tt> modulo the reduction polynomial implicitly
-         *         given via the square root matrix
-         */
-        public PolynomialGF2mSmallM ModSquareRootMatrix(
-            PolynomialGF2mSmallM[] matrix)
-        {
-
-            int length = matrix.Length;
-
-            int[] resultCoeff = new int[length];
-
-            // do matrix multiplication
-            for (int i = 0; i < length; i++)
-            {
-                // compute scalar product of i-th row and j-th column
-                for (int j = 0; j < length; j++)
-                {
-                    if (i >= matrix[j].coefficients.Length)
-                    {
-                        continue;
-                    }
-                    if (j < coefficients.Length)
-                    {
-                        int scalarTerm = field.Mult(matrix[j].coefficients[i],
-                            coefficients[j]);
-                        resultCoeff[i] = field.add(resultCoeff[i], scalarTerm);
-                    }
-                }
-            }
-
-            // compute the square root of each entry of the result coefficients
-            for (int i = 0; i < length; i++)
-            {
-                resultCoeff[i] = field.SqRoot(resultCoeff[i]);
-            }
-
-            return new PolynomialGF2mSmallM(field, resultCoeff);
-        }
-
-        /**
-         * Compute the result of the division of this polynomial by another
-         * polynomial modulo a third polynomial.
-         *
-         * @param divisor the divisor
-         * @param modulus the reduction polynomial
-         * @return <tt>this * divisor^(-1) mod modulus</tt>
-         */
-        public PolynomialGF2mSmallM ModDiv(PolynomialGF2mSmallM divisor,
-                                           PolynomialGF2mSmallM modulus)
-        {
-            int[] resultCoeff = ModDiv(coefficients, divisor.coefficients,
-                modulus.coefficients);
-            return new PolynomialGF2mSmallM(field, resultCoeff);
-        }
-
-        /**
-         * Compute the result of the division of two polynomials modulo a third
-         * polynomial over the field <tt>GF(2^m)</tt>.
-         *
-         * @param a the first polynomial
-         * @param b the second polynomial
-         * @param g the reduction polynomial
-         * @return <tt>a * b^(-1) mod g</tt>
-         */
-        private int[] ModDiv(int[] a, int[] b, int[] g)
-        {
-            int[] r0 = NormalForm(g);
-            int[] r1 = Mod(b, g);
-            int[] s0 = { 0 };
-            int[] s1 = Mod(a, g);
-            int[] s2;
-            int[][] q;
-            while (ComputeDegree(r1) != -1)
-            {
-                q = Div(r0, r1);
-                r0 = NormalForm(r1);
-                r1 = NormalForm(q[1]);
-                s2 = Add(s0, ModMultiply(q[0], s1, g));
-                s0 = NormalForm(s1);
-                s1 = NormalForm(s2);
-
-            }
-            int hc = HeadCoefficient(r0);
-            s0 = MultWithElement(s0, field.Inverse(hc));
-            return s0;
-        }
-
-        /**
-         * Compute the inverse of this polynomial modulo the given polynomial.
-         *
-         * @param a the reduction polynomial
-         * @return <tt>this^(-1) mod a</tt>
-         */
-        public PolynomialGF2mSmallM ModInverse(PolynomialGF2mSmallM a)
-        {
-            int[] unit = { 1 };
-            int[] resultCoeff = ModDiv(unit, coefficients, a.coefficients);
-            return new PolynomialGF2mSmallM(field, resultCoeff);
-        }
-
-        /**
-         * Compute a polynomial pair (a,b) from this polynomial and the given
-         * polynomial g with the property b*this = a mod g and deg(a)&lt;=deg(g)/2.
-         *
-         * @param g the reduction polynomial
-         * @return PolynomialGF2mSmallM[] {a,b} with b*this = a mod g and deg(a)&lt;=
-         *         deg(g)/2
-         */
-        public PolynomialGF2mSmallM[] ModPolynomialToFracton(PolynomialGF2mSmallM g)
-        {
-            int dg = g.degree >> 1;
-            int[] a0 = NormalForm(g.coefficients);
-            int[] a1 = Mod(coefficients, g.coefficients);
-            int[] b0 = { 0 };
-            int[] b1 = { 1 };
-            while (ComputeDegree(a1) > dg)
-            {
-                int[][] q = Div(a0, a1);
-                a0 = a1;
-                a1 = q[1];
-                int[] b2 = Add(b0, ModMultiply(q[0], b1, g.coefficients));
-                b0 = b1;
-                b1 = b2;
-            }
-
-            return new PolynomialGF2mSmallM[]{
-            new PolynomialGF2mSmallM(field, a1),
-            new PolynomialGF2mSmallM(field, b1)};
-        }
-
-        /**
-         * checks if given object is equal to this polynomial.
-         * <p>
-         * The method returns false whenever the given object is not polynomial over
-         * GF(2^m).
-         *
-         * @param other object
-         * @return true or false
-         */
-        public bool equals(Object other)
-        {
-
-            if (other == null || !(other is PolynomialGF2mSmallM))
-            {
-                return false;
-            }
-
-            PolynomialGF2mSmallM p = (PolynomialGF2mSmallM)other;
-
-            if ((field.Equals(p.field)) && (degree == p.degree)
-                && (IsEqual(coefficients, p.coefficients)))
-            {
-                return true;
-            }
-
-            return false;
-        }
-
-        /**
-         * Compare two polynomials given as int arrays.
-         *
-         * @param a the first polynomial
-         * @param b the second polynomial
-         * @return <tt>true</tt> if <tt>a</tt> and <tt>b</tt> represent the
-         *         same polynomials, <tt>false</tt> otherwise
-         */
-        private static bool IsEqual(int[] a, int[] b)
-        {
-            int da = ComputeDegree(a);
-            int db = ComputeDegree(b);
-            if (da != db)
-            {
-                return false;
-            }
-            for (int i = 0; i <= da; i++)
-            {
-                if (a[i] != b[i])
-                {
-                    return false;
-                }
-            }
-            return true;
-        }
-
-        /**
-         * @return the hash code of this polynomial
-         */
-        public int HashCode()
-        {
-            int hash = field.HashCode();
-            for (int j = 0; j < coefficients.Length; j++)
-            {
-                hash = hash * 31 + coefficients[j];
-            }
-            return hash;
-        }
-
-        /**
-         * Returns a human readable form of the polynomial.
-         *
-         * @return a human readable form of the polynomial.
-         */
-        public String toString()
-        {
-            String str = " Polynomial over " + field.ToString() + ": \n";
-
-            for (int i = 0; i < coefficients.Length; i++)
-            {
-                str = str + field.ElementToStr(coefficients[i]) + "Y^" + i + "+";
-            }
-            str = str + ";";
-
-            return str;
-        }
-
-        /**
-         * Compute the degree of this polynomial. If this is the zero polynomial,
-         * the degree is -1.
-         */
-        private void ComputeDegree()
-        {
-            for (degree = coefficients.Length - 1; degree >= 0
-                && coefficients[degree] == 0; degree--)
-            {
-                ;
-            }
-        }
-
-        /**
-         * Compute the degree of a polynomial.
-         *
-         * @param a the polynomial
-         * @return the degree of the polynomial <tt>a</tt>. If <tt>a</tt> is
-         *         the zero polynomial, return -1.
-         */
-        private static int ComputeDegree(int[] a)
-        {
-            int degree;
-            for (degree = a.Length - 1; degree >= 0 && a[degree] == 0; degree--)
-            {
-                ;
-            }
-            return degree;
-        }
-
-        /**
-         * Strip leading zero coefficients from the given polynomial.
-         *
-         * @param a the polynomial
-         * @return the reduced polynomial
-         */
-        private static int[] NormalForm(int[] a)
-        {
-            int d = ComputeDegree(a);
-
-            // if a is the zero polynomial
-            if (d == -1)
-            {
-                // return new zero polynomial
-                return new int[1];
-            }
-
-            // if a already is in normal form
-            if (a.Length == d + 1)
-            {
-                // return a clone of a
-                return IntUtils.Clone(a);
-            }
-
-            // else, reduce a
-            int[] result = new int[d + 1];
-            Array.Copy(a, 0, result, 0, d + 1);
-            return result;
-        }
-
-        /**
-         * Compute the product of this polynomial and another polynomial modulo a
-         * third polynomial.
-         *
-         * @param a another polynomial
-         * @param b the reduction polynomial
-         * @return <tt>this * a mod b</tt>
-         */
-        public PolynomialGF2mSmallM ModKaratsubaMultiplyBigDeg(PolynomialGF2mSmallM a,
-                                                               PolynomialGF2mSmallM b)
-        {
-            int[] resultCoeff = ModKaratsubaMultiplyBigDeg(coefficients, a.coefficients,
-                    b.coefficients);
-            return new PolynomialGF2mSmallM(field, resultCoeff);
-        }
-
-        /**
-         * Compute the inverse of this polynomial modulo the given polynomial.
-         *
-         * @param a the reduction polynomial
-         * @return <tt>this^(-1) mod a</tt>
-         */
-        public PolynomialGF2mSmallM ModInverseBigDeg(PolynomialGF2mSmallM a)
-        {
-            int[] unit = { 1 };
-            int[] resultCoeff = ModDivBigDeg(unit, coefficients, a.coefficients);
-            return new PolynomialGF2mSmallM(field, resultCoeff);
-        }
-
-        private int[] ModDivBigDeg(int[] a, int[] b, int[] g)
-        {
-            int[] r0 = NormalForm(g);
-            int[] r1 = Mod(b, g);
-            int[] s0 = { 0 };
-            int[] s1 = Mod(a, g);
-            int[] s2;
-            int[][] q;
-            while (ComputeDegree(r1) != -1)
-            {
-                q = Div(r0, r1);
-                r0 = NormalForm(r1);
-                r1 = NormalForm(q[1]);
-                s2 = Add(s0, ModKaratsubaMultiplyBigDeg(q[0], s1, g));
-                s0 = NormalForm(s1);
-                s1 = NormalForm(s2);
-            }
-            int hc = HeadCoefficient(r0);
-            s0 = MultWithElement(s0, field.Inverse(hc));
-            return s0;
-        }
-
-        /**
-         * Compute the product of two polynomials modulo a third polynomial over the
-         * finite field <tt>GF(2^m)</tt>.
-         *
-         * @param aa the first polynomial
-         * @param bb the second polynomial
-         * @param g the reduction polynomial
-         * @return <tt>a * b mod g</tt>
-         */
-        private int[] ModKaratsubaMultiplyBigDeg(int[] aa, int[] bb, int[] g)
-        {
-            int[] a, b;
-            if (aa.Length >= bb.Length)
-            {
-                a = Arrays.Clone(aa);
-                b = Arrays.Clone(bb);
-            }
-            else
-            {
-                a = Arrays.Clone(bb);
-                b = Arrays.Clone(aa);
-            }
-
-            int n = a.Length;
-            int m = b.Length;
-
-            int[] D = new int[(n + m) / 2];
-            int[] S = new int[n + m - 1];
-            int[] T = new int[n + m - 1];
-            int[] C = new int[n + m - 1];
-
-            for (int i = 0; i < m; i++)
-            {
-                D[i] = a[i] * b[i];
-            }
-
-            for (int i = 1; i < n + m - 2; i++)
-            {
-                for (int p = 0; p < System.Math.Min(m, i); p++)
-                {
-                    int q = i - p;
-                    if (p >= q)
-                    {
-                        break;
-                    }
-
-                    int ap = a[p];
-                    int aq = 0;
-
-                    if (q < a.Length)
-                    {
-                        aq = a[q];
-                    }
-
-                    int bp = b[p];
-                    int dp = D[p];
-
-                    if (q < m && p < m)
-                    {
-                        int bq = b[q];
-                        int dq = D[q];
-
-                        S[i] = S[i] + (ap + aq) * (bp + bq);
-                        T[i] = T[i] + dp + dq;
-                    }
-                    else if (q >= m && q < n)
-                    {
-                        S[i] = S[i] + ((ap + aq) * bp);
-                        T[i] = T[i] + dp;
-                    }
-                }
-            }
-
-            for (int i = 0; i < n + m - 1; i++)
-            {
-                if (i == 0)
-                {
-                    C[i] = D[i] % 2;
-                }
-                else if (i == n + m - 2)
-                {
-                    C[i] = (a[a.Length - 1] * b[b.Length - 1]) % 2;
-                }
-                else if (i % 2 == 1)
-                {
-                    C[i] = (S[i] - T[i]) % 2;
-                }
-                else
-                {
-                    C[i] = (S[i] - T[i] + D[i / 2]) % 2;
-                }
-            }
-            int[] res = Mod(C, g);
-            return res;
-        }
-    }
-}
diff --git a/crypto/src/pqc/math/linearalgebra/PolynomialRingGF2.cs b/crypto/src/pqc/math/linearalgebra/PolynomialRingGF2.cs
deleted file mode 100644
index 9bc3fcd31..000000000
--- a/crypto/src/pqc/math/linearalgebra/PolynomialRingGF2.cs
+++ /dev/null
@@ -1,286 +0,0 @@
-using System;
-
-namespace Org.BouncyCastle.Pqc.Math.LinearAlgebra
-{
-    /**
- * This class describes operations with polynomials over finite field GF(2), i e
- * polynomial ring R = GF(2)[X]. All operations are defined only for polynomials
- * with degree &lt;=32. For the polynomial representation the map f: R-&gt;Z,
- * poly(X)-&gt;poly(2) is used, where integers have the binary representation. For
- * example: X^7+X^3+X+1 -&gt; (00...0010001011)=139 Also for polynomials type
- * Integer is used.
- *
- * @see GF2mField
- */
-    public class PolynomialRingGF2
-    {
-
-        /**
-         * Default constructor (private).
-         */
-        private PolynomialRingGF2()
-        {
-            // empty
-        }
-
-        /**
-         * Return sum of two polyomials
-         *
-         * @param p polynomial
-         * @param q polynomial
-         * @return p+q
-         */
-
-        public static int Add(int p, int q)
-        {
-            return p ^ q;
-        }
-
-        /**
-         * Return product of two polynomials
-         *
-         * @param p polynomial
-         * @param q polynomial
-         * @return p*q
-         */
-
-        public static long Multiply(int p, int q)
-        {
-            long result = 0;
-            if (q != 0)
-            {
-                long q1 = q & 0x00000000ffffffffL;
-
-                while (p != 0)
-                {
-                    byte b = (byte)(p & 0x01);
-                    if (b == 1)
-                    {
-                        result ^= q1;
-                    }
-                    p = Utils.UnsignedRightBitShiftInt(p, 1);
-                    q1 <<= 1;
-
-                }
-            }
-            return result;
-        }
-
-        /**
-         * Compute the product of two polynomials modulo a third polynomial.
-         *
-         * @param a the first polynomial
-         * @param b the second polynomial
-         * @param r the reduction polynomial
-         * @return <tt>a * b mod r</tt>
-         */
-        public static int modMultiply(int a, int b, int r)
-        {
-            int result = 0;
-            int p = Remainder(a, r);
-            int q = Remainder(b, r);
-            if (q != 0)
-            {
-                int d = 1 << Degree(r);
-
-                while (p != 0)
-                {
-                    byte pMod2 = (byte)(p & 0x01);
-                    if (pMod2 == 1)
-                    {
-                        result ^= q;
-                    }
-                    p = Utils.UnsignedRightBitShiftInt(p, 1);
-                    q <<= 1;
-                    if (q >= d)
-                    {
-                        q ^= r;
-                    }
-                }
-            }
-            return result;
-        }
-
-        /**
-         * Return the degree of a polynomial
-         *
-         * @param p polynomial p
-         * @return degree(p)
-         */
-
-        public static int Degree(int p)
-        {
-            int result = -1;
-            while (p != 0)
-            {
-                result++;
-                p = Utils.UnsignedRightBitShiftInt(p, 1);
-            }
-            return result;
-        }
-
-        /**
-         * Return the degree of a polynomial
-         *
-         * @param p polynomial p
-         * @return degree(p)
-         */
-
-        public static int Degree(long p)
-        {
-            int result = 0;
-            while (p != 0)
-            {
-                result++;
-                p = Utils.UnsignedRightBitShiftLong(p, 1);
-            }
-            return result - 1;
-        }
-
-        /**
-         * Return the remainder of a polynomial division of two polynomials.
-         *
-         * @param p dividend
-         * @param q divisor
-         * @return <tt>p mod q</tt>
-         */
-        public static int Remainder(int p, int q)
-        {
-            int result = p;
-
-            if (q == 0)
-            {
-                // -DM Console.Error.WriteLine
-                Console.Error.WriteLine("Error: to be divided by 0");
-                return 0;
-            }
-
-            while (Degree(result) >= Degree(q))
-            {
-                result ^= q << (Degree(result) - Degree(q));
-            }
-
-            return result;
-        }
-
-        /**
-         * Return the rest of devision two polynomials
-         *
-         * @param p polinomial
-         * @param q polinomial
-         * @return p mod q
-         */
-
-        public static int Rest(long p, int q)
-        {
-            long p1 = p;
-            if (q == 0)
-            {
-                // -DM Console.Error.WriteLine
-                Console.Error.WriteLine("Error: to be divided by 0");
-                return 0;
-            }
-            long q1 = q & 0x00000000ffffffffL;
-
-            while ((Utils.UnsignedRightBitShiftLong(p1, 32)) != 0)
-            {
-                p1 ^= q1 << (Degree(p1) - Degree(q1));
-            }
-
-            int result = (int)(p1 & 0xffffffff);
-            while (Degree(result) >= Degree(q))
-            {
-                result ^= q << (Degree(result) - Degree(q));
-            }
-
-            return result;
-        }
-
-        /**
-         * Return the greatest common divisor of two polynomials
-         *
-         * @param p polinomial
-         * @param q polinomial
-         * @return GCD(p, q)
-         */
-
-        public static int Gcd(int p, int q)
-        {
-            int a, b, c;
-            a = p;
-            b = q;
-            while (b != 0)
-            {
-                c = Remainder(a, b);
-                a = b;
-                b = c;
-
-            }
-            return a;
-        }
-
-        /**
-         * Checking polynomial for irreducibility
-         *
-         * @param p polinomial
-         * @return true if p is irreducible and false otherwise
-         */
-
-        public static bool IsIrreducible(int p)
-        {
-            if (p == 0)
-            {
-                return false;
-            }
-            uint tmpDeg = (uint)Degree(p);
-            int d = (int) tmpDeg >> 1;
-            int u = 2;
-            for (int i = 0; i < d; i++)
-            {
-                u = modMultiply(u, u, p);
-                if (Gcd(u ^ 2, p) != 1)
-                {
-                    return false;
-                }
-            }
-            return true;
-        }
-
-        /**
-         * Creates irreducible polynomial with degree d
-         *
-         * @param deg polynomial degree
-         * @return irreducible polynomial p
-         */
-        public static int GetIrreduciblePolynomial(int deg)
-        {
-            if (deg < 0)
-            {
-                // -DM Console.Error.WriteLine
-                Console.Error.WriteLine("The Degree is negative");
-                return 0;
-            }
-            if (deg > 31)
-            {
-                // -DM Console.Error.WriteLine
-                Console.Error.WriteLine("The Degree is more then 31");
-                return 0;
-            }
-            if (deg == 0)
-            {
-                return 1;
-            }
-            int a = 1 << deg;
-            a++;
-            int b = 1 << (deg + 1);
-            for (int i = a; i < b; i += 2)
-            {
-                if (IsIrreducible(i))
-                {
-                    return i;
-                }
-            }
-            return 0;
-        }
-    }
-}
diff --git a/crypto/src/pqc/math/linearalgebra/RandUtils.cs b/crypto/src/pqc/math/linearalgebra/RandUtils.cs
deleted file mode 100644
index f7b7b8588..000000000
--- a/crypto/src/pqc/math/linearalgebra/RandUtils.cs
+++ /dev/null
@@ -1,27 +0,0 @@
-using Org.BouncyCastle.Security;
-
-namespace Org.BouncyCastle.Pqc.Math.LinearAlgebra
-{
-    public class RandUtils
-    {
-        public static int NextInt(SecureRandom rand, int n)
-        {
-
-            if ((n & -n) == n)  // i.e., n is a power of 2
-            {
-                return (int)((n * (long)(Utils.UnsignedRightBitShiftInt(rand.NextInt(), 1))) >> 31);
-            }
-
-            int bits, value;
-            do
-            {
-                bits = Utils.UnsignedRightBitShiftInt(rand.NextInt() ,1);
-                value = bits % n;
-            }
-            while (bits - value + (n - 1) < 0);
-
-            return value;
-        }
-    }
-
-}
diff --git a/crypto/src/pqc/math/linearalgebra/Utils.cs b/crypto/src/pqc/math/linearalgebra/Utils.cs
deleted file mode 100644
index eb2760f82..000000000
--- a/crypto/src/pqc/math/linearalgebra/Utils.cs
+++ /dev/null
@@ -1,20 +0,0 @@
-
-namespace Org.BouncyCastle.Pqc.Math.LinearAlgebra
-{
-    class Utils
-    {
-        internal static int UnsignedRightBitShiftInt(int a, int b)
-        {
-            uint tmp = (uint) a;
-            tmp >>= b;
-            return (int) tmp;
-        }
-
-        internal static long UnsignedRightBitShiftLong(long a, int b)
-        {
-            ulong tmp = (ulong)a;
-            tmp >>= b;
-            return (long) tmp;
-        }
-    }
-}
diff --git a/crypto/src/pqc/math/linearalgebra/Vector.cs b/crypto/src/pqc/math/linearalgebra/Vector.cs
deleted file mode 100644
index e50c54792..000000000
--- a/crypto/src/pqc/math/linearalgebra/Vector.cs
+++ /dev/null
@@ -1,62 +0,0 @@
-using System;
-
-namespace Org.BouncyCastle.Pqc.Math.LinearAlgebra
-{
-    /**
- * This abstract class defines vectors. It holds the length of vector.
- */
-    public abstract class Vector
-    {
-
-        /**
-         * the length of this vector
-         */
-        protected int length;
-
-        /**
-         * @return the length of this vector
-         */
-        public int GetLength()
-        {
-            return length;
-        }
-
-        /**
-         * @return this vector as byte array
-         */
-        public abstract byte[] GetEncoded();
-
-        /**
-         * Return whether this is the zero vector (i.e., all elements are zero).
-         *
-         * @return <tt>true</tt> if this is the zero vector, <tt>false</tt>
-         *         otherwise
-         */
-        public abstract bool IsZero();
-
-        /**
-         * Add another vector to this vector.
-         *
-         * @param addend the other vector
-         * @return <tt>this + addend</tt>
-         */
-        public abstract Vector Add(Vector addend);
-
-        /**
-         * Multiply this vector with a permutation.
-         *
-         * @param p the permutation
-         * @return <tt>this*p = p*this</tt>
-         */
-        public abstract Vector Multiply(Permutation p);
-
-        /**
-         * Check if the given object is equal to this vector.
-         *
-         * @param other vector
-         * @return the result of the comparison
-         */
-        public abstract bool Equals(Object other);
-
-    }
-}