diff options
author | Peter Dettman <peter.dettman@bouncycastle.org> | 2017-06-03 20:44:45 +0700 |
---|---|---|
committer | Peter Dettman <peter.dettman@bouncycastle.org> | 2017-06-03 20:44:45 +0700 |
commit | 9b3549d18ecc3e4f66488568594a626e7d6d8543 (patch) | |
tree | 9504d9265461ab4118bb0708fcd7f0c11ca9d9b6 /crypto/src/math/ec | |
parent | Fix reductions for custom secp128r1 field (diff) | |
download | BouncyCastle.NET-ed25519-9b3549d18ecc3e4f66488568594a626e7d6d8543.tar.xz |
Initial implementation of SM2 elliptic curve
- includes custom curve code - add lots of OIDs from GM standard
Diffstat (limited to 'crypto/src/math/ec')
-rw-r--r-- | crypto/src/math/ec/custom/gm/SM2P256V1Curve.cs | 77 | ||||
-rw-r--r-- | crypto/src/math/ec/custom/gm/SM2P256V1Field.cs | 307 | ||||
-rw-r--r-- | crypto/src/math/ec/custom/gm/SM2P256V1FieldElement.cs | 213 | ||||
-rw-r--r-- | crypto/src/math/ec/custom/gm/SM2P256V1Point.cs | 279 |
4 files changed, 876 insertions, 0 deletions
diff --git a/crypto/src/math/ec/custom/gm/SM2P256V1Curve.cs b/crypto/src/math/ec/custom/gm/SM2P256V1Curve.cs new file mode 100644 index 000000000..70b1190c9 --- /dev/null +++ b/crypto/src/math/ec/custom/gm/SM2P256V1Curve.cs @@ -0,0 +1,77 @@ +using System; + +using Org.BouncyCastle.Utilities.Encoders; + +namespace Org.BouncyCastle.Math.EC.Custom.GM +{ + internal class SM2P256V1Curve + : AbstractFpCurve + { + public static readonly BigInteger q = new BigInteger(1, + Hex.Decode("FFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00000000FFFFFFFFFFFFFFFF")); + + private const int SM2P256V1_DEFAULT_COORDS = COORD_JACOBIAN; + + protected readonly SM2P256V1Point m_infinity; + + public SM2P256V1Curve() + : base(q) + { + this.m_infinity = new SM2P256V1Point(this, null, null); + + this.m_a = FromBigInteger(new BigInteger(1, + Hex.Decode("FFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00000000FFFFFFFFFFFFFFFC"))); + this.m_b = FromBigInteger(new BigInteger(1, + Hex.Decode("28E9FA9E9D9F5E344D5A9E4BCF6509A7F39789F515AB8F92DDBCBD414D940E93"))); + this.m_order = new BigInteger(1, Hex.Decode("FFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFF7203DF6B21C6052B53BBF40939D54123")); + this.m_cofactor = BigInteger.One; + this.m_coord = SM2P256V1_DEFAULT_COORDS; + } + + protected override ECCurve CloneCurve() + { + return new SM2P256V1Curve(); + } + + public override bool SupportsCoordinateSystem(int coord) + { + switch (coord) + { + case COORD_JACOBIAN: + return true; + default: + return false; + } + } + + public virtual BigInteger Q + { + get { return q; } + } + + public override ECPoint Infinity + { + get { return m_infinity; } + } + + public override int FieldSize + { + get { return q.BitLength; } + } + + public override ECFieldElement FromBigInteger(BigInteger x) + { + return new SM2P256V1FieldElement(x); + } + + protected internal override ECPoint CreateRawPoint(ECFieldElement x, ECFieldElement y, bool withCompression) + { + return new SM2P256V1Point(this, x, y, withCompression); + } + + protected internal override ECPoint CreateRawPoint(ECFieldElement x, ECFieldElement y, ECFieldElement[] zs, bool withCompression) + { + return new SM2P256V1Point(this, x, y, zs, withCompression); + } + } +} diff --git a/crypto/src/math/ec/custom/gm/SM2P256V1Field.cs b/crypto/src/math/ec/custom/gm/SM2P256V1Field.cs new file mode 100644 index 000000000..b1d232347 --- /dev/null +++ b/crypto/src/math/ec/custom/gm/SM2P256V1Field.cs @@ -0,0 +1,307 @@ +using System; +using System.Diagnostics; + +using Org.BouncyCastle.Math.Raw; + +namespace Org.BouncyCastle.Math.EC.Custom.GM +{ + internal class SM2P256V1Field + { + // 2^256 - 2^224 - 2^96 + 2^64 - 1 + internal static readonly uint[] P = new uint[]{ 0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, + 0xFFFFFFFF, 0xFFFFFFFE }; + internal static readonly uint[] PExt = new uint[]{ 00000001, 0x00000000, 0xFFFFFFFE, 0x00000001, 0x00000001, + 0xFFFFFFFE, 0x00000000, 0x00000002, 0xFFFFFFFE, 0xFFFFFFFD, 0x00000003, 0xFFFFFFFE, 0xFFFFFFFF, 0xFFFFFFFF, + 0x00000000, 0xFFFFFFFE }; + internal const uint P7 = 0xFFFFFFFE; + internal const uint PExt15 = 0xFFFFFFFE; + + public static void Add(uint[] x, uint[] y, uint[] z) + { + uint c = Nat256.Add(x, y, z); + if (c != 0 || (z[7] >= P7 && Nat256.Gte(z, P))) + { + AddPInvTo(z); + } + } + + public static void AddExt(uint[] xx, uint[] yy, uint[] zz) + { + uint c = Nat.Add(16, xx, yy, zz); + if (c != 0 || (zz[15] >= PExt15 && Nat.Gte(16, zz, PExt))) + { + Nat.SubFrom(16, PExt, zz); + } + } + + public static void AddOne(uint[] x, uint[] z) + { + uint c = Nat.Inc(8, x, z); + if (c != 0 || (z[7] >= P7 && Nat256.Gte(z, P))) + { + AddPInvTo(z); + } + } + + public static uint[] FromBigInteger(BigInteger x) + { + uint[] z = Nat256.FromBigInteger(x); + if (z[7] >= P7 && Nat256.Gte(z, P)) + { + Nat256.SubFrom(P, z); + } + return z; + } + + public static void Half(uint[] x, uint[] z) + { + if ((x[0] & 1) == 0) + { + Nat.ShiftDownBit(8, x, 0, z); + } + else + { + uint c = Nat256.Add(x, P, z); + Nat.ShiftDownBit(8, z, c); + } + } + + public static void Multiply(uint[] x, uint[] y, uint[] z) + { + uint[] tt = Nat256.CreateExt(); + Nat256.Mul(x, y, tt); + Reduce(tt, z); + } + + public static void MultiplyAddToExt(uint[] x, uint[] y, uint[] zz) + { + uint c = Nat256.MulAddTo(x, y, zz); + if (c != 0 || (zz[15] >= PExt15 && Nat.Gte(16, zz, PExt))) + { + Nat.SubFrom(16, PExt, zz); + } + } + + public static void Negate(uint[] x, uint[] z) + { + if (Nat256.IsZero(x)) + { + Nat256.Zero(z); + } + else + { + Nat256.Sub(P, x, z); + } + } + + public static void Reduce(uint[] xx, uint[] z) + { + long xx08 = xx[8], xx09 = xx[9], xx10 = xx[10], xx11 = xx[11]; + long xx12 = xx[12], xx13 = xx[13], xx14 = xx[14], xx15 = xx[15]; + + long t0 = xx08 + xx09; + long t1 = xx10 + xx11; + long t2 = xx12 + xx15; + long t3 = xx13 + xx14; + long t4 = t3 + (xx15 << 1); + + long ts = t0 + t3; + long tt = t1 + t2 + ts; + + long cc = 0; + cc += (long)xx[0] + tt + xx13 + xx14 + xx15; + z[0] = (uint)cc; + cc >>= 32; + cc += (long)xx[1] + tt - xx08 + xx14 + xx15; + z[1] = (uint)cc; + cc >>= 32; + cc += (long)xx[2] - ts; + z[2] = (uint)cc; + cc >>= 32; + cc += (long)xx[3] + tt - xx09 - xx10 + xx13; + z[3] = (uint)cc; + cc >>= 32; + cc += (long)xx[4] + tt - t1 - xx08 + xx14; + z[4] = (uint)cc; + cc >>= 32; + cc += (long)xx[5] + t4 + xx10; + z[5] = (uint)cc; + cc >>= 32; + cc += (long)xx[6] + xx11 + xx14 + xx15; + z[6] = (uint)cc; + cc >>= 32; + cc += (long)xx[7] + tt + t4 + xx12; + z[7] = (uint)cc; + cc >>= 32; + + Debug.Assert(cc >= 0); + + Reduce32((uint)cc, z); + } + + public static void Reduce32(uint x, uint[] z) + { + long cc = 0; + + if (x != 0) + { + long xx08 = x; + + cc += (long)z[0] + xx08; + z[0] = (uint)cc; + cc >>= 32; + if (cc != 0) + { + cc += (long)z[1]; + z[1] = (uint)cc; + cc >>= 32; + } + cc += (long)z[2] - xx08; + z[2] = (uint)cc; + cc >>= 32; + cc += (long)z[3] + xx08; + z[3] = (uint)cc; + cc >>= 32; + if (cc != 0) + { + cc += (long)z[4]; + z[4] = (uint)cc; + cc >>= 32; + cc += (long)z[5]; + z[5] = (uint)cc; + cc >>= 32; + cc += (long)z[6]; + z[6] = (uint)cc; + cc >>= 32; + } + cc += (long)z[7] + xx08; + z[7] = (uint)cc; + cc >>= 32; + + Debug.Assert(cc == 0 || cc == 1); + } + + if (cc != 0 || (z[7] >= P7 && Nat256.Gte(z, P))) + { + AddPInvTo(z); + } + } + + public static void Square(uint[] x, uint[] z) + { + uint[] tt = Nat256.CreateExt(); + Nat256.Square(x, tt); + Reduce(tt, z); + } + + public static void SquareN(uint[] x, int n, uint[] z) + { + Debug.Assert(n > 0); + + uint[] tt = Nat256.CreateExt(); + Nat256.Square(x, tt); + Reduce(tt, z); + + while (--n > 0) + { + Nat256.Square(z, tt); + Reduce(tt, z); + } + } + + public static void Subtract(uint[] x, uint[] y, uint[] z) + { + int c = Nat256.Sub(x, y, z); + if (c != 0) + { + SubPInvFrom(z); + } + } + + public static void SubtractExt(uint[] xx, uint[] yy, uint[] zz) + { + int c = Nat.Sub(16, xx, yy, zz); + if (c != 0) + { + Nat.AddTo(16, PExt, zz); + } + } + + public static void Twice(uint[] x, uint[] z) + { + uint c = Nat.ShiftUpBit(8, x, 0, z); + if (c != 0 || (z[7] >= P7 && Nat256.Gte(z, P))) + { + AddPInvTo(z); + } + } + + private static void AddPInvTo(uint[] z) + { + long c = (long)z[0] + 1; + z[0] = (uint)c; + c >>= 32; + if (c != 0) + { + c += (long)z[1]; + z[1] = (uint)c; + c >>= 32; + } + c += (long)z[2] - 1; + z[2] = (uint)c; + c >>= 32; + c += (long)z[3] + 1; + z[3] = (uint)c; + c >>= 32; + if (c != 0) + { + c += (long)z[4]; + z[4] = (uint)c; + c >>= 32; + c += (long)z[5]; + z[5] = (uint)c; + c >>= 32; + c += (long)z[6]; + z[6] = (uint)c; + c >>= 32; + } + c += (long)z[7] + 1; + z[7] = (uint)c; + //c >>= 32; + } + + private static void SubPInvFrom(uint[] z) + { + long c = (long)z[0] - 1; + z[0] = (uint)c; + c >>= 32; + if (c != 0) + { + c += (long)z[1]; + z[1] = (uint)c; + c >>= 32; + } + c += (long)z[2] + 1; + z[2] = (uint)c; + c >>= 32; + c += (long)z[3] - 1; + z[3] = (uint)c; + c >>= 32; + if (c != 0) + { + c += (long)z[4]; + z[4] = (uint)c; + c >>= 32; + c += (long)z[5]; + z[5] = (uint)c; + c >>= 32; + c += (long)z[6]; + z[6] = (uint)c; + c >>= 32; + } + c += (long)z[7] - 1; + z[7] = (uint)c; + //c >>= 32; + } + } +} diff --git a/crypto/src/math/ec/custom/gm/SM2P256V1FieldElement.cs b/crypto/src/math/ec/custom/gm/SM2P256V1FieldElement.cs new file mode 100644 index 000000000..669c73bd2 --- /dev/null +++ b/crypto/src/math/ec/custom/gm/SM2P256V1FieldElement.cs @@ -0,0 +1,213 @@ +using System; + +using Org.BouncyCastle.Math.Raw; +using Org.BouncyCastle.Utilities; + +namespace Org.BouncyCastle.Math.EC.Custom.GM +{ + internal class SM2P256V1FieldElement + : ECFieldElement + { + public static readonly BigInteger Q = SM2P256V1Curve.q; + + protected internal readonly uint[] x; + + public SM2P256V1FieldElement(BigInteger x) + { + if (x == null || x.SignValue < 0 || x.CompareTo(Q) >= 0) + throw new ArgumentException("value invalid for SM2P256V1FieldElement", "x"); + + this.x = SM2P256V1Field.FromBigInteger(x); + } + + public SM2P256V1FieldElement() + { + this.x = Nat256.Create(); + } + + protected internal SM2P256V1FieldElement(uint[] x) + { + this.x = x; + } + + public override bool IsZero + { + get { return Nat256.IsZero(x); } + } + + public override bool IsOne + { + get { return Nat256.IsOne(x); } + } + + public override bool TestBitZero() + { + return Nat256.GetBit(x, 0) == 1; + } + + public override BigInteger ToBigInteger() + { + return Nat256.ToBigInteger(x); + } + + public override string FieldName + { + get { return "SM2P256V1Field"; } + } + + public override int FieldSize + { + get { return Q.BitLength; } + } + + public override ECFieldElement Add(ECFieldElement b) + { + uint[] z = Nat256.Create(); + SM2P256V1Field.Add(x, ((SM2P256V1FieldElement)b).x, z); + return new SM2P256V1FieldElement(z); + } + + public override ECFieldElement AddOne() + { + uint[] z = Nat256.Create(); + SM2P256V1Field.AddOne(x, z); + return new SM2P256V1FieldElement(z); + } + + public override ECFieldElement Subtract(ECFieldElement b) + { + uint[] z = Nat256.Create(); + SM2P256V1Field.Subtract(x, ((SM2P256V1FieldElement)b).x, z); + return new SM2P256V1FieldElement(z); + } + + public override ECFieldElement Multiply(ECFieldElement b) + { + uint[] z = Nat256.Create(); + SM2P256V1Field.Multiply(x, ((SM2P256V1FieldElement)b).x, z); + return new SM2P256V1FieldElement(z); + } + + public override ECFieldElement Divide(ECFieldElement b) + { + //return Multiply(b.Invert()); + uint[] z = Nat256.Create(); + Mod.Invert(SM2P256V1Field.P, ((SM2P256V1FieldElement)b).x, z); + SM2P256V1Field.Multiply(z, x, z); + return new SM2P256V1FieldElement(z); + } + + public override ECFieldElement Negate() + { + uint[] z = Nat256.Create(); + SM2P256V1Field.Negate(x, z); + return new SM2P256V1FieldElement(z); + } + + public override ECFieldElement Square() + { + uint[] z = Nat256.Create(); + SM2P256V1Field.Square(x, z); + return new SM2P256V1FieldElement(z); + } + + public override ECFieldElement Invert() + { + //return new SM2P256V1FieldElement(ToBigInteger().ModInverse(Q)); + uint[] z = Nat256.Create(); + Mod.Invert(SM2P256V1Field.P, x, z); + return new SM2P256V1FieldElement(z); + } + + /** + * return a sqrt root - the routine verifies that the calculation returns the right value - if + * none exists it returns null. + */ + public override ECFieldElement Sqrt() + { + /* + * Raise this element to the exponent 2^254 - 2^222 - 2^94 + 2^62 + * + * Breaking up the exponent's binary representation into "repunits", we get: + * { 31 1s } { 1 0s } { 128 1s } { 31 0s } { 1 1s } { 62 0s} + * + * We use an addition chain for the beginning: [1], 2, 3, 6, 12, [24], 30, [31] + */ + + uint[] x1 = this.x; + if (Nat256.IsZero(x1) || Nat256.IsOne(x1)) + { + return this; + } + + uint[] x2 = Nat256.Create(); + SM2P256V1Field.Square(x1, x2); + SM2P256V1Field.Multiply(x2, x1, x2); + uint[] x3 = x2; + SM2P256V1Field.Square(x2, x3); + SM2P256V1Field.Multiply(x3, x1, x3); + uint[] x6 = Nat256.Create(); + SM2P256V1Field.SquareN(x3, 3, x6); + SM2P256V1Field.Multiply(x6, x3, x6); + uint[] x12 = x3; + SM2P256V1Field.SquareN(x6, 6, x12); + SM2P256V1Field.Multiply(x12, x6, x12); + uint[] x24 = Nat256.Create(); + SM2P256V1Field.SquareN(x12, 12, x24); + SM2P256V1Field.Multiply(x24, x12, x24); + uint[] x30 = x12; + SM2P256V1Field.SquareN(x24, 6, x30); + SM2P256V1Field.Multiply(x30, x6, x30); + uint[] x31 = x6; + SM2P256V1Field.Square(x30, x31); + SM2P256V1Field.Multiply(x31, x1, x31); + + uint[] t1 = x31; + SM2P256V1Field.Square(x31, t1); + + uint[] x32 = x12; + SM2P256V1Field.Multiply(t1, x1, x32); + + SM2P256V1Field.SquareN(t1, 32, t1); + SM2P256V1Field.Multiply(t1, x32, t1); + + uint[] t2 = x24; + SM2P256V1Field.SquareN(t1, 32, t2); + SM2P256V1Field.Multiply(t2, x1, t2); + SM2P256V1Field.SquareN(t2, 32, t2); + SM2P256V1Field.Multiply(t2, t1, t2); + SM2P256V1Field.SquareN(t2, 32, t2); + SM2P256V1Field.Multiply(t2, x32, t2); + SM2P256V1Field.SquareN(t2, 32, t2); + SM2P256V1Field.Multiply(t2, x1, t2); + SM2P256V1Field.SquareN(t2, 62, t1); + SM2P256V1Field.Square(t1, t2); + + return Nat256.Eq(x1, t2) ? new SM2P256V1FieldElement(t1) : null; + } + + public override bool Equals(object obj) + { + return Equals(obj as SM2P256V1FieldElement); + } + + public override bool Equals(ECFieldElement other) + { + return Equals(other as SM2P256V1FieldElement); + } + + public virtual bool Equals(SM2P256V1FieldElement other) + { + if (this == other) + return true; + if (null == other) + return false; + return Nat256.Eq(x, other.x); + } + + public override int GetHashCode() + { + return Q.GetHashCode() ^ Arrays.GetHashCode(x, 0, 8); + } + } +} diff --git a/crypto/src/math/ec/custom/gm/SM2P256V1Point.cs b/crypto/src/math/ec/custom/gm/SM2P256V1Point.cs new file mode 100644 index 000000000..916c90633 --- /dev/null +++ b/crypto/src/math/ec/custom/gm/SM2P256V1Point.cs @@ -0,0 +1,279 @@ +using System; + +using Org.BouncyCastle.Math.Raw; + +namespace Org.BouncyCastle.Math.EC.Custom.GM +{ + internal class SM2P256V1Point + : AbstractFpPoint + { + /** + * Create a point which encodes with point compression. + * + * @param curve + * the curve to use + * @param x + * affine x co-ordinate + * @param y + * affine y co-ordinate + * + * @deprecated Use ECCurve.createPoint to construct points + */ + public SM2P256V1Point(ECCurve curve, ECFieldElement x, ECFieldElement y) + : this(curve, x, y, false) + { + } + + /** + * Create a point that encodes with or without point compresion. + * + * @param curve + * the curve to use + * @param x + * affine x co-ordinate + * @param y + * affine y co-ordinate + * @param withCompression + * if true encode with point compression + * + * @deprecated per-point compression property will be removed, refer + * {@link #getEncoded(bool)} + */ + public SM2P256V1Point(ECCurve curve, ECFieldElement x, ECFieldElement y, bool withCompression) + : base(curve, x, y, withCompression) + { + if ((x == null) != (y == null)) + throw new ArgumentException("Exactly one of the field elements is null"); + } + + internal SM2P256V1Point(ECCurve curve, ECFieldElement x, ECFieldElement y, ECFieldElement[] zs, bool withCompression) + : base(curve, x, y, zs, withCompression) + { + } + + protected override ECPoint Detach() + { + return new SM2P256V1Point(null, AffineXCoord, AffineYCoord); + } + + public override ECPoint Add(ECPoint b) + { + if (this.IsInfinity) + return b; + if (b.IsInfinity) + return this; + if (this == b) + return Twice(); + + ECCurve curve = this.Curve; + + SM2P256V1FieldElement X1 = (SM2P256V1FieldElement)this.RawXCoord, Y1 = (SM2P256V1FieldElement)this.RawYCoord; + SM2P256V1FieldElement X2 = (SM2P256V1FieldElement)b.RawXCoord, Y2 = (SM2P256V1FieldElement)b.RawYCoord; + + SM2P256V1FieldElement Z1 = (SM2P256V1FieldElement)this.RawZCoords[0]; + SM2P256V1FieldElement Z2 = (SM2P256V1FieldElement)b.RawZCoords[0]; + + uint c; + uint[] tt1 = Nat256.CreateExt(); + uint[] t2 = Nat256.Create(); + uint[] t3 = Nat256.Create(); + uint[] t4 = Nat256.Create(); + + bool Z1IsOne = Z1.IsOne; + uint[] U2, S2; + if (Z1IsOne) + { + U2 = X2.x; + S2 = Y2.x; + } + else + { + S2 = t3; + SM2P256V1Field.Square(Z1.x, S2); + + U2 = t2; + SM2P256V1Field.Multiply(S2, X2.x, U2); + + SM2P256V1Field.Multiply(S2, Z1.x, S2); + SM2P256V1Field.Multiply(S2, Y2.x, S2); + } + + bool Z2IsOne = Z2.IsOne; + uint[] U1, S1; + if (Z2IsOne) + { + U1 = X1.x; + S1 = Y1.x; + } + else + { + S1 = t4; + SM2P256V1Field.Square(Z2.x, S1); + + U1 = tt1; + SM2P256V1Field.Multiply(S1, X1.x, U1); + + SM2P256V1Field.Multiply(S1, Z2.x, S1); + SM2P256V1Field.Multiply(S1, Y1.x, S1); + } + + uint[] H = Nat256.Create(); + SM2P256V1Field.Subtract(U1, U2, H); + + uint[] R = t2; + SM2P256V1Field.Subtract(S1, S2, R); + + // Check if b == this or b == -this + if (Nat256.IsZero(H)) + { + if (Nat256.IsZero(R)) + { + // this == b, i.e. this must be doubled + return this.Twice(); + } + + // this == -b, i.e. the result is the point at infinity + return curve.Infinity; + } + + uint[] HSquared = t3; + SM2P256V1Field.Square(H, HSquared); + + uint[] G = Nat256.Create(); + SM2P256V1Field.Multiply(HSquared, H, G); + + uint[] V = t3; + SM2P256V1Field.Multiply(HSquared, U1, V); + + SM2P256V1Field.Negate(G, G); + Nat256.Mul(S1, G, tt1); + + c = Nat256.AddBothTo(V, V, G); + SM2P256V1Field.Reduce32(c, G); + + SM2P256V1FieldElement X3 = new SM2P256V1FieldElement(t4); + SM2P256V1Field.Square(R, X3.x); + SM2P256V1Field.Subtract(X3.x, G, X3.x); + + SM2P256V1FieldElement Y3 = new SM2P256V1FieldElement(G); + SM2P256V1Field.Subtract(V, X3.x, Y3.x); + SM2P256V1Field.MultiplyAddToExt(Y3.x, R, tt1); + SM2P256V1Field.Reduce(tt1, Y3.x); + + SM2P256V1FieldElement Z3 = new SM2P256V1FieldElement(H); + if (!Z1IsOne) + { + SM2P256V1Field.Multiply(Z3.x, Z1.x, Z3.x); + } + if (!Z2IsOne) + { + SM2P256V1Field.Multiply(Z3.x, Z2.x, Z3.x); + } + + ECFieldElement[] zs = new ECFieldElement[]{ Z3 }; + + return new SM2P256V1Point(curve, X3, Y3, zs, IsCompressed); + } + + public override ECPoint Twice() + { + if (this.IsInfinity) + return this; + + ECCurve curve = this.Curve; + + SM2P256V1FieldElement Y1 = (SM2P256V1FieldElement)this.RawYCoord; + if (Y1.IsZero) + return curve.Infinity; + + SM2P256V1FieldElement X1 = (SM2P256V1FieldElement)this.RawXCoord, Z1 = (SM2P256V1FieldElement)this.RawZCoords[0]; + + uint c; + uint[] t1 = Nat256.Create(); + uint[] t2 = Nat256.Create(); + + uint[] Y1Squared = Nat256.Create(); + SM2P256V1Field.Square(Y1.x, Y1Squared); + + uint[] T = Nat256.Create(); + SM2P256V1Field.Square(Y1Squared, T); + + bool Z1IsOne = Z1.IsOne; + + uint[] Z1Squared = Z1.x; + if (!Z1IsOne) + { + Z1Squared = t2; + SM2P256V1Field.Square(Z1.x, Z1Squared); + } + + SM2P256V1Field.Subtract(X1.x, Z1Squared, t1); + + uint[] M = t2; + SM2P256V1Field.Add(X1.x, Z1Squared, M); + SM2P256V1Field.Multiply(M, t1, M); + c = Nat256.AddBothTo(M, M, M); + SM2P256V1Field.Reduce32(c, M); + + uint[] S = Y1Squared; + SM2P256V1Field.Multiply(Y1Squared, X1.x, S); + c = Nat.ShiftUpBits(8, S, 2, 0); + SM2P256V1Field.Reduce32(c, S); + + c = Nat.ShiftUpBits(8, T, 3, 0, t1); + SM2P256V1Field.Reduce32(c, t1); + + SM2P256V1FieldElement X3 = new SM2P256V1FieldElement(T); + SM2P256V1Field.Square(M, X3.x); + SM2P256V1Field.Subtract(X3.x, S, X3.x); + SM2P256V1Field.Subtract(X3.x, S, X3.x); + + SM2P256V1FieldElement Y3 = new SM2P256V1FieldElement(S); + SM2P256V1Field.Subtract(S, X3.x, Y3.x); + SM2P256V1Field.Multiply(Y3.x, M, Y3.x); + SM2P256V1Field.Subtract(Y3.x, t1, Y3.x); + + SM2P256V1FieldElement Z3 = new SM2P256V1FieldElement(M); + SM2P256V1Field.Twice(Y1.x, Z3.x); + if (!Z1IsOne) + { + SM2P256V1Field.Multiply(Z3.x, Z1.x, Z3.x); + } + + return new SM2P256V1Point(curve, X3, Y3, new ECFieldElement[]{ Z3 }, IsCompressed); + } + + public override ECPoint TwicePlus(ECPoint b) + { + if (this == b) + return ThreeTimes(); + if (this.IsInfinity) + return b; + if (b.IsInfinity) + return Twice(); + + ECFieldElement Y1 = this.RawYCoord; + if (Y1.IsZero) + return b; + + return Twice().Add(b); + } + + public override ECPoint ThreeTimes() + { + if (this.IsInfinity || this.RawYCoord.IsZero) + return this; + + // NOTE: Be careful about recursions between TwicePlus and ThreeTimes + return Twice().Add(this); + } + + public override ECPoint Negate() + { + if (IsInfinity) + return this; + + return new SM2P256V1Point(Curve, RawXCoord, RawYCoord.Negate(), RawZCoords, IsCompressed); + } + } +} |