summary refs log tree commit diff
diff options
context:
space:
mode:
-rw-r--r--crypto/crypto.csproj5
-rw-r--r--crypto/src/math/ec/ECFieldElement.cs211
-rw-r--r--crypto/src/math/ec/LongArray.cs2023
-rw-r--r--crypto/src/util/Arrays.cs9
4 files changed, 2091 insertions, 157 deletions
diff --git a/crypto/crypto.csproj b/crypto/crypto.csproj
index 1c2f6a7df..abc4f6050 100644
--- a/crypto/crypto.csproj
+++ b/crypto/crypto.csproj
@@ -4654,6 +4654,11 @@
                     BuildAction = "Compile"
                 />
                 <File
+                    RelPath = "src\math\ec\LongArray.cs"
+                    SubType = "Code"
+                    BuildAction = "Compile"
+                />
+                <File
                     RelPath = "src\math\ec\abc\SimpleBigDecimal.cs"
                     SubType = "Code"
                     BuildAction = "Compile"
diff --git a/crypto/src/math/ec/ECFieldElement.cs b/crypto/src/math/ec/ECFieldElement.cs
index fb0e8535b..9ebf6f41e 100644
--- a/crypto/src/math/ec/ECFieldElement.cs
+++ b/crypto/src/math/ec/ECFieldElement.cs
@@ -873,41 +873,38 @@ namespace Org.BouncyCastle.Math.EC
          */
         private int m;
 
-        /**
-         * Tpb: The integer <code>k</code> where <code>x<sup>m</sup> +
-         * x<sup>k</sup> + 1</code> represents the reduction polynomial
-         * <code>f(z)</code>.<br/>
-         * Ppb: The integer <code>k1</code> where <code>x<sup>m</sup> +
-         * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
-         * represents the reduction polynomial <code>f(z)</code>.<br/>
-         */
-        private int k1;
-
-        /**
-         * Tpb: Always set to <code>0</code><br/>
-         * Ppb: The integer <code>k2</code> where <code>x<sup>m</sup> +
-         * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
-         * represents the reduction polynomial <code>f(z)</code>.<br/>
-         */
-        private int k2;
-
-        /**
-            * Tpb: Always set to <code>0</code><br/>
-            * Ppb: The integer <code>k3</code> where <code>x<sup>m</sup> +
-            * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
-            * represents the reduction polynomial <code>f(z)</code>.<br/>
-            */
-        private int k3;
+        ///**
+        // * Tpb: The integer <code>k</code> where <code>x<sup>m</sup> +
+        // * x<sup>k</sup> + 1</code> represents the reduction polynomial
+        // * <code>f(z)</code>.<br/>
+        // * Ppb: The integer <code>k1</code> where <code>x<sup>m</sup> +
+        // * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
+        // * represents the reduction polynomial <code>f(z)</code>.<br/>
+        // */
+        //private int k1;
+
+        ///**
+        // * Tpb: Always set to <code>0</code><br/>
+        // * Ppb: The integer <code>k2</code> where <code>x<sup>m</sup> +
+        // * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
+        // * represents the reduction polynomial <code>f(z)</code>.<br/>
+        // */
+        //private int k2;
+
+        ///**
+        //    * Tpb: Always set to <code>0</code><br/>
+        //    * Ppb: The integer <code>k3</code> where <code>x<sup>m</sup> +
+        //    * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
+        //    * represents the reduction polynomial <code>f(z)</code>.<br/>
+        //    */
+        //private int k3;
+
+        private int[] ks;
 
         /**
-         * The <code>IntArray</code> holding the bits.
+         * The <code>LongArray</code> holding the bits.
          */
-        private IntArray x;
-
-        /**
-         * The number of <code>int</code>s required to hold <code>m</code> bits.
-         */
-        private readonly int t;
+        private LongArray x;
 
         /**
             * Constructor for Ppb.
@@ -931,13 +928,10 @@ namespace Org.BouncyCastle.Math.EC
             int			k3,
             BigInteger	x)
         {
-            // t = m / 32 rounded up to the next integer
-            this.t = (m + 31) >> 5;
-            this.x = new IntArray(x, t);
-
             if ((k2 == 0) && (k3 == 0))
             {
                 this.representation = Tpb;
+                this.ks = new int[] { k1 };
             }
             else
             {
@@ -947,15 +941,11 @@ namespace Org.BouncyCastle.Math.EC
                     throw new ArgumentException("k2 must be larger than 0");
 
                 this.representation = Ppb;
+                this.ks = new int[] { k1, k2, k3 };
             }
 
-            if (x.SignValue < 0)
-                throw new ArgumentException("x value cannot be negative");
-
             this.m = m;
-            this.k1 = k1;
-            this.k2 = k2;
-            this.k3 = k3;
+            this.x = new LongArray(x);
         }
 
         /**
@@ -976,23 +966,12 @@ namespace Org.BouncyCastle.Math.EC
             // Set k1 to k, and set k2 and k3 to 0
         }
 
-        private F2mFieldElement(int m, int k1, int k2, int k3, IntArray x)
+        private F2mFieldElement(int m, int[] ks, LongArray x)
         {
-            t = (m + 31) >> 5;
-            this.x = x;
             this.m = m;
-            this.k1 = k1;
-            this.k2 = k2;
-            this.k3 = k3;
-
-            if ((k2 == 0) && (k3 == 0))
-            {
-                this.representation = Tpb;
-            }
-            else
-            {
-                this.representation = Ppb;
-            }
+            this.representation = (ks.Length == 1) ? Tpb : Ppb;
+            this.ks = ks;
+            this.x = x;
         }
 
         public override BigInteger ToBigInteger()
@@ -1034,19 +1013,15 @@ namespace Org.BouncyCastle.Math.EC
             F2mFieldElement aF2m = (F2mFieldElement)a;
             F2mFieldElement bF2m = (F2mFieldElement)b;
 
-            if ((aF2m.m != bF2m.m) || (aF2m.k1 != bF2m.k1)
-                || (aF2m.k2 != bF2m.k2) || (aF2m.k3 != bF2m.k3))
+            if (aF2m.representation != bF2m.representation)
             {
-                throw new ArgumentException("Field elements are not "
-                    + "elements of the same field F2m");
+                // Should never occur
+                throw new ArgumentException("One of the F2m field elements has incorrect representation");
             }
 
-            if (aF2m.representation != bF2m.representation)
+            if ((aF2m.m != bF2m.m) || !Arrays.AreEqual(aF2m.ks, bF2m.ks))
             {
-                // Should never occur
-                throw new ArgumentException(
-                    "One of the field "
-                    + "elements are not elements has incorrect representation");
+                throw new ArgumentException("Field elements are not elements of the same field F2m");
             }
         }
 
@@ -1056,10 +1031,10 @@ namespace Org.BouncyCastle.Math.EC
             // No check performed here for performance reasons. Instead the
             // elements involved are checked in ECPoint.F2m
             // checkFieldElements(this, b);
-            IntArray iarrClone = (IntArray) this.x.Copy();
-            F2mFieldElement bF2m = (F2mFieldElement) b;
-            iarrClone.AddShifted(bF2m.x, 0);
-            return new F2mFieldElement(m, k1, k2, k3, iarrClone);
+            LongArray iarrClone = this.x.Copy();
+            F2mFieldElement bF2m = (F2mFieldElement)b;
+            iarrClone.AddShiftedByWords(bF2m.x, 0);
+            return new F2mFieldElement(m, ks, iarrClone);
         }
 
         public override ECFieldElement Subtract(
@@ -1079,10 +1054,7 @@ namespace Org.BouncyCastle.Math.EC
             // No check performed here for performance reasons. Instead the
             // elements involved are checked in ECPoint.F2m
             // checkFieldElements(this, b);
-            F2mFieldElement bF2m = (F2mFieldElement) b;
-            IntArray mult = x.Multiply(bF2m.x, m);
-            mult.Reduce(m, new int[]{k1, k2, k3});
-            return new F2mFieldElement(m, k1, k2, k3, mult);
+            return new F2mFieldElement(m, ks, x.ModMultiply(((F2mFieldElement)b).x, m, ks));
         }
 
         public override ECFieldElement Divide(
@@ -1101,76 +1073,12 @@ namespace Org.BouncyCastle.Math.EC
 
         public override ECFieldElement Square()
         {
-            IntArray squared = x.Square(m);
-            squared.Reduce(m, new int[]{k1, k2, k3});
-            return new F2mFieldElement(m, k1, k2, k3, squared);
+            return new F2mFieldElement(m, ks, x.ModSquare(m, ks));
         }
 
         public override ECFieldElement Invert()
         {
-            // Inversion in F2m using the extended Euclidean algorithm
-            // Input: A nonzero polynomial a(z) of degree at most m-1
-            // Output: a(z)^(-1) mod f(z)
-
-            // u(z) := a(z)
-            IntArray uz = (IntArray)this.x.Copy();
-
-            // v(z) := f(z)
-            IntArray vz = new IntArray(t);
-            vz.SetBit(m);
-            vz.SetBit(0);
-            vz.SetBit(this.k1);
-            if (this.representation == Ppb)
-            {
-                vz.SetBit(this.k2);
-                vz.SetBit(this.k3);
-            }
-
-            // g1(z) := 1, g2(z) := 0
-            IntArray g1z = new IntArray(t);
-            g1z.SetBit(0);
-            IntArray g2z = new IntArray(t);
-
-            // while u != 0
-            while (uz.GetUsedLength() > 0)
-//            while (uz.bitLength() > 1)
-            {
-                // j := deg(u(z)) - deg(v(z))
-                int j = uz.BitLength - vz.BitLength;
-
-                // If j < 0 then: u(z) <-> v(z), g1(z) <-> g2(z), j := -j
-                if (j < 0)
-                {
-                    IntArray uzCopy = uz;
-                    uz = vz;
-                    vz = uzCopy;
-
-                    IntArray g1zCopy = g1z;
-                    g1z = g2z;
-                    g2z = g1zCopy;
-
-                    j = -j;
-                }
-
-                // u(z) := u(z) + z^j * v(z)
-                // Note, that no reduction modulo f(z) is required, because
-                // deg(u(z) + z^j * v(z)) <= max(deg(u(z)), j + deg(v(z)))
-                // = max(deg(u(z)), deg(u(z)) - deg(v(z)) + deg(v(z))
-                // = deg(u(z))
-                // uz = uz.xor(vz.ShiftLeft(j));
-                // jInt = n / 32
-                int jInt = j >> 5;
-                // jInt = n % 32
-                int jBit = j & 0x1F;
-                IntArray vzShift = vz.ShiftLeft(jBit);
-                uz.AddShifted(vzShift, jInt);
-
-                // g1(z) := g1(z) + z^j * g2(z)
-//                g1z = g1z.xor(g2z.ShiftLeft(j));
-                IntArray g2zShift = g2z.ShiftLeft(jBit);
-                g1z.AddShifted(g2zShift, jInt);
-            }
-            return new F2mFieldElement(this.m, this.k1, this.k2, this.k3, g2z);
+            return new F2mFieldElement(this.m, this.ks, this.x.ModInverse(m, ks));
         }
 
         public override ECFieldElement Sqrt()
@@ -1210,7 +1118,7 @@ namespace Org.BouncyCastle.Math.EC
             */
         public int K1
         {
-            get { return this.k1; }
+            get { return this.ks[0]; }
         }
 
         /**
@@ -1221,7 +1129,7 @@ namespace Org.BouncyCastle.Math.EC
             */
         public int K2
         {
-            get { return this.k2; }
+            get { return this.ks.Length >= 2 ? this.ks[1] : 0; }
         }
 
         /**
@@ -1232,7 +1140,7 @@ namespace Org.BouncyCastle.Math.EC
             */
         public int K3
         {
-            get { return this.k3; }
+            get { return this.ks.Length >= 3 ? this.ks[2] : 0; }
         }
 
         public override bool Equals(
@@ -1252,22 +1160,15 @@ namespace Org.BouncyCastle.Math.EC
         public virtual bool Equals(
             F2mFieldElement other)
         {
-            return m == other.m
-                && k1 == other.k1
-                && k2 == other.k2
-                && k3 == other.k3
-                && representation == other.representation
-                && base.Equals(other);
+            return ((this.m == other.m)
+                && (this.representation == other.representation)
+                && Arrays.AreEqual(this.ks, other.ks)
+                && (this.x.Equals(other.x)));
         }
 
         public override int GetHashCode()
         {
-            return m.GetHashCode()
-                ^	k1.GetHashCode()
-                ^	k2.GetHashCode()
-                ^	k3.GetHashCode()
-                ^	representation.GetHashCode()
-                ^	base.GetHashCode();
+            return x.GetHashCode() ^ m ^ Arrays.GetHashCode(ks);
         }
     }
 }
diff --git a/crypto/src/math/ec/LongArray.cs b/crypto/src/math/ec/LongArray.cs
new file mode 100644
index 000000000..d694f0cf0
--- /dev/null
+++ b/crypto/src/math/ec/LongArray.cs
@@ -0,0 +1,2023 @@
+using System;
+using System.Text;
+
+using Org.BouncyCastle.Utilities;
+
+namespace Org.BouncyCastle.Math.EC
+{
+    internal class LongArray
+    {
+        //private static long DEInterleave_MASK = 0x5555555555555555L;
+
+        /*
+         * This expands 8 bit indices into 16 bit contents (high bit 14), by inserting 0s between bits.
+         * In a binary field, this operation is the same as squaring an 8 bit number.
+         */
+        private static readonly int[] INTERLEAVE2_TABLE = new int[]
+        {
+            0x0000, 0x0001, 0x0004, 0x0005, 0x0010, 0x0011, 0x0014, 0x0015,
+            0x0040, 0x0041, 0x0044, 0x0045, 0x0050, 0x0051, 0x0054, 0x0055,
+            0x0100, 0x0101, 0x0104, 0x0105, 0x0110, 0x0111, 0x0114, 0x0115,
+            0x0140, 0x0141, 0x0144, 0x0145, 0x0150, 0x0151, 0x0154, 0x0155,
+            0x0400, 0x0401, 0x0404, 0x0405, 0x0410, 0x0411, 0x0414, 0x0415,
+            0x0440, 0x0441, 0x0444, 0x0445, 0x0450, 0x0451, 0x0454, 0x0455,
+            0x0500, 0x0501, 0x0504, 0x0505, 0x0510, 0x0511, 0x0514, 0x0515,
+            0x0540, 0x0541, 0x0544, 0x0545, 0x0550, 0x0551, 0x0554, 0x0555,
+            0x1000, 0x1001, 0x1004, 0x1005, 0x1010, 0x1011, 0x1014, 0x1015,
+            0x1040, 0x1041, 0x1044, 0x1045, 0x1050, 0x1051, 0x1054, 0x1055,
+            0x1100, 0x1101, 0x1104, 0x1105, 0x1110, 0x1111, 0x1114, 0x1115,
+            0x1140, 0x1141, 0x1144, 0x1145, 0x1150, 0x1151, 0x1154, 0x1155,
+            0x1400, 0x1401, 0x1404, 0x1405, 0x1410, 0x1411, 0x1414, 0x1415,
+            0x1440, 0x1441, 0x1444, 0x1445, 0x1450, 0x1451, 0x1454, 0x1455,
+            0x1500, 0x1501, 0x1504, 0x1505, 0x1510, 0x1511, 0x1514, 0x1515,
+            0x1540, 0x1541, 0x1544, 0x1545, 0x1550, 0x1551, 0x1554, 0x1555,
+            0x4000, 0x4001, 0x4004, 0x4005, 0x4010, 0x4011, 0x4014, 0x4015,
+            0x4040, 0x4041, 0x4044, 0x4045, 0x4050, 0x4051, 0x4054, 0x4055,
+            0x4100, 0x4101, 0x4104, 0x4105, 0x4110, 0x4111, 0x4114, 0x4115,
+            0x4140, 0x4141, 0x4144, 0x4145, 0x4150, 0x4151, 0x4154, 0x4155,
+            0x4400, 0x4401, 0x4404, 0x4405, 0x4410, 0x4411, 0x4414, 0x4415,
+            0x4440, 0x4441, 0x4444, 0x4445, 0x4450, 0x4451, 0x4454, 0x4455,
+            0x4500, 0x4501, 0x4504, 0x4505, 0x4510, 0x4511, 0x4514, 0x4515,
+            0x4540, 0x4541, 0x4544, 0x4545, 0x4550, 0x4551, 0x4554, 0x4555,
+            0x5000, 0x5001, 0x5004, 0x5005, 0x5010, 0x5011, 0x5014, 0x5015,
+            0x5040, 0x5041, 0x5044, 0x5045, 0x5050, 0x5051, 0x5054, 0x5055,
+            0x5100, 0x5101, 0x5104, 0x5105, 0x5110, 0x5111, 0x5114, 0x5115,
+            0x5140, 0x5141, 0x5144, 0x5145, 0x5150, 0x5151, 0x5154, 0x5155,
+            0x5400, 0x5401, 0x5404, 0x5405, 0x5410, 0x5411, 0x5414, 0x5415,
+            0x5440, 0x5441, 0x5444, 0x5445, 0x5450, 0x5451, 0x5454, 0x5455,
+            0x5500, 0x5501, 0x5504, 0x5505, 0x5510, 0x5511, 0x5514, 0x5515,
+            0x5540, 0x5541, 0x5544, 0x5545, 0x5550, 0x5551, 0x5554, 0x5555
+        };
+
+        /*
+         * This expands 7 bit indices into 21 bit contents (high bit 18), by inserting 0s between bits.
+         */
+        private static readonly int[] INTERLEAVE3_TABLE = new  int[]
+        {
+            0x00000, 0x00001, 0x00008, 0x00009, 0x00040, 0x00041, 0x00048, 0x00049,
+            0x00200, 0x00201, 0x00208, 0x00209, 0x00240, 0x00241, 0x00248, 0x00249,
+            0x01000, 0x01001, 0x01008, 0x01009, 0x01040, 0x01041, 0x01048, 0x01049,
+            0x01200, 0x01201, 0x01208, 0x01209, 0x01240, 0x01241, 0x01248, 0x01249,
+            0x08000, 0x08001, 0x08008, 0x08009, 0x08040, 0x08041, 0x08048, 0x08049,
+            0x08200, 0x08201, 0x08208, 0x08209, 0x08240, 0x08241, 0x08248, 0x08249,
+            0x09000, 0x09001, 0x09008, 0x09009, 0x09040, 0x09041, 0x09048, 0x09049,
+            0x09200, 0x09201, 0x09208, 0x09209, 0x09240, 0x09241, 0x09248, 0x09249,
+            0x40000, 0x40001, 0x40008, 0x40009, 0x40040, 0x40041, 0x40048, 0x40049,
+            0x40200, 0x40201, 0x40208, 0x40209, 0x40240, 0x40241, 0x40248, 0x40249,
+            0x41000, 0x41001, 0x41008, 0x41009, 0x41040, 0x41041, 0x41048, 0x41049,
+            0x41200, 0x41201, 0x41208, 0x41209, 0x41240, 0x41241, 0x41248, 0x41249,
+            0x48000, 0x48001, 0x48008, 0x48009, 0x48040, 0x48041, 0x48048, 0x48049,
+            0x48200, 0x48201, 0x48208, 0x48209, 0x48240, 0x48241, 0x48248, 0x48249,
+            0x49000, 0x49001, 0x49008, 0x49009, 0x49040, 0x49041, 0x49048, 0x49049,
+            0x49200, 0x49201, 0x49208, 0x49209, 0x49240, 0x49241, 0x49248, 0x49249
+        };
+
+        /*
+         * This expands 8 bit indices into 32 bit contents (high bit 28), by inserting 0s between bits.
+         */
+        private static readonly int[] INTERLEAVE4_TABLE = new int[]
+        {
+            0x00000000, 0x00000001, 0x00000010, 0x00000011, 0x00000100, 0x00000101, 0x00000110, 0x00000111,
+            0x00001000, 0x00001001, 0x00001010, 0x00001011, 0x00001100, 0x00001101, 0x00001110, 0x00001111,
+            0x00010000, 0x00010001, 0x00010010, 0x00010011, 0x00010100, 0x00010101, 0x00010110, 0x00010111,
+            0x00011000, 0x00011001, 0x00011010, 0x00011011, 0x00011100, 0x00011101, 0x00011110, 0x00011111,
+            0x00100000, 0x00100001, 0x00100010, 0x00100011, 0x00100100, 0x00100101, 0x00100110, 0x00100111,
+            0x00101000, 0x00101001, 0x00101010, 0x00101011, 0x00101100, 0x00101101, 0x00101110, 0x00101111,
+            0x00110000, 0x00110001, 0x00110010, 0x00110011, 0x00110100, 0x00110101, 0x00110110, 0x00110111,
+            0x00111000, 0x00111001, 0x00111010, 0x00111011, 0x00111100, 0x00111101, 0x00111110, 0x00111111,
+            0x01000000, 0x01000001, 0x01000010, 0x01000011, 0x01000100, 0x01000101, 0x01000110, 0x01000111,
+            0x01001000, 0x01001001, 0x01001010, 0x01001011, 0x01001100, 0x01001101, 0x01001110, 0x01001111,
+            0x01010000, 0x01010001, 0x01010010, 0x01010011, 0x01010100, 0x01010101, 0x01010110, 0x01010111,
+            0x01011000, 0x01011001, 0x01011010, 0x01011011, 0x01011100, 0x01011101, 0x01011110, 0x01011111,
+            0x01100000, 0x01100001, 0x01100010, 0x01100011, 0x01100100, 0x01100101, 0x01100110, 0x01100111,
+            0x01101000, 0x01101001, 0x01101010, 0x01101011, 0x01101100, 0x01101101, 0x01101110, 0x01101111,
+            0x01110000, 0x01110001, 0x01110010, 0x01110011, 0x01110100, 0x01110101, 0x01110110, 0x01110111,
+            0x01111000, 0x01111001, 0x01111010, 0x01111011, 0x01111100, 0x01111101, 0x01111110, 0x01111111,
+            0x10000000, 0x10000001, 0x10000010, 0x10000011, 0x10000100, 0x10000101, 0x10000110, 0x10000111,
+            0x10001000, 0x10001001, 0x10001010, 0x10001011, 0x10001100, 0x10001101, 0x10001110, 0x10001111,
+            0x10010000, 0x10010001, 0x10010010, 0x10010011, 0x10010100, 0x10010101, 0x10010110, 0x10010111,
+            0x10011000, 0x10011001, 0x10011010, 0x10011011, 0x10011100, 0x10011101, 0x10011110, 0x10011111,
+            0x10100000, 0x10100001, 0x10100010, 0x10100011, 0x10100100, 0x10100101, 0x10100110, 0x10100111,
+            0x10101000, 0x10101001, 0x10101010, 0x10101011, 0x10101100, 0x10101101, 0x10101110, 0x10101111,
+            0x10110000, 0x10110001, 0x10110010, 0x10110011, 0x10110100, 0x10110101, 0x10110110, 0x10110111,
+            0x10111000, 0x10111001, 0x10111010, 0x10111011, 0x10111100, 0x10111101, 0x10111110, 0x10111111,
+            0x11000000, 0x11000001, 0x11000010, 0x11000011, 0x11000100, 0x11000101, 0x11000110, 0x11000111,
+            0x11001000, 0x11001001, 0x11001010, 0x11001011, 0x11001100, 0x11001101, 0x11001110, 0x11001111,
+            0x11010000, 0x11010001, 0x11010010, 0x11010011, 0x11010100, 0x11010101, 0x11010110, 0x11010111,
+            0x11011000, 0x11011001, 0x11011010, 0x11011011, 0x11011100, 0x11011101, 0x11011110, 0x11011111,
+            0x11100000, 0x11100001, 0x11100010, 0x11100011, 0x11100100, 0x11100101, 0x11100110, 0x11100111,
+            0x11101000, 0x11101001, 0x11101010, 0x11101011, 0x11101100, 0x11101101, 0x11101110, 0x11101111,
+            0x11110000, 0x11110001, 0x11110010, 0x11110011, 0x11110100, 0x11110101, 0x11110110, 0x11110111,
+            0x11111000, 0x11111001, 0x11111010, 0x11111011, 0x11111100, 0x11111101, 0x11111110, 0x11111111
+        };
+
+        /*
+         * This expands 7 bit indices into 35 bit contents (high bit 30), by inserting 0s between bits.
+         */
+        private static readonly int[] INTERLEAVE5_TABLE = new int[] {
+            0x00000000, 0x00000001, 0x00000020, 0x00000021, 0x00000400, 0x00000401, 0x00000420, 0x00000421,
+            0x00008000, 0x00008001, 0x00008020, 0x00008021, 0x00008400, 0x00008401, 0x00008420, 0x00008421,
+            0x00100000, 0x00100001, 0x00100020, 0x00100021, 0x00100400, 0x00100401, 0x00100420, 0x00100421,
+            0x00108000, 0x00108001, 0x00108020, 0x00108021, 0x00108400, 0x00108401, 0x00108420, 0x00108421,
+            0x02000000, 0x02000001, 0x02000020, 0x02000021, 0x02000400, 0x02000401, 0x02000420, 0x02000421,
+            0x02008000, 0x02008001, 0x02008020, 0x02008021, 0x02008400, 0x02008401, 0x02008420, 0x02008421,
+            0x02100000, 0x02100001, 0x02100020, 0x02100021, 0x02100400, 0x02100401, 0x02100420, 0x02100421,
+            0x02108000, 0x02108001, 0x02108020, 0x02108021, 0x02108400, 0x02108401, 0x02108420, 0x02108421,
+            0x40000000, 0x40000001, 0x40000020, 0x40000021, 0x40000400, 0x40000401, 0x40000420, 0x40000421,
+            0x40008000, 0x40008001, 0x40008020, 0x40008021, 0x40008400, 0x40008401, 0x40008420, 0x40008421,
+            0x40100000, 0x40100001, 0x40100020, 0x40100021, 0x40100400, 0x40100401, 0x40100420, 0x40100421,
+            0x40108000, 0x40108001, 0x40108020, 0x40108021, 0x40108400, 0x40108401, 0x40108420, 0x40108421,
+            0x42000000, 0x42000001, 0x42000020, 0x42000021, 0x42000400, 0x42000401, 0x42000420, 0x42000421,
+            0x42008000, 0x42008001, 0x42008020, 0x42008021, 0x42008400, 0x42008401, 0x42008420, 0x42008421,
+            0x42100000, 0x42100001, 0x42100020, 0x42100021, 0x42100400, 0x42100401, 0x42100420, 0x42100421,
+            0x42108000, 0x42108001, 0x42108020, 0x42108021, 0x42108400, 0x42108401, 0x42108420, 0x42108421
+        };
+
+        /*
+         * This expands 9 bit indices into 63 bit (long) contents (high bit 56), by inserting 0s between bits.
+         */
+        private static readonly long[] INTERLEAVE7_TABLE = new long[]
+        {
+            0x0000000000000000L, 0x0000000000000001L, 0x0000000000000080L, 0x0000000000000081L,
+            0x0000000000004000L, 0x0000000000004001L, 0x0000000000004080L, 0x0000000000004081L,
+            0x0000000000200000L, 0x0000000000200001L, 0x0000000000200080L, 0x0000000000200081L,
+            0x0000000000204000L, 0x0000000000204001L, 0x0000000000204080L, 0x0000000000204081L,
+            0x0000000010000000L, 0x0000000010000001L, 0x0000000010000080L, 0x0000000010000081L,
+            0x0000000010004000L, 0x0000000010004001L, 0x0000000010004080L, 0x0000000010004081L,
+            0x0000000010200000L, 0x0000000010200001L, 0x0000000010200080L, 0x0000000010200081L,
+            0x0000000010204000L, 0x0000000010204001L, 0x0000000010204080L, 0x0000000010204081L,
+            0x0000000800000000L, 0x0000000800000001L, 0x0000000800000080L, 0x0000000800000081L,
+            0x0000000800004000L, 0x0000000800004001L, 0x0000000800004080L, 0x0000000800004081L,
+            0x0000000800200000L, 0x0000000800200001L, 0x0000000800200080L, 0x0000000800200081L,
+            0x0000000800204000L, 0x0000000800204001L, 0x0000000800204080L, 0x0000000800204081L,
+            0x0000000810000000L, 0x0000000810000001L, 0x0000000810000080L, 0x0000000810000081L,
+            0x0000000810004000L, 0x0000000810004001L, 0x0000000810004080L, 0x0000000810004081L,
+            0x0000000810200000L, 0x0000000810200001L, 0x0000000810200080L, 0x0000000810200081L,
+            0x0000000810204000L, 0x0000000810204001L, 0x0000000810204080L, 0x0000000810204081L,
+            0x0000040000000000L, 0x0000040000000001L, 0x0000040000000080L, 0x0000040000000081L,
+            0x0000040000004000L, 0x0000040000004001L, 0x0000040000004080L, 0x0000040000004081L,
+            0x0000040000200000L, 0x0000040000200001L, 0x0000040000200080L, 0x0000040000200081L,
+            0x0000040000204000L, 0x0000040000204001L, 0x0000040000204080L, 0x0000040000204081L,
+            0x0000040010000000L, 0x0000040010000001L, 0x0000040010000080L, 0x0000040010000081L,
+            0x0000040010004000L, 0x0000040010004001L, 0x0000040010004080L, 0x0000040010004081L,
+            0x0000040010200000L, 0x0000040010200001L, 0x0000040010200080L, 0x0000040010200081L,
+            0x0000040010204000L, 0x0000040010204001L, 0x0000040010204080L, 0x0000040010204081L,
+            0x0000040800000000L, 0x0000040800000001L, 0x0000040800000080L, 0x0000040800000081L,
+            0x0000040800004000L, 0x0000040800004001L, 0x0000040800004080L, 0x0000040800004081L,
+            0x0000040800200000L, 0x0000040800200001L, 0x0000040800200080L, 0x0000040800200081L,
+            0x0000040800204000L, 0x0000040800204001L, 0x0000040800204080L, 0x0000040800204081L,
+            0x0000040810000000L, 0x0000040810000001L, 0x0000040810000080L, 0x0000040810000081L,
+            0x0000040810004000L, 0x0000040810004001L, 0x0000040810004080L, 0x0000040810004081L,
+            0x0000040810200000L, 0x0000040810200001L, 0x0000040810200080L, 0x0000040810200081L,
+            0x0000040810204000L, 0x0000040810204001L, 0x0000040810204080L, 0x0000040810204081L,
+            0x0002000000000000L, 0x0002000000000001L, 0x0002000000000080L, 0x0002000000000081L,
+            0x0002000000004000L, 0x0002000000004001L, 0x0002000000004080L, 0x0002000000004081L,
+            0x0002000000200000L, 0x0002000000200001L, 0x0002000000200080L, 0x0002000000200081L,
+            0x0002000000204000L, 0x0002000000204001L, 0x0002000000204080L, 0x0002000000204081L,
+            0x0002000010000000L, 0x0002000010000001L, 0x0002000010000080L, 0x0002000010000081L,
+            0x0002000010004000L, 0x0002000010004001L, 0x0002000010004080L, 0x0002000010004081L,
+            0x0002000010200000L, 0x0002000010200001L, 0x0002000010200080L, 0x0002000010200081L,
+            0x0002000010204000L, 0x0002000010204001L, 0x0002000010204080L, 0x0002000010204081L,
+            0x0002000800000000L, 0x0002000800000001L, 0x0002000800000080L, 0x0002000800000081L,
+            0x0002000800004000L, 0x0002000800004001L, 0x0002000800004080L, 0x0002000800004081L,
+            0x0002000800200000L, 0x0002000800200001L, 0x0002000800200080L, 0x0002000800200081L,
+            0x0002000800204000L, 0x0002000800204001L, 0x0002000800204080L, 0x0002000800204081L,
+            0x0002000810000000L, 0x0002000810000001L, 0x0002000810000080L, 0x0002000810000081L,
+            0x0002000810004000L, 0x0002000810004001L, 0x0002000810004080L, 0x0002000810004081L,
+            0x0002000810200000L, 0x0002000810200001L, 0x0002000810200080L, 0x0002000810200081L,
+            0x0002000810204000L, 0x0002000810204001L, 0x0002000810204080L, 0x0002000810204081L,
+            0x0002040000000000L, 0x0002040000000001L, 0x0002040000000080L, 0x0002040000000081L,
+            0x0002040000004000L, 0x0002040000004001L, 0x0002040000004080L, 0x0002040000004081L,
+            0x0002040000200000L, 0x0002040000200001L, 0x0002040000200080L, 0x0002040000200081L,
+            0x0002040000204000L, 0x0002040000204001L, 0x0002040000204080L, 0x0002040000204081L,
+            0x0002040010000000L, 0x0002040010000001L, 0x0002040010000080L, 0x0002040010000081L,
+            0x0002040010004000L, 0x0002040010004001L, 0x0002040010004080L, 0x0002040010004081L,
+            0x0002040010200000L, 0x0002040010200001L, 0x0002040010200080L, 0x0002040010200081L,
+            0x0002040010204000L, 0x0002040010204001L, 0x0002040010204080L, 0x0002040010204081L,
+            0x0002040800000000L, 0x0002040800000001L, 0x0002040800000080L, 0x0002040800000081L,
+            0x0002040800004000L, 0x0002040800004001L, 0x0002040800004080L, 0x0002040800004081L,
+            0x0002040800200000L, 0x0002040800200001L, 0x0002040800200080L, 0x0002040800200081L,
+            0x0002040800204000L, 0x0002040800204001L, 0x0002040800204080L, 0x0002040800204081L,
+            0x0002040810000000L, 0x0002040810000001L, 0x0002040810000080L, 0x0002040810000081L,
+            0x0002040810004000L, 0x0002040810004001L, 0x0002040810004080L, 0x0002040810004081L,
+            0x0002040810200000L, 0x0002040810200001L, 0x0002040810200080L, 0x0002040810200081L,
+            0x0002040810204000L, 0x0002040810204001L, 0x0002040810204080L, 0x0002040810204081L,
+            0x0100000000000000L, 0x0100000000000001L, 0x0100000000000080L, 0x0100000000000081L,
+            0x0100000000004000L, 0x0100000000004001L, 0x0100000000004080L, 0x0100000000004081L,
+            0x0100000000200000L, 0x0100000000200001L, 0x0100000000200080L, 0x0100000000200081L,
+            0x0100000000204000L, 0x0100000000204001L, 0x0100000000204080L, 0x0100000000204081L,
+            0x0100000010000000L, 0x0100000010000001L, 0x0100000010000080L, 0x0100000010000081L,
+            0x0100000010004000L, 0x0100000010004001L, 0x0100000010004080L, 0x0100000010004081L,
+            0x0100000010200000L, 0x0100000010200001L, 0x0100000010200080L, 0x0100000010200081L,
+            0x0100000010204000L, 0x0100000010204001L, 0x0100000010204080L, 0x0100000010204081L,
+            0x0100000800000000L, 0x0100000800000001L, 0x0100000800000080L, 0x0100000800000081L,
+            0x0100000800004000L, 0x0100000800004001L, 0x0100000800004080L, 0x0100000800004081L,
+            0x0100000800200000L, 0x0100000800200001L, 0x0100000800200080L, 0x0100000800200081L,
+            0x0100000800204000L, 0x0100000800204001L, 0x0100000800204080L, 0x0100000800204081L,
+            0x0100000810000000L, 0x0100000810000001L, 0x0100000810000080L, 0x0100000810000081L,
+            0x0100000810004000L, 0x0100000810004001L, 0x0100000810004080L, 0x0100000810004081L,
+            0x0100000810200000L, 0x0100000810200001L, 0x0100000810200080L, 0x0100000810200081L,
+            0x0100000810204000L, 0x0100000810204001L, 0x0100000810204080L, 0x0100000810204081L,
+            0x0100040000000000L, 0x0100040000000001L, 0x0100040000000080L, 0x0100040000000081L,
+            0x0100040000004000L, 0x0100040000004001L, 0x0100040000004080L, 0x0100040000004081L,
+            0x0100040000200000L, 0x0100040000200001L, 0x0100040000200080L, 0x0100040000200081L,
+            0x0100040000204000L, 0x0100040000204001L, 0x0100040000204080L, 0x0100040000204081L,
+            0x0100040010000000L, 0x0100040010000001L, 0x0100040010000080L, 0x0100040010000081L,
+            0x0100040010004000L, 0x0100040010004001L, 0x0100040010004080L, 0x0100040010004081L,
+            0x0100040010200000L, 0x0100040010200001L, 0x0100040010200080L, 0x0100040010200081L,
+            0x0100040010204000L, 0x0100040010204001L, 0x0100040010204080L, 0x0100040010204081L,
+            0x0100040800000000L, 0x0100040800000001L, 0x0100040800000080L, 0x0100040800000081L,
+            0x0100040800004000L, 0x0100040800004001L, 0x0100040800004080L, 0x0100040800004081L,
+            0x0100040800200000L, 0x0100040800200001L, 0x0100040800200080L, 0x0100040800200081L,
+            0x0100040800204000L, 0x0100040800204001L, 0x0100040800204080L, 0x0100040800204081L,
+            0x0100040810000000L, 0x0100040810000001L, 0x0100040810000080L, 0x0100040810000081L,
+            0x0100040810004000L, 0x0100040810004001L, 0x0100040810004080L, 0x0100040810004081L,
+            0x0100040810200000L, 0x0100040810200001L, 0x0100040810200080L, 0x0100040810200081L,
+            0x0100040810204000L, 0x0100040810204001L, 0x0100040810204080L, 0x0100040810204081L,
+            0x0102000000000000L, 0x0102000000000001L, 0x0102000000000080L, 0x0102000000000081L,
+            0x0102000000004000L, 0x0102000000004001L, 0x0102000000004080L, 0x0102000000004081L,
+            0x0102000000200000L, 0x0102000000200001L, 0x0102000000200080L, 0x0102000000200081L,
+            0x0102000000204000L, 0x0102000000204001L, 0x0102000000204080L, 0x0102000000204081L,
+            0x0102000010000000L, 0x0102000010000001L, 0x0102000010000080L, 0x0102000010000081L,
+            0x0102000010004000L, 0x0102000010004001L, 0x0102000010004080L, 0x0102000010004081L,
+            0x0102000010200000L, 0x0102000010200001L, 0x0102000010200080L, 0x0102000010200081L,
+            0x0102000010204000L, 0x0102000010204001L, 0x0102000010204080L, 0x0102000010204081L,
+            0x0102000800000000L, 0x0102000800000001L, 0x0102000800000080L, 0x0102000800000081L,
+            0x0102000800004000L, 0x0102000800004001L, 0x0102000800004080L, 0x0102000800004081L,
+            0x0102000800200000L, 0x0102000800200001L, 0x0102000800200080L, 0x0102000800200081L,
+            0x0102000800204000L, 0x0102000800204001L, 0x0102000800204080L, 0x0102000800204081L,
+            0x0102000810000000L, 0x0102000810000001L, 0x0102000810000080L, 0x0102000810000081L,
+            0x0102000810004000L, 0x0102000810004001L, 0x0102000810004080L, 0x0102000810004081L,
+            0x0102000810200000L, 0x0102000810200001L, 0x0102000810200080L, 0x0102000810200081L,
+            0x0102000810204000L, 0x0102000810204001L, 0x0102000810204080L, 0x0102000810204081L,
+            0x0102040000000000L, 0x0102040000000001L, 0x0102040000000080L, 0x0102040000000081L,
+            0x0102040000004000L, 0x0102040000004001L, 0x0102040000004080L, 0x0102040000004081L,
+            0x0102040000200000L, 0x0102040000200001L, 0x0102040000200080L, 0x0102040000200081L,
+            0x0102040000204000L, 0x0102040000204001L, 0x0102040000204080L, 0x0102040000204081L,
+            0x0102040010000000L, 0x0102040010000001L, 0x0102040010000080L, 0x0102040010000081L,
+            0x0102040010004000L, 0x0102040010004001L, 0x0102040010004080L, 0x0102040010004081L,
+            0x0102040010200000L, 0x0102040010200001L, 0x0102040010200080L, 0x0102040010200081L,
+            0x0102040010204000L, 0x0102040010204001L, 0x0102040010204080L, 0x0102040010204081L,
+            0x0102040800000000L, 0x0102040800000001L, 0x0102040800000080L, 0x0102040800000081L,
+            0x0102040800004000L, 0x0102040800004001L, 0x0102040800004080L, 0x0102040800004081L,
+            0x0102040800200000L, 0x0102040800200001L, 0x0102040800200080L, 0x0102040800200081L,
+            0x0102040800204000L, 0x0102040800204001L, 0x0102040800204080L, 0x0102040800204081L,
+            0x0102040810000000L, 0x0102040810000001L, 0x0102040810000080L, 0x0102040810000081L,
+            0x0102040810004000L, 0x0102040810004001L, 0x0102040810004080L, 0x0102040810004081L,
+            0x0102040810200000L, 0x0102040810200001L, 0x0102040810200080L, 0x0102040810200081L,
+            0x0102040810204000L, 0x0102040810204001L, 0x0102040810204080L, 0x0102040810204081L
+        };
+
+        // For toString(); must have length 64
+        private const string ZEROES = "0000000000000000000000000000000000000000000000000000000000000000";
+
+        internal static readonly byte[] BitLengths =
+        {
+            0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4,
+            5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
+            6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
+            6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
+            7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
+            7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
+            7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
+            7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
+            8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
+            8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
+            8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
+            8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
+            8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
+            8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
+            8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
+            8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8
+        };
+
+        // TODO make m fixed for the LongArray, and hence compute T once and for all
+
+        private long[] m_ints;
+
+        public LongArray(int intLen)
+        {
+            m_ints = new long[intLen];
+        }
+
+        public LongArray(long[] ints)
+        {
+            m_ints = ints;
+        }
+
+        public LongArray(long[] ints, int off, int len)
+        {
+            if (off == 0 && len == ints.Length)
+            {
+                m_ints = ints;
+            }
+            else
+            {
+                m_ints = new long[len];
+                Array.Copy(ints, off, m_ints, 0, len);
+            }
+        }
+
+        public LongArray(BigInteger bigInt)
+        {
+            if (bigInt == null || bigInt.SignValue < 0)
+            {
+                throw new ArgumentException("invalid F2m field value", "bigInt");
+            }
+
+            if (bigInt.SignValue == 0)
+            {
+                m_ints = new long[] { 0L };
+                return;
+            }
+
+            byte[] barr = bigInt.ToByteArray();
+            int barrLen = barr.Length;
+            int barrStart = 0;
+            if (barr[0] == 0)
+            {
+                // First byte is 0 to enforce highest (=sign) bit is zero.
+                // In this case ignore barr[0].
+                barrLen--;
+                barrStart = 1;
+            }
+            int intLen = (barrLen + 7) / 8;
+            m_ints = new long[intLen];
+
+            int iarrJ = intLen - 1;
+            int rem = barrLen % 8 + barrStart;
+            long temp = 0;
+            int barrI = barrStart;
+            if (barrStart < rem)
+            {
+                for (; barrI < rem; barrI++)
+                {
+                    temp <<= 8;
+                    uint barrBarrI = barr[barrI];
+                    temp |= barrBarrI;
+                }
+                m_ints[iarrJ--] = temp;
+            }
+
+            for (; iarrJ >= 0; iarrJ--)
+            {
+                temp = 0;
+                for (int i = 0; i < 8; i++)
+                {
+                    temp <<= 8;
+                    uint barrBarrI = barr[barrI++];
+                    temp |= barrBarrI;
+                }
+                m_ints[iarrJ] = temp;
+            }
+        }
+
+        public bool IsOne()
+        {
+            long[] a = m_ints;
+            if (a[0] != 1L)
+            {
+                return false;
+            }
+            for (int i = 1; i < a.Length; ++i)
+            {
+                if (a[i] != 0L)
+                {
+                    return false;
+                }
+            }
+            return true;
+        }
+
+        public bool IsZero()
+        {
+            long[] a = m_ints;
+            for (int i = 0; i < a.Length; ++i)
+            {
+                if (a[i] != 0L)
+                {
+                    return false;
+                }
+            }
+            return true;
+        }
+
+        public int GetUsedLength()
+        {
+            return GetUsedLengthFrom(m_ints.Length);
+        }
+
+        public int GetUsedLengthFrom(int from)
+        {
+            long[] a = m_ints;
+            from = System.Math.Min(from, a.Length);
+
+            if (from < 1)
+            {
+                return 0;
+            }
+
+            // Check if first element will act as sentinel
+            if (a[0] != 0)
+            {
+                while (a[--from] == 0)
+                {
+                }
+                return from + 1;
+            }
+
+            do
+            {
+                if (a[--from] != 0)
+                {
+                    return from + 1;
+                }
+            }
+            while (from > 0);
+
+            return 0;
+        }
+
+        public int Degree()
+        {
+            int i = m_ints.Length;
+            long w;
+            do
+            {
+                if (i == 0)
+                {
+                    return 0;
+                }
+                w = m_ints[--i];
+            }
+            while (w == 0);
+
+            return (i << 6) + BitLength(w);
+        }
+
+        private int DegreeFrom(int limit)
+        {
+            int i = (int)(((uint)limit + 62) >> 6);
+            long w;
+            do
+            {
+                if (i == 0)
+                {
+                    return 0;
+                }
+                w = m_ints[--i];
+            }
+            while (w == 0);
+
+            return (i << 6) + BitLength(w);
+        }
+
+    //    private int lowestCoefficient()
+    //    {
+    //        for (int i = 0; i < m_ints.Length; ++i)
+    //        {
+    //            long mi = m_ints[i];
+    //            if (mi != 0)
+    //            {
+    //                int j = 0;
+    //                while ((mi & 0xFFL) == 0)
+    //                {
+    //                    j += 8;
+    //                    mi >>>= 8;
+    //                }
+    //                while ((mi & 1L) == 0)
+    //                {
+    //                    ++j;
+    //                    mi >>>= 1;
+    //                }
+    //                return (i << 6) + j;
+    //            }
+    //        }
+    //        return -1;
+    //    }
+
+        private static int BitLength(long w)
+        {
+            int u = (int)((ulong)w >> 32), b;
+            if (u == 0)
+            {
+                u = (int)w;
+                b = 0;
+            }
+            else
+            {
+                b = 32;
+            }
+
+            int t = (int)((uint)u >> 16), k;
+            if (t == 0)
+            {
+                t = (int)((uint)u >> 8);
+                k = (t == 0) ? BitLengths[u] : 8 + BitLengths[t];
+            }
+            else
+            {
+                int v = (int)((uint)t >> 8);
+                k = (v == 0) ? 16 + BitLengths[t] : 24 + BitLengths[v];
+            }
+
+            return b + k;
+        }
+
+        private long[] ResizedInts(int newLen)
+        {
+            long[] newInts = new long[newLen];
+            Array.Copy(m_ints, 0, newInts, 0, System.Math.Min(m_ints.Length, newLen));
+            return newInts;
+        }
+
+        public BigInteger ToBigInteger()
+        {
+            int usedLen = GetUsedLength();
+            if (usedLen == 0)
+            {
+                return BigInteger.Zero;
+            }
+
+            long highestInt = m_ints[usedLen - 1];
+            byte[] temp = new byte[8];
+            int barrI = 0;
+            bool trailingZeroBytesDone = false;
+            for (int j = 7; j >= 0; j--)
+            {
+                byte thisByte = (byte)((ulong)highestInt >> (8 * j));
+                if (trailingZeroBytesDone || (thisByte != 0))
+                {
+                    trailingZeroBytesDone = true;
+                    temp[barrI++] = thisByte;
+                }
+            }
+
+            int barrLen = 8 * (usedLen - 1) + barrI;
+            byte[] barr = new byte[barrLen];
+            for (int j = 0; j < barrI; j++)
+            {
+                barr[j] = temp[j];
+            }
+            // Highest value int is done now
+
+            for (int iarrJ = usedLen - 2; iarrJ >= 0; iarrJ--)
+            {
+                long mi = m_ints[iarrJ];
+                for (int j = 7; j >= 0; j--)
+                {
+                    barr[barrI++] = (byte)((ulong)mi >> (8 * j));
+                }
+            }
+            return new BigInteger(1, barr);
+        }
+
+    //    private static long shiftUp(long[] x, int xOff, int count)
+    //    {
+    //        long prev = 0;
+    //        for (int i = 0; i < count; ++i)
+    //        {
+    //            long next = x[xOff + i];
+    //            x[xOff + i] = (next << 1) | prev;
+    //            prev = next >>> 63;
+    //        }
+    //        return prev;
+    //    }
+
+        private static long ShiftUp(long[] x, int xOff, int count, int shift)
+        {
+            int shiftInv = 64 - shift;
+            long prev = 0;
+            for (int i = 0; i < count; ++i)
+            {
+                long next = x[xOff + i];
+                x[xOff + i] = (next << shift) | prev;
+                prev = (long)((ulong)next >> shiftInv);
+            }
+            return prev;
+        }
+
+        private static long ShiftUp(long[] x, int xOff, long[] z, int zOff, int count, int shift)
+        {
+            int shiftInv = 64 - shift;
+            long prev = 0;
+            for (int i = 0; i < count; ++i)
+            {
+                long next = x[xOff + i];
+                z[zOff + i] = (next << shift) | prev;
+                prev = (long)((ulong)next >> shiftInv);
+            }
+            return prev;
+        }
+
+        public LongArray AddOne()
+        {
+            if (m_ints.Length == 0)
+            {
+                return new LongArray(new long[]{ 1L });
+            }
+
+            int resultLen = System.Math.Max(1, GetUsedLength());
+            long[] ints = ResizedInts(resultLen);
+            ints[0] ^= 1L;
+            return new LongArray(ints);
+        }
+
+    //    private void addShiftedByBits(LongArray other, int bits)
+    //    {
+    //        int words = bits >>> 6;
+    //        int shift = bits & 0x3F;
+    //
+    //        if (shift == 0)
+    //        {
+    //            addShiftedByWords(other, words);
+    //            return;
+    //        }
+    //
+    //        int otherUsedLen = other.GetUsedLength();
+    //        if (otherUsedLen == 0)
+    //        {
+    //            return;
+    //        }
+    //
+    //        int minLen = otherUsedLen + words + 1;
+    //        if (minLen > m_ints.Length)
+    //        {
+    //            m_ints = resizedInts(minLen);
+    //        }
+    //
+    //        long carry = addShiftedByBits(m_ints, words, other.m_ints, 0, otherUsedLen, shift);
+    //        m_ints[otherUsedLen + words] ^= carry;
+    //    }
+
+        private void AddShiftedByBitsSafe(LongArray other, int otherDegree, int bits)
+        {
+            int otherLen = (int)((uint)(otherDegree + 63) >> 6);
+
+            int words = (int)((uint)bits >> 6);
+            int shift = bits & 0x3F;
+
+            if (shift == 0)
+            {
+                Add(m_ints, words, other.m_ints, 0, otherLen);
+                return;
+            }
+
+            long carry = AddShiftedUp(m_ints, words, other.m_ints, 0, otherLen, shift);
+            if (carry != 0L)
+            {
+                m_ints[otherLen + words] ^= carry;
+            }
+        }
+
+        private static long AddShiftedUp(long[] x, int xOff, long[] y, int yOff, int count, int shift)
+        {
+            int shiftInv = 64 - shift;
+            long prev = 0;
+            for (int i = 0; i < count; ++i)
+            {
+                long next = y[yOff + i];
+                x[xOff + i] ^= (next << shift) | prev;
+                prev = (long)((ulong)next >> shiftInv);
+            }
+            return prev;
+        }
+
+        private static long AddShiftedDown(long[] x, int xOff, long[] y, int yOff, int count, int shift)
+        {
+            int shiftInv = 64 - shift;
+            long prev = 0;
+            int i = count;
+            while (--i >= 0)
+            {
+                long next = y[yOff + i];
+                x[xOff + i] ^= (long)((ulong)next >> shift) | prev;
+                prev = next << shiftInv;
+            }
+            return prev;
+        }
+
+        public void AddShiftedByWords(LongArray other, int words)
+        {
+            int otherUsedLen = other.GetUsedLength();
+            if (otherUsedLen == 0)
+            {
+                return;
+            }
+
+            int minLen = otherUsedLen + words;
+            if (minLen > m_ints.Length)
+            {
+                m_ints = ResizedInts(minLen);
+            }
+
+            Add(m_ints, words, other.m_ints, 0, otherUsedLen);
+        }
+
+        private static void Add(long[] x, int xOff, long[] y, int yOff, int count)
+        {
+            for (int i = 0; i < count; ++i)
+            {
+                x[xOff + i] ^= y[yOff + i];
+            }
+        }
+
+        private static void Add(long[] x, int xOff, long[] y, int yOff, long[] z, int zOff, int count)
+        {
+            for (int i = 0; i < count; ++i)
+            {
+                z[zOff + i] = x[xOff + i] ^ y[yOff + i];
+            }
+        }
+
+        private static void AddBoth(long[] x, int xOff, long[] y1, int y1Off, long[] y2, int y2Off, int count)
+        {
+            for (int i = 0; i < count; ++i)
+            {
+                x[xOff + i] ^= y1[y1Off + i] ^ y2[y2Off + i];
+            }
+        }
+
+        private static void Distribute(long[] x, int src, int dst1, int dst2, int count)
+        {
+            for (int i = 0; i < count; ++i)
+            {
+                long v = x[src + i];
+                x[dst1 + i] ^= v;
+                x[dst2 + i] ^= v;
+            }
+        }
+
+        public int Length
+        {
+            get { return m_ints.Length; }
+        }
+
+        private static void FlipWord(long[] buf, int off, int bit, long word)
+        {
+            int n = off + (int)((uint)bit >> 6);
+            int shift = bit & 0x3F;
+            if (shift == 0)
+            {
+                buf[n] ^= word;
+            }
+            else
+            {
+                buf[n] ^= word << shift;
+                word = (long)((ulong)word >> (64 - shift));
+                if (word != 0)
+                {
+                    buf[++n] ^= word;
+                }
+            }
+        }
+
+    //    private static long getWord(long[] buf, int off, int len, int bit)
+    //    {
+    //        int n = off + (bit >>> 6);
+    //        int shift = bit & 0x3F;
+    //        if (shift == 0)
+    //        {
+    //            return buf[n];
+    //        }
+    //        long result = buf[n] >>> shift;
+    //        if (++n < len)
+    //        {
+    //            result |= buf[n] << (64 - shift);
+    //        }
+    //        return result;
+    //    }
+
+        public bool TestBitZero()
+        {
+            return m_ints.Length > 0 && (m_ints[0] & 1L) != 0;
+        }
+
+        private static bool TestBit(long[] buf, int off, int n)
+        {
+            // theInt = n / 64
+            int theInt = (int)((uint)n >> 6);
+            // theBit = n % 64
+            int theBit = n & 0x3F;
+            long tester = 1L << theBit;
+            return (buf[off + theInt] & tester) != 0;
+        }
+
+        private static void FlipBit(long[] buf, int off, int n)
+        {
+            // theInt = n / 64
+            int theInt = (int)((uint)n >> 6);
+            // theBit = n % 64
+            int theBit = n & 0x3F;
+            long flipper = 1L << theBit;
+            buf[off + theInt] ^= flipper;
+        }
+
+    //    private static void SetBit(long[] buf, int off, int n)
+    //    {
+    //        // theInt = n / 64
+    //        int theInt = n >>> 6;
+    //        // theBit = n % 64
+    //        int theBit = n & 0x3F;
+    //        long setter = 1L << theBit;
+    //        buf[off + theInt] |= setter;
+    //    }
+    //
+    //    private static void ClearBit(long[] buf, int off, int n)
+    //    {
+    //        // theInt = n / 64
+    //        int theInt = n >>> 6;
+    //        // theBit = n % 64
+    //        int theBit = n & 0x3F;
+    //        long setter = 1L << theBit;
+    //        buf[off + theInt] &= ~setter;
+    //    }
+
+        private static void MultiplyWord(long a, long[] b, int bLen, long[] c, int cOff)
+        {
+            if ((a & 1L) != 0L)
+            {
+                Add(c, cOff, b, 0, bLen);
+            }
+            int k = 1;
+            while ((a = (long)((ulong)a >> 1)) != 0L)
+            {
+                if ((a & 1L) != 0L)
+                {
+                    long carry = AddShiftedUp(c, cOff, b, 0, bLen, k);
+                    if (carry != 0L)
+                    {
+                        c[cOff + bLen] ^= carry;
+                    }
+                }
+                ++k;
+            }
+        }
+
+        public LongArray ModMultiplyLD(LongArray other, int m, int[] ks)
+        {
+            /*
+             * Find out the degree of each argument and handle the zero cases
+             */
+            int aDeg = Degree();
+            if (aDeg == 0)
+            {
+                return this;
+            }
+            int bDeg = other.Degree();
+            if (bDeg == 0)
+            {
+                return other;
+            }
+
+            /*
+             * Swap if necessary so that A is the smaller argument
+             */
+            LongArray A = this, B = other;
+            if (aDeg > bDeg)
+            {
+                A = other; B = this;
+                int tmp = aDeg; aDeg = bDeg; bDeg = tmp;
+            }
+
+            /*
+             * Establish the word lengths of the arguments and result
+             */
+            int aLen = (int)((uint)(aDeg + 63) >> 6);
+            int bLen = (int)((uint)(bDeg + 63) >> 6);
+            int cLen = (int)((uint)(aDeg + bDeg + 62) >> 6);
+
+            if (aLen == 1)
+            {
+                long a0 = A.m_ints[0];
+                if (a0 == 1L)
+                {
+                    return B;
+                }
+
+                /*
+                 * Fast path for small A, with performance dependent only on the number of set bits
+                 */
+                long[] c0 = new long[cLen];
+                MultiplyWord(a0, B.m_ints, bLen, c0, 0);
+
+                /*
+                 * Reduce the raw answer against the reduction coefficients
+                 */
+                return ReduceResult(c0, 0, cLen, m, ks);
+            }
+
+            /*
+             * Determine if B will get bigger during shifting
+             */
+            int bMax = (int)((uint)(bDeg + 7 + 63) >> 6);
+
+            /*
+             * Lookup table for the offset of each B in the tables
+             */
+            int[] ti = new int[16];
+
+            /*
+             * Precompute table of all 4-bit products of B
+             */
+            long[] T0 = new long[bMax << 4];
+            int tOff = bMax;
+            ti[1] = tOff;
+            Array.Copy(B.m_ints, 0, T0, tOff, bLen);
+            for (int i = 2; i < 16; ++i)
+            {
+                ti[i] = (tOff += bMax);
+                if ((i & 1) == 0)
+                {
+                    ShiftUp(T0, (int)((uint)tOff >> 1), T0, tOff, bMax, 1);
+                }
+                else
+                {
+                    Add(T0, bMax, T0, tOff - bMax, T0, tOff, bMax);
+                }
+            }
+
+            /*
+             * Second table with all 4-bit products of B shifted 4 bits
+             */
+            long[] T1 = new long[T0.Length];
+            ShiftUp(T0, 0, T1, 0, T0.Length, 4);
+    //        shiftUp(T0, bMax, T1, bMax, tOff, 4);
+
+            long[] a = A.m_ints;
+            long[] c = new long[cLen];
+
+            int MASK = 0xF;
+
+            /*
+             * Lopez-Dahab algorithm
+             */
+
+            for (int k = 56; k >= 0; k -= 8)
+            {
+                for (int j = 1; j < aLen; j += 2)
+                {
+                    int aVal = (int)((ulong)a[j] >> k);
+                    int u = aVal & MASK;
+                    int v = (int)((uint)aVal >> 4) & MASK;
+                    AddBoth(c, j - 1, T0, ti[u], T1, ti[v], bMax);
+                }
+                ShiftUp(c, 0, cLen, 8);
+            }
+
+            for (int k = 56; k >= 0; k -= 8)
+            {
+                for (int j = 0; j < aLen; j += 2)
+                {
+                    int aVal = (int)((ulong)a[j] >> k);
+                    int u = aVal & MASK;
+                    int v = (int)((uint)aVal >> 4) & MASK;
+                    AddBoth(c, j, T0, ti[u], T1, ti[v], bMax);
+                }
+                if (k > 0)
+                {
+                    ShiftUp(c, 0, cLen, 8);
+                }
+            }
+
+            /*
+             * Finally the raw answer is collected, reduce it against the reduction coefficients
+             */
+            return ReduceResult(c, 0, cLen, m, ks);
+        }
+
+        public LongArray ModMultiply(LongArray other, int m, int[] ks)
+        {
+            /*
+             * Find out the degree of each argument and handle the zero cases
+             */
+            int aDeg = Degree();
+            if (aDeg == 0)
+            {
+                return this;
+            }
+            int bDeg = other.Degree();
+            if (bDeg == 0)
+            {
+                return other;
+            }
+
+            /*
+             * Swap if necessary so that A is the smaller argument
+             */
+            LongArray A = this, B = other;
+            if (aDeg > bDeg)
+            {
+                A = other; B = this;
+                int tmp = aDeg; aDeg = bDeg; bDeg = tmp;
+            }
+
+            /*
+             * Establish the word lengths of the arguments and result
+             */
+            int aLen = (int)((uint)(aDeg + 63) >> 6);
+            int bLen = (int)((uint)(bDeg + 63) >> 6);
+            int cLen = (int)((uint)(aDeg + bDeg + 62) >> 6);
+
+            if (aLen == 1)
+            {
+                long a0 = A.m_ints[0];
+                if (a0 == 1L)
+                {
+                    return B;
+                }
+
+                /*
+                 * Fast path for small A, with performance dependent only on the number of set bits
+                 */
+                long[] c0 = new long[cLen];
+                MultiplyWord(a0, B.m_ints, bLen, c0, 0);
+
+                /*
+                 * Reduce the raw answer against the reduction coefficients
+                 */
+                return ReduceResult(c0, 0, cLen, m, ks);
+            }
+
+            /*
+             * Determine if B will get bigger during shifting
+             */
+            int bMax = (int)((uint)(bDeg + 7 + 63) >> 6);
+
+            /*
+             * Lookup table for the offset of each B in the tables
+             */
+            int[] ti = new int[16];
+
+            /*
+             * Precompute table of all 4-bit products of B
+             */
+            long[] T0 = new long[bMax << 4];
+            int tOff = bMax;
+            ti[1] = tOff;
+            Array.Copy(B.m_ints, 0, T0, tOff, bLen);
+            for (int i = 2; i < 16; ++i)
+            {
+                ti[i] = (tOff += bMax);
+                if ((i & 1) == 0)
+                {
+                    ShiftUp(T0, (int)((uint)tOff >> 1), T0, tOff, bMax, 1);
+                }
+                else
+                {
+                    Add(T0, bMax, T0, tOff - bMax, T0, tOff, bMax);
+                }
+            }
+
+            /*
+             * Second table with all 4-bit products of B shifted 4 bits
+             */
+            long[] T1 = new long[T0.Length];
+            ShiftUp(T0, 0, T1, 0, T0.Length, 4);
+    //        ShiftUp(T0, bMax, T1, bMax, tOff, 4);
+
+            long[] a = A.m_ints;
+            long[] c = new long[cLen << 3];
+
+            int MASK = 0xF;
+
+            /*
+             * Lopez-Dahab (Modified) algorithm
+             */
+
+            for (int aPos = 0; aPos < aLen; ++aPos)
+            {
+                long aVal = a[aPos];
+                int cOff = aPos;
+                for (;;)
+                {
+                    int u = (int)aVal & MASK;
+                    aVal = (long)((ulong)aVal >> 4);
+                    int v = (int)aVal & MASK;
+                    AddBoth(c, cOff, T0, ti[u], T1, ti[v], bMax);
+                    aVal = (long)((ulong)aVal >> 4);
+                    if (aVal == 0L)
+                    {
+                        break;
+                    }
+                    cOff += cLen;
+                }
+            }
+
+            {
+                int cOff = c.Length;
+                while ((cOff -= cLen) != 0)
+                {
+                    AddShiftedUp(c, cOff - cLen, c, cOff, cLen, 8);
+                }
+            }
+
+            /*
+             * Finally the raw answer is collected, reduce it against the reduction coefficients
+             */
+            return ReduceResult(c, 0, cLen, m, ks);
+        }
+
+        public LongArray ModMultiplyAlt(LongArray other, int m, int[] ks)
+        {
+            /*
+             * Find out the degree of each argument and handle the zero cases
+             */
+            int aDeg = Degree();
+            if (aDeg == 0)
+            {
+                return this;
+            }
+            int bDeg = other.Degree();
+            if (bDeg == 0)
+            {
+                return other;
+            }
+
+            /*
+             * Swap if necessary so that A is the smaller argument
+             */
+            LongArray A = this, B = other;
+            if (aDeg > bDeg)
+            {
+                A = other; B = this;
+                int tmp = aDeg; aDeg = bDeg; bDeg = tmp;
+            }
+
+            /*
+             * Establish the word lengths of the arguments and result
+             */
+            int aLen = (int)((uint)(aDeg + 63) >> 6);
+            int bLen = (int)((uint)(bDeg + 63) >> 6);
+            int cLen = (int)((uint)(aDeg + bDeg + 62) >> 6);
+
+            if (aLen == 1)
+            {
+                long a0 = A.m_ints[0];
+                if (a0 == 1L)
+                {
+                    return B;
+                }
+
+                /*
+                 * Fast path for small A, with performance dependent only on the number of set bits
+                 */
+                long[] c0 = new long[cLen];
+                MultiplyWord(a0, B.m_ints, bLen, c0, 0);
+
+                /*
+                 * Reduce the raw answer against the reduction coefficients
+                 */
+                return ReduceResult(c0, 0, cLen, m, ks);
+            }
+
+            // NOTE: This works, but is slower than width 4 processing
+    //        if (aLen == 2)
+    //        {
+    //            /*
+    //             * Use common-multiplicand optimization to save ~1/4 of the adds
+    //             */
+    //            long a1 = A.m_ints[0], a2 = A.m_ints[1];
+    //            long aa = a1 & a2; a1 ^= aa; a2 ^= aa;
+    //
+    //            long[] b = B.m_ints;
+    //            long[] c = new long[cLen];
+    //            multiplyWord(aa, b, bLen, c, 1);
+    //            add(c, 0, c, 1, cLen - 1);
+    //            multiplyWord(a1, b, bLen, c, 0);
+    //            multiplyWord(a2, b, bLen, c, 1);
+    //
+    //            /*
+    //             * Reduce the raw answer against the reduction coefficients
+    //             */
+    //            return ReduceResult(c, 0, cLen, m, ks);
+    //        }
+
+            /*
+             * Determine the parameters of the Interleaved window algorithm: the 'width' in bits to
+             * process together, the number of evaluation 'positions' implied by that width, and the
+             * 'top' position at which the regular window algorithm stops.
+             */
+            int width, positions, top, banks;
+
+            // NOTE: width 4 is the fastest over the entire range of sizes used in current crypto 
+    //        width = 1; positions = 64; top = 64; banks = 4;
+    //        width = 2; positions = 32; top = 64; banks = 4;
+    //        width = 3; positions = 21; top = 63; banks = 3;
+            width = 4; positions = 16; top = 64; banks = 8;
+    //        width = 5; positions = 13; top = 65; banks = 7;
+    //        width = 7; positions = 9; top = 63; banks = 9;
+    //        width = 8; positions = 8; top = 64; banks = 8;
+
+            /*
+             * Determine if B will get bigger during shifting
+             */
+            int shifts = top < 64 ? positions : positions - 1;
+            int bMax = (int)((uint)(bDeg + shifts + 63) >> 6);
+
+            int bTotal = bMax * banks, stride = width * banks;
+
+            /*
+             * Create a single temporary buffer, with an offset table to find the positions of things in it 
+             */
+            int[] ci = new int[1 << width];
+            int cTotal = aLen;
+            {
+                ci[0] = cTotal;
+                cTotal += bTotal;
+                ci[1] = cTotal;
+                for (int i = 2; i < ci.Length; ++i)
+                {
+                    cTotal += cLen;
+                    ci[i] = cTotal;
+                }
+                cTotal += cLen;
+            }
+            // NOTE: Provide a safe dump for "high zeroes" since we are adding 'bMax' and not 'bLen'
+            ++cTotal;
+
+            long[] c = new long[cTotal];
+
+            // Prepare A in Interleaved form, according to the chosen width
+            Interleave(A.m_ints, 0, c, 0, aLen, width);
+
+            // Make a working copy of B, since we will be shifting it
+            {
+                int bOff = aLen;
+                Array.Copy(B.m_ints, 0, c, bOff, bLen);
+                for (int bank = 1; bank < banks; ++bank)
+                {
+                    ShiftUp(c, aLen, c, bOff += bMax, bMax, bank);
+                }
+            }
+
+            /*
+             * The main loop analyzes the Interleaved windows in A, and for each non-zero window
+             * a single word-array XOR is performed to a carefully selected slice of 'c'. The loop is
+             * breadth-first, checking the lowest window in each word, then looping again for the
+             * next higher window position.
+             */
+            int MASK = (1 << width) - 1;
+
+            int k = 0;
+            for (;;)
+            {
+                int aPos = 0;
+                do
+                {
+                    long aVal = (long)((ulong)c[aPos] >> k);
+                    int bank = 0, bOff = aLen;
+                    for (;;)
+                    {
+                        int index = (int)(aVal) & MASK;
+                        if (index != 0)
+                        {
+                            /*
+                             * Add to a 'c' buffer based on the bit-pattern of 'index'. Since A is in
+                             * Interleaved form, the bits represent the current B shifted by 0, 'positions',
+                             * 'positions' * 2, ..., 'positions' * ('width' - 1)
+                             */
+                            Add(c, aPos + ci[index], c, bOff, bMax);
+                        }
+                        if (++bank == banks)
+                        {
+                            break;
+                        }
+                        bOff += bMax;
+                        aVal = (long)((ulong)aVal >> width);
+                    }
+                }
+                while (++aPos < aLen);
+
+                if ((k += stride) >= top)
+                {
+                    if (k >= 64)
+                    {
+                        break;
+                    }
+
+                    /*
+                     * Adjustment for window setups with top == 63, the final bit (if any) is processed
+                     * as the top-bit of a window
+                     */
+                    k = 64 - width;
+                    MASK &= MASK << (top - k);
+                }
+
+                /*
+                 * After each position has been checked for all words of A, B is shifted up 1 place
+                 */
+                ShiftUp(c, aLen, bTotal, banks);
+            }
+
+            int ciPos = ci.Length;
+            while (--ciPos > 1)
+            {
+                if ((ciPos & 1L) == 0L)
+                {
+                    /*
+                     * For even numbers, shift contents and add to the half-position
+                     */
+                    AddShiftedUp(c, ci[(uint)ciPos >> 1], c, ci[ciPos], cLen, positions);
+                }
+                else
+                {
+                    /*
+                     * For odd numbers, 'distribute' contents to the result and the next-lowest position
+                     */
+                    Distribute(c, ci[ciPos], ci[ciPos - 1], ci[1], cLen);
+                }
+            }
+
+            /*
+             * Finally the raw answer is collected, reduce it against the reduction coefficients
+             */
+            return ReduceResult(c, ci[1], cLen, m, ks);
+        }
+
+        private static LongArray ReduceResult(long[] buf, int off, int len, int m, int[] ks)
+        {
+            int rLen = ReduceInPlace(buf, off, len, m, ks);
+            return new LongArray(buf, off, rLen);
+        }
+
+    //    private static void deInterleave(long[] x, int xOff, long[] z, int zOff, int count, int rounds)
+    //    {
+    //        for (int i = 0; i < count; ++i)
+    //        {
+    //            z[zOff + i] = deInterleave(x[zOff + i], rounds);
+    //        }
+    //    }
+    //
+    //    private static long deInterleave(long x, int rounds)
+    //    {
+    //        while (--rounds >= 0)
+    //        {
+    //            x = deInterleave32(x & DEInterleave_MASK) | (deInterleave32((x >>> 1) & DEInterleave_MASK) << 32);
+    //        }
+    //        return x;
+    //    }
+    //
+    //    private static long deInterleave32(long x)
+    //    {
+    //        x = (x | (x >>> 1)) & 0x3333333333333333L;
+    //        x = (x | (x >>> 2)) & 0x0F0F0F0F0F0F0F0FL;
+    //        x = (x | (x >>> 4)) & 0x00FF00FF00FF00FFL;
+    //        x = (x | (x >>> 8)) & 0x0000FFFF0000FFFFL;
+    //        x = (x | (x >>> 16)) & 0x00000000FFFFFFFFL;
+    //        return x;
+    //    }
+
+        private static int ReduceInPlace(long[] buf, int off, int len, int m, int[] ks)
+        {
+            int mLen = (int)((uint)(m + 63) >> 6);
+            if (len < mLen)
+            {
+                return len;
+            }
+
+            int numBits = System.Math.Min(len << 6, (m << 1) - 1); // TODO use actual degree?
+            int excessBits = (len << 6) - numBits;
+            while (excessBits >= 64)
+            {
+                --len;
+                excessBits -= 64;
+            }
+
+            int kLen = ks.Length, kMax = ks[kLen - 1], kNext = kLen > 1 ? ks[kLen - 2] : 0;
+            int wordWiseLimit = System.Math.Max(m, kMax + 64);
+            int vectorableWords = (excessBits + System.Math.Min(numBits - wordWiseLimit, m - kNext)) >> 6;
+            if (vectorableWords > 1)
+            {
+                int vectorWiseWords = len - vectorableWords;
+                ReduceVectorWise(buf, off, len, vectorWiseWords, m, ks);
+                while (len > vectorWiseWords)
+                {
+                    buf[off + --len] = 0L;
+                }
+                numBits = vectorWiseWords << 6;
+            }
+
+            if (numBits > wordWiseLimit)
+            {
+                ReduceWordWise(buf, off, len, wordWiseLimit, m, ks);
+                numBits = wordWiseLimit;
+            }
+
+            if (numBits > m)
+            {
+                ReduceBitWise(buf, off, numBits, m, ks);
+            }
+
+            return mLen;
+        }
+
+        private static void ReduceBitWise(long[] buf, int off, int BitLength, int m, int[] ks)
+        {
+            while (--BitLength >= m)
+            {
+                if (TestBit(buf, off, BitLength))
+                {
+                    ReduceBit(buf, off, BitLength, m, ks);
+                }
+            }
+        }
+
+        private static void ReduceBit(long[] buf, int off, int bit, int m, int[] ks)
+        {
+            FlipBit(buf, off, bit);
+            int n = bit - m;
+            int j = ks.Length;
+            while (--j >= 0)
+            {
+                FlipBit(buf, off, ks[j] + n);
+            }
+            FlipBit(buf, off, n);
+        }
+
+        private static void ReduceWordWise(long[] buf, int off, int len, int toBit, int m, int[] ks)
+        {
+            int toPos = (int)((uint)toBit >> 6);
+
+            while (--len > toPos)
+            {
+                long word = buf[off + len];
+                if (word != 0)
+                {
+                    buf[off + len] = 0;
+                    ReduceWord(buf, off, (len << 6), word, m, ks);
+                }
+            }
+
+            {
+                int partial = toBit & 0x3F;
+                long word = (long)((ulong)buf[off + toPos] >> partial);
+                if (word != 0)
+                {
+                    buf[off + toPos] ^= word << partial;
+                    ReduceWord(buf, off, toBit, word, m, ks);
+                }
+            }
+        }
+
+        private static void ReduceWord(long[] buf, int off, int bit, long word, int m, int[] ks)
+        {
+            int offset = bit - m;
+            int j = ks.Length;
+            while (--j >= 0)
+            {
+                FlipWord(buf, off, offset + ks[j], word);
+            }
+            FlipWord(buf, off, offset, word);
+        }
+
+        private static void ReduceVectorWise(long[] buf, int off, int len, int words, int m, int[] ks)
+        {
+            /*
+             * NOTE: It's important we go from highest coefficient to lowest, because for the highest
+             * one (only) we allow the ranges to partially overlap, and therefore any changes must take
+             * effect for the subsequent lower coefficients.
+             */
+            int baseBit = (words << 6) - m;
+            int j = ks.Length;
+            while (--j >= 0)
+            {
+                FlipVector(buf, off, buf, off + words, len - words, baseBit + ks[j]);
+            }
+            FlipVector(buf, off, buf, off + words, len - words, baseBit);
+        }
+
+        private static void FlipVector(long[] x, int xOff, long[] y, int yOff, int yLen, int bits)
+        {
+            xOff += (int)((uint)bits >> 6);
+            bits &= 0x3F;
+
+            if (bits == 0)
+            {
+                Add(x, xOff, y, yOff, yLen);
+            }
+            else
+            {
+                long carry = AddShiftedDown(x, xOff + 1, y, yOff, yLen, 64 - bits);
+                x[xOff] ^= carry;
+            }
+        }
+
+        public LongArray ModSquare(int m, int[] ks)
+        {
+            int len = GetUsedLength();
+            if (len == 0)
+            {
+                return this;
+            }
+
+            int _2len = len << 1;
+            long[] r = new long[_2len];
+
+            int pos = 0;
+            while (pos < _2len)
+            {
+                long mi = m_ints[(uint)pos >> 1];
+                r[pos++] = Interleave2_32to64((int)mi);
+                r[pos++] = Interleave2_32to64((int)((ulong)mi >> 32));
+            }
+
+            return new LongArray(r, 0, ReduceInPlace(r, 0, r.Length, m, ks));
+        }
+
+    //    private LongArray modSquareN(int n, int m, int[] ks)
+    //    {
+    //        int len = GetUsedLength();
+    //        if (len == 0)
+    //        {
+    //            return this;
+    //        }
+    //
+    //        int mLen = (m + 63) >>> 6;
+    //        long[] r = new long[mLen << 1];
+    //        Array.Copy(m_ints, 0, r, 0, len);
+    //
+    //        while (--n >= 0)
+    //        {
+    //            squareInPlace(r, len, m, ks);
+    //            len = reduceInPlace(r, 0, r.Length, m, ks);
+    //        }
+    //
+    //        return new LongArray(r, 0, len);
+    //    }
+    //
+    //    private static void squareInPlace(long[] x, int xLen, int m, int[] ks)
+    //    {
+    //        int pos = xLen << 1;
+    //        while (--xLen >= 0)
+    //        {
+    //            long xVal = x[xLen];
+    //            x[--pos] = Interleave2_32to64((int)(xVal >>> 32));
+    //            x[--pos] = Interleave2_32to64((int)xVal);
+    //        }
+    //    }
+
+        private static void Interleave(long[] x, int xOff, long[] z, int zOff, int count, int width)
+        {
+            switch (width)
+            {
+            case 3:
+                Interleave3(x, xOff, z, zOff, count);
+                break;
+            case 5:
+                Interleave5(x, xOff, z, zOff, count);
+                break;
+            case 7:
+                Interleave7(x, xOff, z, zOff, count);
+                break;
+            default:
+                Interleave2_n(x, xOff, z, zOff, count, BitLengths[width] - 1);
+                break;
+            }
+        }
+
+        private static void Interleave3(long[] x, int xOff, long[] z, int zOff, int count)
+        {
+            for (int i = 0; i < count; ++i)
+            {
+                z[zOff + i] = Interleave3(x[xOff + i]);
+            }
+        }
+
+        private static long Interleave3(long x)
+        {
+            long z = x & (1L << 63);
+            return z
+                | Interleave3_21to63((int)x & 0x1FFFFF)
+                | Interleave3_21to63((int)((ulong)x >> 21) & 0x1FFFFF) << 1
+                | Interleave3_21to63((int)((ulong)x >> 42) & 0x1FFFFF) << 2;
+
+    //        int zPos = 0, wPos = 0, xPos = 0;
+    //        for (;;)
+    //        {
+    //            z |= ((x >>> xPos) & 1L) << zPos;
+    //            if (++zPos == 63)
+    //            {
+    //                String sz2 = Long.toBinaryString(z);
+    //                return z;
+    //            }
+    //            if ((xPos += 21) >= 63)
+    //            {
+    //                xPos = ++wPos;
+    //            }
+    //        }
+        }
+
+        private static long Interleave3_21to63(int x)
+        {
+            int r00 = INTERLEAVE3_TABLE[x & 0x7F];
+            int r21 = INTERLEAVE3_TABLE[((uint)x >> 7) & 0x7F];
+            int r42 = INTERLEAVE3_TABLE[(uint)x >> 14];
+            return (r42 & 0xFFFFFFFFL) << 42 | (r21 & 0xFFFFFFFFL) << 21 | (r00 & 0xFFFFFFFFL);
+        }
+
+        private static void Interleave5(long[] x, int xOff, long[] z, int zOff, int count)
+        {
+            for (int i = 0; i < count; ++i)
+            {
+                z[zOff + i] = Interleave5(x[xOff + i]);
+            }
+        }
+
+        private static long Interleave5(long x)
+        {
+            return Interleave3_13to65((int)x & 0x1FFF)
+                | Interleave3_13to65((int)((ulong)x >> 13) & 0x1FFF) << 1
+                | Interleave3_13to65((int)((ulong)x >> 26) & 0x1FFF) << 2
+                | Interleave3_13to65((int)((ulong)x >> 39) & 0x1FFF) << 3
+                | Interleave3_13to65((int)((ulong)x >> 52) & 0x1FFF) << 4;
+
+    //        long z = 0;
+    //        int zPos = 0, wPos = 0, xPos = 0;
+    //        for (;;)
+    //        {
+    //            z |= ((x >>> xPos) & 1L) << zPos;
+    //            if (++zPos == 64)
+    //            {
+    //                return z;
+    //            }
+    //            if ((xPos += 13) >= 64)
+    //            {
+    //                xPos = ++wPos;
+    //            }
+    //        }
+        }
+
+        private static long Interleave3_13to65(int x)
+        {
+            int r00 = INTERLEAVE5_TABLE[x & 0x7F];
+            int r35 = INTERLEAVE5_TABLE[(uint)x >> 7];
+            return (r35 & 0xFFFFFFFFL) << 35 | (r00 & 0xFFFFFFFFL);
+        }
+
+        private static void Interleave7(long[] x, int xOff, long[] z, int zOff, int count)
+        {
+            for (int i = 0; i < count; ++i)
+            {
+                z[zOff + i] = Interleave7(x[xOff + i]);
+            }
+        }
+
+        private static long Interleave7(long x)
+        {
+            long z = x & (1L << 63);
+            return z
+                | INTERLEAVE7_TABLE[(int)x & 0x1FF]
+                | INTERLEAVE7_TABLE[(int)((ulong)x >> 9) & 0x1FF] << 1
+                | INTERLEAVE7_TABLE[(int)((ulong)x >> 18) & 0x1FF] << 2
+                | INTERLEAVE7_TABLE[(int)((ulong)x >> 27) & 0x1FF] << 3
+                | INTERLEAVE7_TABLE[(int)((ulong)x >> 36) & 0x1FF] << 4
+                | INTERLEAVE7_TABLE[(int)((ulong)x >> 45) & 0x1FF] << 5
+                | INTERLEAVE7_TABLE[(int)((ulong)x >> 54) & 0x1FF] << 6;
+
+    //        int zPos = 0, wPos = 0, xPos = 0;
+    //        for (;;)
+    //        {
+    //            z |= ((x >>> xPos) & 1L) << zPos;
+    //            if (++zPos == 63)
+    //            {
+    //                return z;
+    //            }
+    //            if ((xPos += 9) >= 63)
+    //            {
+    //                xPos = ++wPos;
+    //            }
+    //        }
+        }
+
+        private static void Interleave2_n(long[] x, int xOff, long[] z, int zOff, int count, int rounds)
+        {
+            for (int i = 0; i < count; ++i)
+            {
+                z[zOff + i] = Interleave2_n(x[xOff + i], rounds);
+            }
+        }
+
+        private static long Interleave2_n(long x, int rounds)
+        {
+            while (rounds > 1)
+            {
+                rounds -= 2;
+                x = Interleave4_16to64((int)x & 0xFFFF)
+                    | Interleave4_16to64((int)((ulong)x >> 16) & 0xFFFF) << 1
+                    | Interleave4_16to64((int)((ulong)x >> 32) & 0xFFFF) << 2
+                    | Interleave4_16to64((int)((ulong)x >> 48) & 0xFFFF) << 3;
+            }
+            if (rounds > 0)
+            {
+                x = Interleave2_32to64((int)x) | Interleave2_32to64((int)((ulong)x >> 32)) << 1;
+            }
+            return x;
+        }
+
+        private static long Interleave4_16to64(int x)
+        {
+            int r00 = INTERLEAVE4_TABLE[x & 0xFF];
+            int r32 = INTERLEAVE4_TABLE[(uint)x >> 8];
+            return (r32 & 0xFFFFFFFFL) << 32 | (r00 & 0xFFFFFFFFL);
+        }
+
+        private static long Interleave2_32to64(int x)
+        {
+            int r00 = INTERLEAVE2_TABLE[x & 0xFF] | INTERLEAVE2_TABLE[((uint)x >> 8) & 0xFF] << 16;
+            int r32 = INTERLEAVE2_TABLE[((uint)x >> 16) & 0xFF] | INTERLEAVE2_TABLE[(uint)x >> 24] << 16;
+            return (r32 & 0xFFFFFFFFL) << 32 | (r00 & 0xFFFFFFFFL);
+        }
+
+    //    private static LongArray ExpItohTsujii2(LongArray B, int n, int m, int[] ks)
+    //    {
+    //        LongArray t1 = B, t3 = new LongArray(new long[]{ 1L });
+    //        int scale = 1;
+    //
+    //        int numTerms = n;
+    //        while (numTerms > 1)
+    //        {
+    //            if ((numTerms & 1) != 0)
+    //            {
+    //                t3 = t3.ModMultiply(t1, m, ks);
+    //                t1 = t1.modSquareN(scale, m, ks);
+    //            }
+    //
+    //            LongArray t2 = t1.modSquareN(scale, m, ks);
+    //            t1 = t1.ModMultiply(t2, m, ks);
+    //            numTerms >>>= 1; scale <<= 1;
+    //        }
+    //
+    //        return t3.ModMultiply(t1, m, ks);
+    //    }
+    //
+    //    private static LongArray ExpItohTsujii23(LongArray B, int n, int m, int[] ks)
+    //    {
+    //        LongArray t1 = B, t3 = new LongArray(new long[]{ 1L });
+    //        int scale = 1;
+    //
+    //        int numTerms = n;
+    //        while (numTerms > 1)
+    //        {
+    //            bool m03 = numTerms % 3 == 0;
+    //            bool m14 = !m03 && (numTerms & 1) != 0;
+    //
+    //            if (m14)
+    //            {
+    //                t3 = t3.ModMultiply(t1, m, ks);
+    //                t1 = t1.modSquareN(scale, m, ks);
+    //            }
+    //
+    //            LongArray t2 = t1.modSquareN(scale, m, ks);
+    //            t1 = t1.ModMultiply(t2, m, ks);
+    //
+    //            if (m03)
+    //            {
+    //                t2 = t2.modSquareN(scale, m, ks);
+    //                t1 = t1.ModMultiply(t2, m, ks);
+    //                numTerms /= 3; scale *= 3;
+    //            }
+    //            else
+    //            {
+    //                numTerms >>>= 1; scale <<= 1;
+    //            }
+    //        }
+    //
+    //        return t3.ModMultiply(t1, m, ks);
+    //    }
+    //
+    //    private static LongArray ExpItohTsujii235(LongArray B, int n, int m, int[] ks)
+    //    {
+    //        LongArray t1 = B, t4 = new LongArray(new long[]{ 1L });
+    //        int scale = 1;
+    //
+    //        int numTerms = n;
+    //        while (numTerms > 1)
+    //        {
+    //            if (numTerms % 5 == 0)
+    //            {
+    ////                t1 = ExpItohTsujii23(t1, 5, m, ks);
+    //
+    //                LongArray t3 = t1;
+    //                t1 = t1.modSquareN(scale, m, ks);
+    //
+    //                LongArray t2 = t1.modSquareN(scale, m, ks);
+    //                t1 = t1.ModMultiply(t2, m, ks);
+    //                t2 = t1.modSquareN(scale << 1, m, ks);
+    //                t1 = t1.ModMultiply(t2, m, ks);
+    //
+    //                t1 = t1.ModMultiply(t3, m, ks);
+    //
+    //                numTerms /= 5; scale *= 5;
+    //                continue;
+    //            }
+    //
+    //            bool m03 = numTerms % 3 == 0;
+    //            bool m14 = !m03 && (numTerms & 1) != 0;
+    //
+    //            if (m14)
+    //            {
+    //                t4 = t4.ModMultiply(t1, m, ks);
+    //                t1 = t1.modSquareN(scale, m, ks);
+    //            }
+    //
+    //            LongArray t2 = t1.modSquareN(scale, m, ks);
+    //            t1 = t1.ModMultiply(t2, m, ks);
+    //
+    //            if (m03)
+    //            {
+    //                t2 = t2.modSquareN(scale, m, ks);
+    //                t1 = t1.ModMultiply(t2, m, ks);
+    //                numTerms /= 3; scale *= 3;
+    //            }
+    //            else
+    //            {
+    //                numTerms >>>= 1; scale <<= 1;
+    //            }
+    //        }
+    //
+    //        return t4.ModMultiply(t1, m, ks);
+    //    }
+
+        public LongArray ModInverse(int m, int[] ks)
+        {
+            /*
+             * Fermat's Little Theorem
+             */
+    //        LongArray A = this;
+    //        LongArray B = A.modSquare(m, ks);
+    //        LongArray R0 = B, R1 = B;
+    //        for (int i = 2; i < m; ++i)
+    //        {
+    //            R1 = R1.modSquare(m, ks);
+    //            R0 = R0.ModMultiply(R1, m, ks);
+    //        }
+    //
+    //        return R0;
+
+            /*
+             * Itoh-Tsujii
+             */
+    //        LongArray B = modSquare(m, ks);
+    //        switch (m)
+    //        {
+    //        case 409:
+    //            return ExpItohTsujii23(B, m - 1, m, ks);
+    //        case 571:
+    //            return ExpItohTsujii235(B, m - 1, m, ks);
+    //        case 163:
+    //        case 233:
+    //        case 283:
+    //        default:
+    //            return ExpItohTsujii2(B, m - 1, m, ks);
+    //        }
+
+            /*
+             * Inversion in F2m using the extended Euclidean algorithm
+             * 
+             * Input: A nonzero polynomial a(z) of degree at most m-1
+             * Output: a(z)^(-1) mod f(z)
+             */
+            int uzDegree = Degree();
+            if (uzDegree == 1)
+            {
+                return this;
+            }
+
+            // u(z) := a(z)
+            LongArray uz = (LongArray)Copy();
+
+            int t = (int)((uint)(m + 63) >> 6);
+
+            // v(z) := f(z)
+            LongArray vz = new LongArray(t);
+            ReduceBit(vz.m_ints, 0, m, m, ks);
+
+            // g1(z) := 1, g2(z) := 0
+            LongArray g1z = new LongArray(t);
+            g1z.m_ints[0] = 1L;
+            LongArray g2z = new LongArray(t);
+
+            int[] uvDeg = new int[]{ uzDegree, m + 1 };
+            LongArray[] uv = new LongArray[]{ uz, vz };
+
+            int[] ggDeg = new int[]{ 1, 0 };
+            LongArray[] gg = new LongArray[]{ g1z, g2z };
+
+            int b = 1;
+            int duv1 = uvDeg[b];
+            int dgg1 = ggDeg[b];
+            int j = duv1 - uvDeg[1 - b];
+
+            for (;;)
+            {
+                if (j < 0)
+                {
+                    j = -j;
+                    uvDeg[b] = duv1;
+                    ggDeg[b] = dgg1;
+                    b = 1 - b;
+                    duv1 = uvDeg[b];
+                    dgg1 = ggDeg[b];
+                }
+
+                uv[b].AddShiftedByBitsSafe(uv[1 - b], uvDeg[1 - b], j);
+
+                int duv2 = uv[b].DegreeFrom(duv1);
+                if (duv2 == 0)
+                {
+                    return gg[1 - b];
+                }
+
+                {
+                    int dgg2 = ggDeg[1 - b];
+                    gg[b].AddShiftedByBitsSafe(gg[1 - b], dgg2, j);
+                    dgg2 += j;
+
+                    if (dgg2 > dgg1)
+                    {
+                        dgg1 = dgg2;
+                    }
+                    else if (dgg2 == dgg1)
+                    {
+                        dgg1 = gg[b].DegreeFrom(dgg1);
+                    }
+                }
+
+                j += (duv2 - duv1);
+                duv1 = duv2;
+            }
+        }
+
+        public override bool Equals(object obj)
+        {
+            return Equals(obj as LongArray);
+        }
+
+        public virtual bool Equals(LongArray other)
+        {
+            if (this == other)
+                return true;
+            if (null == other)
+                return false;
+            int usedLen = GetUsedLength();
+            if (other.GetUsedLength() != usedLen)
+            {
+                return false;
+            }
+            for (int i = 0; i < usedLen; i++)
+            {
+                if (m_ints[i] != other.m_ints[i])
+                {
+                    return false;
+                }
+            }
+            return true;
+        }
+
+        public override int GetHashCode()
+        {
+            int usedLen = GetUsedLength();
+            int hash = 1;
+            for (int i = 0; i < usedLen; i++)
+            {
+                long mi = m_ints[i];
+                hash *= 31;
+                hash ^= (int)mi;
+                hash *= 31;
+                hash ^= (int)((ulong)mi >> 32);
+            }
+            return hash;
+        }
+
+        public LongArray Copy()
+        {
+            return new LongArray(Arrays.Clone(m_ints));
+        }
+
+        public override string ToString()
+        {
+            int i = GetUsedLength();
+            if (i == 0)
+            {
+                return "0";
+            }
+
+            StringBuilder sb = new StringBuilder(Convert.ToString(m_ints[--i], 2));
+            while (--i >= 0)
+            {
+                string s = Convert.ToString(m_ints[i], 2);
+
+                // Add leading zeroes, except for highest significant word
+                int len = s.Length;
+                if (len < 64)
+                {
+                    sb.Append(ZEROES.Substring(len));
+                }
+
+                sb.Append(s);
+            }
+            return sb.ToString();
+        }
+    }
+}
diff --git a/crypto/src/util/Arrays.cs b/crypto/src/util/Arrays.cs
index 59c91bdd1..8f8cebedc 100644
--- a/crypto/src/util/Arrays.cs
+++ b/crypto/src/util/Arrays.cs
@@ -216,7 +216,7 @@ namespace Org.BouncyCastle.Utilities
         public static byte[] Clone(
             byte[] data)
         {
-            return data == null ? null : (byte[]) data.Clone();
+            return data == null ? null : (byte[])data.Clone();
         }
 
         public static byte[] Clone(
@@ -238,7 +238,12 @@ namespace Org.BouncyCastle.Utilities
         public static int[] Clone(
             int[] data)
         {
-            return data == null ? null : (int[]) data.Clone();
+            return data == null ? null : (int[])data.Clone();
+        }
+
+        public static long[] Clone(long[] data)
+        {
+            return data == null ? null : (long[])data.Clone();
         }
 
         [CLSCompliantAttribute(false)]