summary refs log tree commit diff
path: root/crypto/src/util/bzip2/CBZip2OutputStream.cs
diff options
context:
space:
mode:
authorPeter Dettman <peter.dettman@bouncycastle.org>2022-10-24 15:49:27 +0700
committerPeter Dettman <peter.dettman@bouncycastle.org>2022-10-24 15:49:27 +0700
commitbe97c80fdecadac37413a6a6a8de417e0332f6bf (patch)
treedef3bf31b937a4e59458574f6441036ffdf61616 /crypto/src/util/bzip2/CBZip2OutputStream.cs
parentUse correct OID (diff)
downloadBouncyCastle.NET-ed25519-be97c80fdecadac37413a6a6a8de417e0332f6bf.tar.xz
Use platform compression where available
- Move Bzip2 code into Utilities
Diffstat (limited to 'crypto/src/util/bzip2/CBZip2OutputStream.cs')
-rw-r--r--crypto/src/util/bzip2/CBZip2OutputStream.cs1619
1 files changed, 1619 insertions, 0 deletions
diff --git a/crypto/src/util/bzip2/CBZip2OutputStream.cs b/crypto/src/util/bzip2/CBZip2OutputStream.cs
new file mode 100644
index 000000000..b896f36c6
--- /dev/null
+++ b/crypto/src/util/bzip2/CBZip2OutputStream.cs
@@ -0,0 +1,1619 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ *
+ */
+
+/*
+ * This package is based on the work done by Keiron Liddle, Aftex Software
+ * <keiron@aftexsw.com> to whom the Ant project is very grateful for his
+ * great code.
+ */
+
+using System;
+using System.Collections.Generic;
+using System.Diagnostics;
+using System.IO;
+
+using Org.BouncyCastle.Utilities.IO;
+
+namespace Org.BouncyCastle.Utilities.Bzip2
+{
+	/**
+    * An output stream that compresses into the BZip2 format (with the file
+    * header chars) into another stream.
+    *
+    * @author <a href="mailto:keiron@aftexsw.com">Keiron Liddle</a>
+    *
+    * TODO:    Update to BZip2 1.0.1
+    * <b>NB:</b> note this class has been modified to add a leading BZ to the
+    * start of the BZIP2 stream to make it compatible with other PGP programs.
+    */
+    public class CBZip2OutputStream
+        : BaseOutputStream 
+	{
+        protected const int SETMASK = 1 << 21;
+        protected const int CLEARMASK = ~SETMASK;
+        protected const int GREATER_ICOST = 15;
+        protected const int LESSER_ICOST = 0;
+        protected const int SMALL_THRESH = 20;
+        protected const int DEPTH_THRESH = 10;
+
+        internal static readonly ushort[] RNums = {
+            619, 720, 127, 481, 931, 816, 813, 233, 566, 247, 985, 724, 205, 454, 863, 491, 741, 242, 949, 214, 733,
+            859, 335, 708, 621, 574, 73, 654, 730, 472, 419, 436, 278, 496, 867, 210, 399, 680, 480, 51, 878, 465, 811,
+            169, 869, 675, 611, 697, 867, 561, 862, 687, 507, 283, 482, 129, 807, 591, 733, 623, 150, 238, 59, 379, 684,
+            877, 625, 169, 643, 105, 170, 607, 520, 932, 727, 476, 693, 425, 174, 647, 73, 122, 335, 530, 442, 853, 695,
+            249, 445, 515, 909, 545, 703, 919, 874, 474, 882, 500, 594, 612, 641, 801, 220, 162, 819, 984, 589, 513,
+            495, 799, 161, 604, 958, 533, 221, 400, 386, 867, 600, 782, 382, 596, 414, 171, 516, 375, 682, 485, 911,
+            276, 98, 553, 163, 354, 666, 933, 424, 341, 533, 870, 227, 730, 475, 186, 263, 647, 537, 686, 600, 224, 469,
+            68, 770, 919, 190, 373, 294, 822, 808, 206, 184, 943, 795, 384, 383, 461, 404, 758, 839, 887, 715, 67, 618,
+            276, 204, 918, 873, 777, 604, 560, 951, 160, 578, 722, 79, 804, 96, 409, 713, 940, 652, 934, 970, 447, 318,
+            353, 859, 672, 112, 785, 645, 863, 803, 350, 139, 93, 354, 99, 820, 908, 609, 772, 154, 274, 580, 184, 79,
+            626, 630, 742, 653, 282, 762, 623, 680, 81, 927, 626, 789, 125, 411, 521, 938, 300, 821, 78, 343, 175, 128,
+            250, 170, 774, 972, 275, 999, 639, 495, 78, 352, 126, 857, 956, 358, 619, 580, 124, 737, 594, 701, 612, 669,
+            112, 134, 694, 363, 992, 809, 743, 168, 974, 944, 375, 748, 52, 600, 747, 642, 182, 862, 81, 344, 805, 988,
+            739, 511, 655, 814, 334, 249, 515, 897, 955, 664, 981, 649, 113, 974, 459, 893, 228, 433, 837, 553, 268,
+            926, 240, 102, 654, 459, 51, 686, 754, 806, 760, 493, 403, 415, 394, 687, 700, 946, 670, 656, 610, 738, 392,
+            760, 799, 887, 653, 978, 321, 576, 617, 626, 502, 894, 679, 243, 440, 680, 879, 194, 572, 640, 724, 926, 56,
+            204, 700, 707, 151, 457, 449, 797, 195, 791, 558, 945, 679, 297, 59, 87, 824, 713, 663, 412, 693, 342, 606,
+            134, 108, 571, 364, 631, 212, 174, 643, 304, 329, 343, 97, 430, 751, 497, 314, 983, 374, 822, 928, 140, 206,
+            73, 263, 980, 736, 876, 478, 430, 305, 170, 514, 364, 692, 829, 82, 855, 953, 676, 246, 369, 970, 294, 750,
+            807, 827, 150, 790, 288, 923, 804, 378, 215, 828, 592, 281, 565, 555, 710, 82, 896, 831, 547, 261, 524, 462,
+            293, 465, 502, 56, 661, 821, 976, 991, 658, 869, 905, 758, 745, 193, 768, 550, 608, 933, 378, 286, 215, 979,
+            792, 961, 61, 688, 793, 644, 986, 403, 106, 366, 905, 644, 372, 567, 466, 434, 645, 210, 389, 550, 919, 135,
+            780, 773, 635, 389, 707, 100, 626, 958, 165, 504, 920, 176, 193, 713, 857, 265, 203, 50, 668, 108, 645, 990,
+            626, 197, 510, 357, 358, 850, 858, 364, 936, 638 };
+
+        /*
+         * Knuth's increments seem to work better than Incerpi-Sedgewick here, possibly because the number of elements
+         * to sort is usually small, typically <= 20.
+         */
+        private static readonly int[] Incs = { 1, 4, 13, 40, 121, 364, 1093, 3280, 9841, 29524, 88573, 265720, 797161,
+            2391484 };
+
+        private bool finished;
+
+        protected static void HbMakeCodeLengths(byte[] len, int[] freq, int alphaSize, int maxLen)
+        {
+            /*
+            Nodes and heap entries run from 1.  Entry 0
+            for both the heap and nodes is a sentinel.
+            */
+            int[] heap = new int[BZip2Constants.MAX_ALPHA_SIZE + 2];
+            int[] weight = new int[BZip2Constants.MAX_ALPHA_SIZE * 2];
+            int[] parent = new int[BZip2Constants.MAX_ALPHA_SIZE * 2];
+
+            for (int i = 0; i < alphaSize; i++)
+            {
+                weight[i + 1] = (freq[i] == 0 ? 1 : freq[i]) << 8;
+            }
+
+            while (true)
+            {
+                int nNodes = alphaSize;
+                int nHeap = 0;
+
+                heap[0] = 0;
+                weight[0] = 0;
+                parent[0] = -2;
+
+                for (int i = 1; i <= alphaSize; i++)
+                {
+                    parent[i] = -1;
+                    heap[++nHeap] = i;
+                    {
+                        int zz = nHeap;
+                        int tmp = heap[zz];
+                        while (weight[tmp] < weight[heap[zz >> 1]])
+                        {
+                            heap[zz] = heap[zz >> 1];
+                            zz >>= 1;
+                        }
+                        heap[zz] = tmp;
+                    }
+                }
+                if (!(nHeap < (BZip2Constants.MAX_ALPHA_SIZE + 2)))
+                    throw new InvalidOperationException();
+
+                while (nHeap > 1)
+                {
+                    int n1 = heap[1];
+                    heap[1] = heap[nHeap--];
+                    {
+                        int zz = 1;
+                        int tmp = heap[zz];
+                        while (true) 
+                        {
+                            int yy = zz << 1;
+                            if (yy > nHeap)
+                                break;
+
+                            if (yy < nHeap
+                                && weight[heap[yy + 1]] < weight[heap[yy]])
+                            {
+                                yy++;
+                            }
+
+                            if (weight[tmp] < weight[heap[yy]])
+                                break;
+
+                            heap[zz] = heap[yy];
+                            zz = yy;
+                        }
+                        heap[zz] = tmp;
+                    }
+                    int n2 = heap[1];
+                    heap[1] = heap[nHeap--];
+                    {
+                        int zz = 1;
+                        int tmp = heap[zz];
+                        while (true)
+                        {
+                            int yy = zz << 1;
+                            if (yy > nHeap)
+                                break;
+
+                            if (yy < nHeap
+                                && weight[heap[yy + 1]] < weight[heap[yy]])
+                            {
+                                yy++;
+                            }
+
+                            if (weight[tmp] < weight[heap[yy]])
+                                break;
+
+                            heap[zz] = heap[yy];
+                            zz = yy;
+                        }
+                        heap[zz] = tmp;
+                    }
+                    nNodes++;
+                    parent[n1] = parent[n2] = nNodes;
+
+                    weight[nNodes] = (int)((uint)((weight[n1] & 0xffffff00)
+                                    + (weight[n2] & 0xffffff00))
+                        | (uint)(1 + (((weight[n1] & 0x000000ff) >
+                                (weight[n2] & 0x000000ff)) ?
+                                (weight[n1] & 0x000000ff) :
+                                (weight[n2] & 0x000000ff))));
+
+                    parent[nNodes] = -1;
+                    heap[++nHeap] = nNodes;
+                    {
+                        int zz = nHeap;
+                        int tmp = heap[zz];
+                        while (weight[tmp] < weight[heap[zz >> 1]])
+                        {
+                            heap[zz] = heap[zz >> 1];
+                            zz >>= 1;
+                        }
+                        heap[zz] = tmp;
+                    }
+                }
+                if (!(nNodes < (BZip2Constants.MAX_ALPHA_SIZE * 2)))
+                    throw new InvalidOperationException();
+
+                //bool tooLong = false;
+                int tooLongBits = 0;
+                for (int i = 1; i <= alphaSize; i++)
+                {
+                    int j = 0;
+                    int k = i;
+                    while (parent[k] >= 0)
+                    {
+                        k = parent[k];
+                        j++;
+                    }
+                    len[i - 1] = (byte)j;
+                    //tooLong |= j > maxLen;
+                    tooLongBits |= maxLen - j;
+                }
+
+                //if (!tooLong)
+                if (tooLongBits >= 0)
+                    break;
+
+                for (int i = 1; i <= alphaSize; i++)
+                {
+                    int j = weight[i] >> 8;
+                    j = 1 + (j / 2);
+                    weight[i] = j << 8;
+                }
+            }
+        }
+
+        /*
+         * number of characters in the block
+         */
+        int count;
+
+        /*
+        index in zptr[] of original string after sorting.
+        */
+        int origPtr;
+
+        /*
+        always: in the range 0 .. 9.
+        The current block size is 100000 * this number.
+        */
+        private readonly int blockSize100k;
+        private readonly int allowableBlockSize;
+
+        bool blockRandomised;
+        private readonly IList<StackElem> blocksortStack = new List<StackElem>();
+
+        int bsBuff;
+        int bsLivePos;
+        private readonly CRC m_blockCrc = new CRC();
+
+        private bool[] inUse = new bool[256];
+        private int nInUse;
+
+        private byte[] m_selectors = new byte[BZip2Constants.MAX_SELECTORS];
+
+        private byte[] blockBytes;
+        private ushort[] quadrantShorts;
+        private int[] zptr;
+        private int[] szptr;
+        private int[] ftab;
+
+        private int nMTF;
+
+        private int[] mtfFreq = new int[BZip2Constants.MAX_ALPHA_SIZE];
+
+        /*
+        * Used when sorting.  If too many long comparisons
+        * happen, we stop sorting, randomise the block
+        * slightly, and try again.
+        */
+        private int workFactor;
+        private int workDone;
+        private int workLimit;
+        private bool firstAttempt;
+
+        private int currentByte = -1;
+        private int runLength = 0;
+        private int m_streamCrc;
+
+        public CBZip2OutputStream(Stream outStream)
+            : this(outStream, 9)
+        {
+        }
+
+        public CBZip2OutputStream(Stream outStream, int blockSize)
+        {
+            blockBytes = null;
+            quadrantShorts = null;
+            zptr = null;
+            ftab = null;
+
+            outStream.WriteByte((byte)'B');
+            outStream.WriteByte((byte)'Z');
+
+            bsStream = outStream;
+            bsBuff = 0;
+            bsLivePos = 32;
+
+            workFactor = 50;
+            if (blockSize > 9)
+            {
+                blockSize = 9;
+            }
+            else if (blockSize < 1)
+            {
+                blockSize = 1;
+            }
+            blockSize100k = blockSize;
+
+            /* 20 is just a paranoia constant */
+            allowableBlockSize = BZip2Constants.baseBlockSize * blockSize100k - 20;
+
+            int n = BZip2Constants.baseBlockSize * blockSize100k;
+            blockBytes = new byte[(n + 1 + BZip2Constants.NUM_OVERSHOOT_BYTES)];
+            quadrantShorts = new ushort[(n + 1 + BZip2Constants.NUM_OVERSHOOT_BYTES)];
+            zptr = new int[n];
+            ftab = new int[65537];
+
+            /*
+            The back end needs a place to store the MTF values
+            whilst it calculates the coding tables.  We could
+            put them in the zptr array.  However, these values
+            will fit in a short, so we overlay szptr at the
+            start of zptr, in the hope of reducing the number
+            of cache misses induced by the multiple traversals
+            of the MTF values when calculating coding tables.
+            Seems to improve compression speed by about 1%.
+            */
+            // NOTE: We can't "overlay" in C#, so we just share zptr
+            szptr = zptr;
+
+            // Write `magic' bytes h indicating file-format == huffmanised, followed by a digit indicating blockSize100k
+            outStream.WriteByte((byte)'h');
+            outStream.WriteByte((byte)('0' + blockSize100k));
+
+            m_streamCrc = 0;
+
+            InitBlock();
+        }
+
+        /**
+        *
+        * modified by Oliver Merkel, 010128
+        *
+        */
+        public override void WriteByte(byte value)
+        {
+            if (currentByte == value)
+            {
+                if (++runLength > 254)
+                {
+                    WriteRun();
+                    currentByte = -1;
+                    runLength = 0;
+                }
+                return;
+            }
+
+            if (currentByte >= 0)
+            {
+                WriteRun();
+            }
+
+            currentByte = value;
+            runLength = 1;
+        }
+
+        private void WriteRun()
+        {
+            if (count > allowableBlockSize)
+            {
+                EndBlock();
+                InitBlock();
+            }
+
+            inUse[currentByte] = true;
+
+            switch (runLength)
+            {
+            case 1:
+                blockBytes[++count] = (byte)currentByte;
+                m_blockCrc.Update((byte)currentByte);
+                break;
+            case 2:
+                blockBytes[++count] = (byte)currentByte;
+                blockBytes[++count] = (byte)currentByte;
+                m_blockCrc.Update((byte)currentByte);
+                m_blockCrc.Update((byte)currentByte);
+                break;
+            case 3:
+                blockBytes[++count] = (byte)currentByte;
+                blockBytes[++count] = (byte)currentByte;
+                blockBytes[++count] = (byte)currentByte;
+                m_blockCrc.Update((byte)currentByte);
+                m_blockCrc.Update((byte)currentByte);
+                m_blockCrc.Update((byte)currentByte);
+                break;
+            default:
+                blockBytes[++count] = (byte)currentByte;
+                blockBytes[++count] = (byte)currentByte;
+                blockBytes[++count] = (byte)currentByte;
+                blockBytes[++count] = (byte)currentByte;
+                blockBytes[++count] = (byte)(runLength - 4);
+                inUse[runLength - 4] = true;
+                m_blockCrc.UpdateRun((byte)currentByte, runLength);
+                break;
+            }
+        }
+
+        bool closed = false;
+
+        protected void Detach(bool disposing)
+        {
+            if (disposing)
+            {
+                if (!closed)
+                {
+                    Finish();
+                    closed = true;
+                }
+            }
+            base.Dispose(disposing);
+        }
+
+        protected override void Dispose(bool disposing)
+        {
+            if (disposing)
+            {
+                if (!closed)
+                {
+                    Finish();
+                    closed = true;
+                    Platform.Dispose(this.bsStream);
+                }
+            }
+            base.Dispose(disposing);
+        }
+
+        public void Finish()
+        {
+            if (finished)
+                return;
+
+            if (runLength > 0)
+            {
+                WriteRun();
+            }
+            currentByte = -1;
+            if (count > 0)
+            {
+                EndBlock();
+            }
+            EndCompression();
+            finished = true;
+            Flush();
+        }
+        
+        public override void Flush()
+        {
+            bsStream.Flush();
+        }
+
+        private void InitBlock()
+        {
+            m_blockCrc.Initialise();
+            count = 0;
+
+            for (int i = 0; i < 256; i++)
+            {
+                inUse[i] = false;
+            }
+        }
+
+        private void EndBlock()
+        {
+            int blockFinalCrc = m_blockCrc.GetFinal();
+            m_streamCrc = Integers.RotateLeft(m_streamCrc, 1) ^ blockFinalCrc;
+
+            /* sort the block and establish posn of original string */
+            DoReversibleTransformation();
+
+            /*
+            A 6-byte block header, the value chosen arbitrarily
+            as 0x314159265359 :-).  A 32 bit value does not really
+            give a strong enough guarantee that the value will not
+            appear by chance in the compressed datastream.  Worst-case
+            probability of this event, for a 900k block, is about
+            2.0e-3 for 32 bits, 1.0e-5 for 40 bits and 4.0e-8 for 48 bits.
+            For a compressed file of size 100Gb -- about 100000 blocks --
+            only a 48-bit marker will do.  NB: normal compression/
+            decompression do *not* rely on these statistical properties.
+            They are only important when trying to recover blocks from
+            damaged files.
+            */
+            BsPutLong48(0x314159265359L);
+
+            /* Now the block's CRC, so it is in a known place. */
+            BsPutInt32(blockFinalCrc);
+
+            /* Now a single bit indicating randomisation. */
+            BsPutBit(blockRandomised ? 1 : 0);
+
+            /* Finally, block's contents proper. */
+            MoveToFrontCodeAndSend();
+        }
+
+        private void EndCompression()
+        {
+            /*
+            Now another magic 48-bit number, 0x177245385090, to
+            indicate the end of the last block.  (Sqrt(pi), if
+            you want to know.  I did want to use e, but it contains
+            too much repetition -- 27 18 28 18 28 46 -- for me
+            to feel statistically comfortable.  Call me paranoid.)
+            */
+            BsPutLong48(0x177245385090L);
+
+            BsPutInt32(m_streamCrc);
+
+            BsFinishedWithStream();
+        }
+
+        private void HbAssignCodes(int[] code, byte[] length, int minLen, int maxLen, int alphaSize)
+        {
+            int vec = 0;
+            for (int n = minLen; n <= maxLen; n++)
+            {
+                for (int i = 0; i < alphaSize; i++)
+                {
+                    if (length[i] == n)
+                    {
+                        code[i] = vec++;
+                    }
+                }
+                vec <<= 1;
+            }
+        }
+
+        private void BsFinishedWithStream()
+        {
+            if (bsLivePos < 32)
+            {
+                bsStream.WriteByte((byte)(bsBuff >> 24));
+                bsBuff = 0;
+                bsLivePos = 32;
+            }
+        }
+
+        private void BsPutBit(int v)
+        {
+            --bsLivePos;
+            bsBuff |= v << bsLivePos;
+
+            if (bsLivePos <= 24)
+            {
+                bsStream.WriteByte((byte)(bsBuff >> 24));
+                bsBuff <<= 8;
+                bsLivePos += 8;
+            }
+        }
+
+        private void BsPutBits(int n, int v)
+        {
+            Debug.Assert(1 <= n && n <= 24);
+
+            bsLivePos -= n;
+            bsBuff |= v << bsLivePos;
+
+            while (bsLivePos <= 24)
+            {
+                bsStream.WriteByte((byte)(bsBuff >> 24));
+                bsBuff <<= 8;
+                bsLivePos += 8;
+            }
+        }
+
+        private void BsPutBitsSmall(int n, int v)
+        {
+            Debug.Assert(1 <= n && n <= 8);
+
+            bsLivePos -= n;
+            bsBuff |= v << bsLivePos;
+
+            if (bsLivePos <= 24)
+            {
+                bsStream.WriteByte((byte)(bsBuff >> 24));
+                bsBuff <<= 8;
+                bsLivePos += 8;
+            }
+        }
+
+        private void BsPutInt32(int u)
+        {
+            BsPutBits(16, (u >> 16) & 0xFFFF);
+            BsPutBits(16, u & 0xFFFF);
+        }
+
+        private void BsPutLong48(long u)
+        {
+            BsPutBits(24, (int)(u >> 24) & 0xFFFFFF);
+            BsPutBits(24, (int)u & 0xFFFFFF);
+        }
+
+        private void SendMtfValues()
+        {
+
+            int v, t, i, j, bt, bc, iter;
+
+            int alphaSize = nInUse + 2;
+
+            /* Decide how many coding tables to use */
+            if (nMTF <= 0)
+                throw new InvalidOperationException();
+
+            int nGroups;
+            if (nMTF < 200)
+            {
+                nGroups = 2;
+            }
+            else if (nMTF < 600)
+            {
+                nGroups = 3;
+            }
+            else if (nMTF < 1200)
+            {
+                nGroups = 4;
+            }
+            else if (nMTF < 2400)
+            {
+                nGroups = 5;
+            }
+            else
+            {
+                nGroups = 6;
+            }
+
+            byte[][] len = CreateByteArray(nGroups, alphaSize);
+            for (t = 0; t < nGroups; t++)
+            {
+                Arrays.Fill(len[t], GREATER_ICOST);
+            }
+
+            /* Generate an initial set of coding tables */
+            {
+                int nPart = nGroups;
+                int remF = nMTF;
+                int ge = -1;
+                while (nPart > 0)
+                {
+                    int gs = ge + 1;
+                    int aFreq = 0, tFreq = remF / nPart;
+                    while (aFreq < tFreq && ge < alphaSize - 1)
+                    {
+                        aFreq += mtfFreq[++ge];
+                    }
+
+                    if (ge > gs && nPart != nGroups && nPart != 1
+                        && ((nGroups - nPart) % 2 == 1))
+                    {
+                        aFreq -= mtfFreq[ge--];
+                    }
+
+                    byte[] len_np = len[nPart - 1];
+                    for (v = 0; v < alphaSize; v++)
+                    {
+                        if (v >= gs && v <= ge)
+                        {
+                            len_np[v] = LESSER_ICOST;
+                        }
+                        else
+                        {
+                            len_np[v] = GREATER_ICOST;
+                        }
+                    }
+
+                    nPart--;
+                    remF -= aFreq;
+                }
+            }
+
+            int[][] rfreq = CBZip2InputStream.CreateIntArray(BZip2Constants.N_GROUPS, BZip2Constants.MAX_ALPHA_SIZE);
+            int[] fave = new int[BZip2Constants.N_GROUPS];
+            short[] cost = new short[BZip2Constants.N_GROUPS];
+
+            // Iterate up to N_ITERS times to improve the tables.
+            int nSelectors = 0;
+            for (iter = 0; iter < BZip2Constants.N_ITERS; iter++)
+            {
+                for (t = 0; t < nGroups; t++)
+                {
+                    fave[t] = 0;
+
+                    int[] rfreq_t = rfreq[t];
+                    for (v = 0; v < alphaSize; v++)
+                    {
+                        rfreq_t[v] = 0;
+                    }
+                }
+
+                nSelectors = 0;
+                int gs = 0;
+                while (gs < nMTF)
+                {
+                    /* Set group start & end marks. */
+
+                    /*
+                     * Calculate the cost of this group as coded by each of the coding tables.
+                     */
+
+                    int ge = System.Math.Min(gs + BZip2Constants.G_SIZE - 1, nMTF - 1);
+
+                    if (nGroups == 6)
+                    {
+                        byte[] len_0 = len[0], len_1 = len[1], len_2 = len[2], len_3 = len[3], len_4 = len[4], len_5 = len[5];
+                        short cost0 = 0, cost1 = 0, cost2 = 0, cost3 = 0, cost4 = 0, cost5 = 0;
+
+                        for (i = gs; i <= ge; i++)
+                        {
+                            int icv = szptr[i];
+                            cost0 += len_0[icv];
+                            cost1 += len_1[icv];
+                            cost2 += len_2[icv];
+                            cost3 += len_3[icv];
+                            cost4 += len_4[icv];
+                            cost5 += len_5[icv];
+                        }
+
+                        cost[0] = cost0;
+                        cost[1] = cost1;
+                        cost[2] = cost2;
+                        cost[3] = cost3;
+                        cost[4] = cost4;
+                        cost[5] = cost5;
+                    }
+                    else
+                    {
+                        for (t = 0; t < nGroups; t++)
+                        {
+                            cost[t] = 0;
+                        }
+
+                        for (i = gs; i <= ge; i++)
+                        {
+                            int icv = szptr[i];
+                            for (t = 0; t < nGroups; t++)
+                            {
+                                cost[t] += len[t][icv];
+                            }
+                        }
+                    }
+
+                    /*
+                    Find the coding table which is best for this group,
+                    and record its identity in the selector table.
+                    */
+                    bc = cost[0];
+                    bt = 0;
+                    for (t = 1; t < nGroups; t++)
+                    {
+                        short cost_t = cost[t];
+                        if (cost_t < bc)
+                        {
+                            bc = cost_t;
+                            bt = t;
+                        }
+                    }
+                    fave[bt]++;
+                    m_selectors[nSelectors] = (byte)bt;
+                    nSelectors++;
+
+                    /*
+                    Increment the symbol frequencies for the selected table.
+                    */
+                    int[] rfreq_bt = rfreq[bt];
+                    for (i = gs; i <= ge; i++)
+                    {
+                        rfreq_bt[szptr[i]]++;
+                    }
+
+                    gs = ge + 1;
+                }
+
+                /*
+                Recompute the tables based on the accumulated frequencies.
+                */
+                for (t = 0; t < nGroups; t++)
+                {
+                    HbMakeCodeLengths(len[t], rfreq[t], alphaSize, BZip2Constants.MAX_CODE_LEN_GEN);
+                }
+            }
+
+            if (nGroups >= 8 || nGroups > BZip2Constants.N_GROUPS)
+                throw new InvalidOperationException();
+            if (nSelectors >= 32768 || nSelectors > BZip2Constants.MAX_SELECTORS)
+                throw new InvalidOperationException();
+
+            int[][] code = CBZip2InputStream.CreateIntArray(BZip2Constants.N_GROUPS, BZip2Constants.MAX_ALPHA_SIZE);
+
+            /* Assign actual codes for the tables. */
+            for (t = 0; t < nGroups; t++)
+            {
+                int maxLen = 0, minLen = 32;
+                byte[] len_t = len[t];
+                for (i = 0; i < alphaSize; i++)
+                {
+                    int lti = len_t[i];
+                    maxLen = System.Math.Max(maxLen, lti);
+                    minLen = System.Math.Min(minLen, lti);
+                }
+                if (minLen < 1 | maxLen > BZip2Constants.MAX_CODE_LEN_GEN)
+                    throw new InvalidOperationException();
+
+                HbAssignCodes(code[t], len_t, minLen, maxLen, alphaSize);
+            }
+
+            /* Transmit the mapping table. */
+            {
+                bool[] inUse16 = new bool[16];
+                for (i = 0; i < 16; i++)
+                {
+                    inUse16[i] = false;
+                    int i16 = i * 16;
+                    for (j = 0; j < 16; j++)
+                    {
+                        if (inUse[i16 + j])
+                        {
+                            inUse16[i] = true;
+                            break;
+                        }
+                    }
+                }
+
+				for (i = 0; i < 16; i++)
+                {
+                    BsPutBit(inUse16[i] ? 1 : 0);
+                }
+
+                for (i = 0; i < 16; i++)
+                {
+                    if (inUse16[i])
+                    {
+                        int i16 = i * 16;
+                        for (j = 0; j < 16; j++)
+                        {
+                            BsPutBit(inUse[i16 + j] ? 1 : 0);
+                        }
+                    }
+                }
+            }
+
+            /* Now the selectors. */
+            BsPutBitsSmall(3, nGroups);
+            BsPutBits(15, nSelectors);
+            {
+                int mtfSelectors = 0x00654321;
+
+                for (i = 0; i < nSelectors; i++)
+                {
+                    // Compute MTF value for the selector.
+                    int ll_i = m_selectors[i];
+                    int bitPos = ll_i << 2;
+                    int mtfSelector = (mtfSelectors >> bitPos) & 0xF;
+
+                    if (mtfSelector != 1)
+                    {
+                        int mtfIncMask = (0x00888888 - mtfSelectors + 0x00111111 * mtfSelector) & 0x00888888;
+                        mtfSelectors = mtfSelectors - (mtfSelector << bitPos) + (mtfIncMask >> 3);
+                    }
+
+                    BsPutBitsSmall(mtfSelector, (1 << mtfSelector) - 2);
+                }
+            }
+
+            /* Now the coding tables. */
+            for (t = 0; t < nGroups; t++)
+            {
+                byte[] len_t = len[t];
+                int curr = len_t[0];
+                BsPutBitsSmall(6, curr << 1);
+                for (i = 1; i < alphaSize; i++)
+                {
+                    int lti = len_t[i];
+                    while (curr < lti)
+                    {
+                        BsPutBitsSmall(2, 2);
+                        curr++; /* 10 */
+                    }
+                    while (curr > lti)
+                    {
+                        BsPutBitsSmall(2, 3);
+                        curr--; /* 11 */
+                    }
+                    BsPutBit(0);
+                }
+            }
+
+            /* And finally, the block data proper */
+            {
+                int selCtr = 0;
+                int gs = 0;
+                while (gs < nMTF)
+                {
+                    int ge = System.Math.Min(gs + BZip2Constants.G_SIZE - 1, nMTF - 1);
+
+                    int selector_selCtr = m_selectors[selCtr];
+                    byte[] len_selCtr = len[selector_selCtr];
+                    int[] code_selCtr = code[selector_selCtr];
+
+                    for (i = gs; i <= ge; i++)
+                    {
+                        int sfmap_i = szptr[i];
+                        BsPutBits(len_selCtr[sfmap_i], code_selCtr[sfmap_i]);
+                    }
+
+                    gs = ge + 1;
+                    selCtr++;
+                }
+                if (selCtr != nSelectors)
+                    throw new InvalidOperationException();
+            }
+        }
+
+        private void MoveToFrontCodeAndSend()
+        {
+            BsPutBits(24, origPtr);
+            GenerateMtfValues();
+            SendMtfValues();
+        }
+
+        private Stream bsStream;
+
+        private void SimpleSort(int lo, int hi, int d)
+        {
+            int i, j, h, v;
+
+            int bigN = hi - lo + 1;
+            if (bigN < 2)
+                return;
+
+            int hp = 0;
+            while (Incs[hp] < bigN)
+            {
+                hp++;
+            }
+            hp--;
+
+            for (; hp >= 0; hp--)
+            {
+                h = Incs[hp];
+
+                i = lo + h;
+                while (i <= hi)
+                {
+                    /* copy 1 */
+                    v = zptr[i];
+                    j = i;
+                    while (FullGtU(zptr[j - h] + d, v + d))
+                    {
+                        zptr[j] = zptr[j - h];
+                        j = j - h;
+                        if (j <= (lo + h - 1))
+                            break;
+                    }
+                    zptr[j] = v;
+
+                    /* copy 2 */
+                    if (++i > hi)
+                        break;
+
+                    v = zptr[i];
+                    j = i;
+                    while (FullGtU(zptr[j - h] + d, v + d))
+                    {
+                        zptr[j] = zptr[j - h];
+                        j = j - h;
+                        if (j <= (lo + h - 1))
+                            break;
+                    }
+                    zptr[j] = v;
+
+                    /* copy 3 */
+                    if (++i > hi)
+                        break;
+
+                    v = zptr[i];
+                    j = i;
+                    while (FullGtU(zptr[j - h] + d, v + d))
+                    {
+                        zptr[j] = zptr[j - h];
+                        j = j - h;
+                        if (j <= (lo + h - 1))
+                            break;
+                    }
+                    zptr[j] = v;
+                    i++;
+
+                    if (workDone > workLimit && firstAttempt)
+                        return;
+                }
+            }
+        }
+
+        private void Vswap(int p1, int p2, int n)
+        {
+            while (--n >= 0)
+            {
+                int t1 = zptr[p1], t2 = zptr[p2];
+                zptr[p1++] = t2;
+                zptr[p2++] = t1;
+            }
+        }
+
+        private int Med3(int a, int b, int c)
+        {
+            return a > b
+                ? (c < b ? b : c > a ? a : c)
+                : (c < a ? a : c > b ? b : c);
+        }
+
+        internal class StackElem
+        {
+            internal int ll;
+            internal int hh;
+            internal int dd;
+        }
+
+        private static void PushStackElem(IList<StackElem> stack, int stackCount, int ll, int hh, int dd)
+        {
+            StackElem stackElem;
+            if (stackCount < stack.Count)
+            {
+                stackElem = stack[stackCount];
+            }
+            else
+            {
+                stackElem = new StackElem();
+                stack.Add(stackElem);
+            }
+
+            stackElem.ll = ll;
+            stackElem.hh = hh;
+            stackElem.dd = dd;
+        }
+
+        private void QSort3(int loSt, int hiSt, int dSt)
+        {
+            int unLo, unHi, ltLo, gtHi, n, m;
+
+            var stack = blocksortStack;
+            int stackCount = 0;
+            StackElem stackElem;
+
+            int lo = loSt;
+            int hi = hiSt;
+            int d = dSt;
+
+            for (;;)
+            {
+                if (hi - lo < SMALL_THRESH || d > DEPTH_THRESH)
+                {
+                    SimpleSort(lo, hi, d);
+                    if (stackCount < 1 || (workDone > workLimit && firstAttempt))
+                        return;
+
+                    stackElem = stack[--stackCount];
+                    lo = stackElem.ll;
+                    hi = stackElem.hh;
+                    d = stackElem.dd;
+                    continue;
+                }
+
+                int d1 = d + 1;
+                int med = Med3(
+                    blockBytes[zptr[lo] + d1],
+                    blockBytes[zptr[hi] + d1],
+                    blockBytes[zptr[(lo + hi) >> 1] + d1]);
+
+                unLo = ltLo = lo;
+                unHi = gtHi = hi;
+
+                while (true)
+                {
+                    while (unLo <= unHi)
+                    {
+                        int zUnLo = zptr[unLo];
+                        n = blockBytes[zUnLo + d1] - med;
+                        if (n > 0)
+                            break;
+
+                        if (n == 0)
+                        {
+                            zptr[unLo] = zptr[ltLo];
+                            zptr[ltLo++] = zUnLo;
+                        }
+                        unLo++;
+                    }
+                    while (unLo <= unHi)
+                    {
+                        int zUnHi = zptr[unHi];
+                        n = blockBytes[zUnHi + d1] - med;
+                        if (n < 0)
+                            break;
+
+                        if (n == 0)
+                        {
+                            zptr[unHi] = zptr[gtHi];
+                            zptr[gtHi--] = zUnHi;
+                        }
+                        unHi--;
+                    }
+                    if (unLo > unHi)
+                        break;
+
+                    int temp = zptr[unLo];
+                    zptr[unLo++] = zptr[unHi];
+                    zptr[unHi--] = temp;
+                }
+
+                if (gtHi < ltLo)
+                {
+                    d = d1;
+                    continue;
+                }
+
+                n = System.Math.Min(ltLo - lo, unLo - ltLo);
+                Vswap(lo, unLo - n, n);
+
+                m = System.Math.Min(hi - gtHi, gtHi - unHi);
+                Vswap(unLo, hi - m + 1, m);
+
+                n = lo + (unLo - ltLo);
+                m = hi - (gtHi - unHi);
+
+                PushStackElem(stack, stackCount++, lo, n - 1, d);
+                PushStackElem(stack, stackCount++, n, m, d1);
+
+                lo = m + 1;
+            }
+        }
+
+        private void MainSort()
+        {
+            int i, j, ss, sb;
+            int[] runningOrder = new int[256];
+            int[] copy = new int[256];
+            bool[] bigDone = new bool[256];
+            int c1, c2;
+
+            /*
+            In the various block-sized structures, live data runs
+            from 0 to last+NUM_OVERSHOOT_BYTES inclusive.  First,
+            set up the overshoot area for block.
+            */
+            for (i = 0; i < BZip2Constants.NUM_OVERSHOOT_BYTES; i++)
+            {
+                blockBytes[count + i + 1] = blockBytes[(i % count) + 1];
+            }
+            for (i = 0; i <= count + BZip2Constants.NUM_OVERSHOOT_BYTES; i++)
+            {
+                quadrantShorts[i] = 0;
+            }
+
+            blockBytes[0] = blockBytes[count];
+
+            if (count <= 4000)
+            {
+                /*
+                Use SimpleSort(), since the full sorting mechanism
+                has quite a large constant overhead.
+                */
+                for (i = 0; i < count; i++)
+                {
+                    zptr[i] = i;
+                }
+                firstAttempt = false;
+                workDone = workLimit = 0;
+                SimpleSort(0, count - 1, 0);
+            }
+            else
+            {
+                for (i = 0; i <= 255; i++)
+                {
+                    bigDone[i] = false;
+                }
+
+                for (i = 0; i <= 65536; i++)
+                {
+                    ftab[i] = 0;
+                }
+
+                c1 = blockBytes[0];
+                for (i = 1; i <= count; i++)
+                {
+                    c2 = blockBytes[i];
+                    ftab[(c1 << 8) + c2]++;
+                    c1 = c2;
+                }
+
+                for (i = 0; i < 65536; i++)
+                {
+                    ftab[i + 1] += ftab[i];
+                }
+
+                c1 = blockBytes[1];
+                for (i = 0; i < (count - 1); i++)
+                {
+                    c2 = blockBytes[i + 2];
+                    j = (c1 << 8) + c2;
+                    c1 = c2;
+                    ftab[j]--;
+                    zptr[ftab[j]] = i;
+                }
+
+                j = ((int)blockBytes[count] << 8) + blockBytes[1];
+                ftab[j]--;
+                zptr[ftab[j]] = count - 1;
+
+                /*
+                Now ftab contains the first loc of every small bucket.
+                Calculate the running order, from smallest to largest
+                big bucket.
+                */
+
+                for (i = 0; i <= 255; i++)
+                {
+                    runningOrder[i] = i;
+                }
+
+                {
+                    int h = 1;
+                    do
+                    {
+                        h = 3 * h + 1;
+                    }
+                    while (h <= 256);
+                    do
+                    {
+                        h = h / 3;
+                        for (i = h; i <= 255; i++)
+                        {
+                            int vv = runningOrder[i];
+                            j = i;
+                            while ((ftab[(runningOrder[j - h] + 1) << 8] - ftab[runningOrder[j - h] << 8])
+                                > (ftab[(vv + 1) << 8] - ftab[vv << 8]))
+                            {
+                                runningOrder[j] = runningOrder[j - h];
+                                j = j - h;
+                                if (j < h)
+                                    break;
+                            }
+                            runningOrder[j] = vv;
+                        }
+                    }
+                    while (h != 1);
+                }
+
+                /*
+                The main sorting loop.
+                */
+                for (i = 0; i <= 255; i++)
+                {
+                    /*
+                    Process big buckets, starting with the least full.
+                    */
+                    ss = runningOrder[i];
+
+                    /*
+                    Complete the big bucket [ss] by quicksorting
+                    any unsorted small buckets [ss, j].  Hopefully
+                    previous pointer-scanning phases have already
+                    completed many of the small buckets [ss, j], so
+                    we don't have to sort them at all.
+                    */
+                    for (j = 0; j <= 255; j++)
+                    {
+                        sb = (ss << 8) + j;
+                        if ((ftab[sb] & SETMASK) != SETMASK)
+                        {
+                            int lo = ftab[sb] & CLEARMASK;
+                            int hi = (ftab[sb + 1] & CLEARMASK) - 1;
+                            if (hi > lo)
+                            {
+                                QSort3(lo, hi, 2);
+                                if (workDone > workLimit && firstAttempt)
+                                    return;
+                            }
+                            ftab[sb] |= SETMASK;
+                        }
+                    }
+
+                    /*
+                    The ss big bucket is now done.  Record this fact,
+                    and update the quadrant descriptors.  Remember to
+                    update quadrants in the overshoot area too, if
+                    necessary.  The "if (i < 255)" test merely skips
+                    this updating for the last bucket processed, since
+                    updating for the last bucket is pointless.
+                    */
+                    bigDone[ss] = true;
+
+                    if (i < 255)
+                    {
+                        int bbStart = ftab[ss << 8] & CLEARMASK;
+                        int bbSize = (ftab[(ss + 1) << 8] & CLEARMASK) - bbStart;
+
+                        int shifts = 0;
+                        while ((bbSize >> shifts) > 65534)
+                        {
+                            shifts++;
+                        }
+
+                        for (j = 0; j < bbSize; j++)
+                        {
+                            int a2update = zptr[bbStart + j] + 1;
+                            ushort qVal = (ushort)(j >> shifts);
+                            quadrantShorts[a2update] = qVal;
+                            if (a2update <= BZip2Constants.NUM_OVERSHOOT_BYTES)
+                            {
+                                quadrantShorts[a2update + count] = qVal;
+                            }
+                        }
+
+                        if (!(((bbSize - 1) >> shifts) <= 65535))
+                            throw new InvalidOperationException();
+                    }
+
+                    /*
+                    Now scan this big bucket so as to synthesise the
+                    sorted order for small buckets [t, ss] for all t != ss.
+                    */
+                    for (j = 0; j <= 255; j++)
+                    {
+                        copy[j] = ftab[(j << 8) + ss] & CLEARMASK;
+                    }
+
+                    for (j = ftab[ss << 8] & CLEARMASK;
+                        j < (ftab[(ss + 1) << 8] & CLEARMASK); j++)
+                    {
+                        int zptr_j = zptr[j];
+                        c1 = blockBytes[zptr_j];
+                        if (!bigDone[c1])
+                        {
+                            zptr[copy[c1]] = (zptr_j == 0 ? count : zptr_j) - 1;
+                            copy[c1]++;
+                        }
+                    }
+
+                    for (j = 0; j <= 255; j++)
+                    {
+                        ftab[(j << 8) + ss] |= SETMASK;
+                    }
+                }
+            }
+        }
+
+        private void RandomiseBlock()
+        {
+            for (int i = 0; i < 256; i++)
+            {
+                inUse[i] = false;
+            }
+
+            int rNToGo = 0, rTPos = 0;
+
+            for (int i = 1; i <= count; i++)
+            {
+                if (rNToGo == 0)
+                {
+                    rNToGo = RNums[rTPos++];
+                    rTPos &= 0x1FF;
+                }
+                rNToGo--;
+                blockBytes[i] ^= (byte)(rNToGo == 1 ? 1 : 0);
+
+                inUse[blockBytes[i]] = true;
+            }
+        }
+
+        private void DoReversibleTransformation()
+        {
+            workLimit = workFactor * (count - 1);
+            workDone = 0;
+            blockRandomised = false;
+            firstAttempt = true;
+
+            MainSort();
+
+            if (workDone > workLimit && firstAttempt)
+            {
+                RandomiseBlock();
+                workLimit = workDone = 0;
+                blockRandomised = true;
+                firstAttempt = false;
+                MainSort();
+            }
+
+            origPtr = -1;
+            for (int i = 0; i < count; i++)
+            {
+                if (zptr[i] == 0)
+                {
+                    origPtr = i;
+                    break;
+                }
+            }
+
+            if (origPtr == -1)
+                throw new InvalidOperationException();
+        }
+
+        private bool FullGtU(int i1, int i2)
+        {
+            int c1, c2;
+
+            c1 = blockBytes[++i1];
+            c2 = blockBytes[++i2];
+            if (c1 != c2)
+                return c1 > c2;
+
+            c1 = blockBytes[++i1];
+            c2 = blockBytes[++i2];
+            if (c1 != c2)
+                return c1 > c2;
+
+            c1 = blockBytes[++i1];
+            c2 = blockBytes[++i2];
+            if (c1 != c2)
+                return c1 > c2;
+
+            c1 = blockBytes[++i1];
+            c2 = blockBytes[++i2];
+            if (c1 != c2)
+                return c1 > c2;
+
+            c1 = blockBytes[++i1];
+            c2 = blockBytes[++i2];
+            if (c1 != c2)
+                return c1 > c2;
+
+            c1 = blockBytes[++i1];
+            c2 = blockBytes[++i2];
+            if (c1 != c2)
+                return c1 > c2;
+
+            int k = count;
+            int s1, s2;
+
+            do
+            {
+                c1 = blockBytes[++i1];
+                c2 = blockBytes[++i2];
+                if (c1 != c2)
+                    return c1 > c2;
+
+                s1 = quadrantShorts[i1];
+                s2 = quadrantShorts[i2];
+                if (s1 != s2)
+                    return s1 > s2;
+
+                c1 = blockBytes[++i1];
+                c2 = blockBytes[++i2];
+                if (c1 != c2)
+                    return c1 > c2;
+
+                s1 = quadrantShorts[i1];
+                s2 = quadrantShorts[i2];
+                if (s1 != s2)
+                    return s1 > s2;
+
+                c1 = blockBytes[++i1];
+                c2 = blockBytes[++i2];
+                if (c1 != c2)
+                    return c1 > c2;
+
+                s1 = quadrantShorts[i1];
+                s2 = quadrantShorts[i2];
+                if (s1 != s2)
+                    return s1 > s2;
+
+                c1 = blockBytes[++i1];
+                c2 = blockBytes[++i2];
+                if (c1 != c2)
+                    return c1 > c2;
+
+                s1 = quadrantShorts[i1];
+                s2 = quadrantShorts[i2];
+                if (s1 != s2)
+                    return s1 > s2;
+
+                if (i1 >= count)
+                {
+                    i1 -= count;
+                }
+                if (i2 >= count)
+                {
+                    i2 -= count;
+                }
+
+                k -= 4;
+                workDone++;
+            }
+            while (k >= 0);
+
+            return false;
+        }
+
+        private void GenerateMtfValues()
+        {
+            int i;
+
+            nInUse = 0;
+
+            byte[] yy = new byte[256];
+            for (i = 0; i < 256; i++)
+            {
+                if (inUse[i])
+                {
+                    yy[nInUse++] = (byte)i;
+                }
+            }
+
+            int EOB = nInUse + 1;
+
+            for (i = 0; i <= EOB; i++)
+            {
+                mtfFreq[i] = 0;
+            }
+
+            int wr = 0, zPend = 0;
+            for (i = 0; i < count; i++)
+            {
+                byte blockByte = blockBytes[zptr[i]];
+
+                byte tmp = yy[0];
+                if (blockByte == tmp)
+                {
+                    zPend++;
+                    continue;
+                }
+
+                int sym = 1;
+                do
+                {
+                    byte tmp2 = tmp;
+                    tmp = yy[sym];
+                    yy[sym++] = tmp2;
+                }
+                while (blockByte != tmp);
+                yy[0] = tmp;
+
+                while (zPend > 0)
+                {
+                    // RUNA or RUNB
+                    int run = --zPend & 1;
+                    szptr[wr++] = run;
+                    mtfFreq[run]++;
+                    zPend >>= 1;
+                }
+
+                szptr[wr++] = sym;
+                mtfFreq[sym]++;
+            }
+
+            while (zPend > 0)
+            {
+                // RUNA or RUNB
+                int run = --zPend & 1;
+                szptr[wr++] = run;
+                mtfFreq[run]++;
+                zPend >>= 1;
+            }
+
+            szptr[wr++] = EOB;
+            mtfFreq[EOB]++;
+
+            nMTF = wr;
+        }
+
+        internal static byte[][] CreateByteArray(int n1, int n2)
+        {
+            byte[][] a = new byte[n1][];
+            for (int k = 0; k < n1; ++k)
+            {
+                a[k] = new byte[n2];
+            }
+            return a;
+        }
+    }
+
+    public class CBZip2OutputStreamLeaveOpen
+        : CBZip2OutputStream
+    {
+        public CBZip2OutputStreamLeaveOpen(Stream outStream)
+            : base(outStream)
+        {
+        }
+
+        public CBZip2OutputStreamLeaveOpen(Stream outStream, int blockSize)
+            : base(outStream, blockSize)
+        {
+        }
+
+        protected override void Dispose(bool disposing)
+        {
+            Detach(disposing);
+        }
+    }
+}